模式识别-第三章-用有标签样本进行学习的统计模式识别-1
模式识别(3-1)
§3.2 最大似然估计
最大似然估计量: -使似然函数达到最大值的参数向量。 -最符合已有的观测样本集的那一个参数向量。 ∵学习样本从总体样本集中独立抽取的
N ) p( X | ) p( X k | i ) k 1 N个学习样本出现概率的乘积
i
i
∴
p( X | i . i
i
§3.2 Bayes学习
假定: ①待估参数θ是随机的未知量 ②按类别把样本分成M类X1,X2,X3,… XM 其中第i类的样本共N个 Xi = {X1,X2,… XN} 并且是从总体中独立抽取的 ③ 类条件概率密度具有某种确定的函数形式,但其 参数向量未知。 ④ Xi 中的样本不包含待估计参数θj(i≠j)的信息,不 同类别的参数在函数上是独立的,所以可以对每一 类样本独立进行处理。
有时上式是多解的, 上图有5个解,只有一个解最大即 (对所有的可能解进行检查或计算二阶导数)
§3.2 最大似然估计
例:假设随机变量x服从均匀分布,但参数1, 2未知, 1 1 x 2 p ( x | ) 2 1 , 0 其他 求1, 2的最大似然估计量。 解:设从总体中独立抽取N个样本x1 , x2 , , xN , 则其似然函数为: 1 p ( x1 , x2 , , xN | 1, 2 ) ( 2 1 ) N l ( ) p ( X | ) 0
§3.2 Bayes学习
p ~ N 0 , 0
2
其中 0和 0 是已知的
2
已知的信息还包括一组抽取出来的样本X i x1 , x2 ,, xN ,从而 可以得到关于 的后验概率密度:
模式识别作业题(2)
答:不是最小的。首先要明确当我们谈到最小最大损失判决规则时,先验概率是未知的, 而先验概率的变化会导致错分概率变化, 故错分概率也是一个变量。 使用最小最大损 失判决规则的目的就是保证在先验概率任意变化导致错分概率变化时, 错分概率的最 坏(即最大)情况在所有判决规则中是最好的(即最小)。 4、 若 λ11 = λ22 =0, λ12 = λ21 ,证明此时最小最大决策面是来自两类的错误率相等。 证明:最小最大决策面满足 ( λ11 - λ22 )+( λ21 - λ11 ) 容易得到
λ11 P(ω1 | x) + λ12 P(ω2 | x) < λ21 P(ω1 | x) + λ22 P(ω2 | x) ( λ21 - λ11 ) P (ω1 | x) >( λ12 - λ22 ) P (ω2 | x) ( λ21 - λ11 ) P (ω1 ) P ( x | ω1 ) >( λ12 - λ22 ) P (ω2 ) P ( x | ω2 ) p( x | ω1 ) (λ 12 − λ 22) P(ω2 ) > 即 p( x | ω2 ) ( λ 21 − λ 11) P (ω1 )
6、设总体分布密度为 N( μ ,1),-∞< μ <+∞,并设 X={ x1 , x2 ,… xN },分别用最大似然 估计和贝叶斯估计计算 μ 。已知 μ 的先验分布 p( μ )~N(0,1)。 解:似然函数为:
∧Байду номын сангаас
L( μ )=lnp(X|u)=
∑ ln p( xi | u) = −
i =1
N
模式识别第三章作业及其解答
统计模式识别方法
统计模式识别方法模式识别方法是一种通过对数据进行分析和建模的技术,用于识别和分类不同模式和特征。
它广泛应用于图像识别、语音识别、文本分类、信号处理等各个领域。
本文将对几种常见的模式识别方法进行介绍,并提供相关参考资料。
1. 统计特征提取方法统计特征提取方法通过对数据进行统计分析,提取数据的关键特征。
常用的统计特征包括均值、方差、协方差、偏度、峰度等。
统计特征提取方法适用于数据维度较低的情况,并且不需要太多的领域知识。
相关参考资料包括《模式识别与机器学习》(Christopher Bishop, 2006)和《统计学习方法》(李航, 2012)。
2. 主成分分析(PCA)主成分分析是一种常用的降维方法,通过线性变换将原始数据映射到新的坐标系中。
它可以将高维数据压缩到低维,并保留大部分原始数据的信息。
相关参考资料包括《Pattern Recognition and Machine Learning》(Christopher Bishop, 2006)和《Principal Component Analysis》(I. T. Jolliffe, 2002)。
3. 独立成分分析(ICA)独立成分分析是一种用于从混合数据中提取独立信源的方法。
它假设原始数据由多个独立的信源组成,并通过估计混合矩阵,将混合数据分解为独立的信源。
ICA广泛用于信号处理、图像处理等领域。
相关参考资料包括《Independent Component Analysis》(Aapo Hyvärinen, 2000)和《Pattern Analysis andMachine Intelligence》(Simon Haykin, 1999)。
4. 支持向量机(SVM)支持向量机是一种二分类和多分类的模式识别方法。
它通过找到一个最优的超平面,将样本分成不同的类别。
SVM可以灵活地处理线性可分和线性不可分的问题,并具有很好的泛化能力。
模式识别讲义_(80pp)
第一章 绪论1.1模式和模式识别模式识别是一门很受人们重视的学科。
早在30年代就有人试图以当时的技术解决一些识别问题,在近代,随着计算机科学技术的发展和应用,模式识别才真正发展起来。
从60年代至今,在模式识别领域中已取得了不少成果。
它的迅速发展和广泛应用前景引起各方面的关注。
模式识别属于人工智能范畴,人工智能就是用机器去完成过去只有人类才能做的智能活动。
在这里,“智能”指的是人类在认识和改造自然的过程中表现出来的智力活动的能力。
例如:通过视觉、听觉、触觉等感官接受图象、文字、声音等各种自然信息去认识外界环境的能力;将感性知识加工成理性知识的能力,即经过分析、推理、判断等思维过程而形成概念、建立方法和作出决策的能力;经过教育、训练、学习不断提高认识与改造客观环境的能力‘对外界环境的变化和干扰作出适应性反应的能力等。
模式识别就是要用机器去完成人类智能中通过视觉、听觉、触觉等感官去识别外界环境的自然信息的那些工作。
虽然模式识别与人工智能关系很密切,但是发展到现在,它已经形成了独立的学科,有其自身的理论和方法。
在许多领域中,模式识别已有不少比较成功的实际应用。
模式的概念:模式这个概念的内涵是很丰富的。
“我们把凡是人类能用其感官直接或间接接受的外界信息都称为模式”。
比如:文字、图片、景物;声音、语言;心电图、脑电图、地震波等;社会经济现象、某个系统的状态等,都是模式。
模式识别:模式识别是一门研究对象描述和分类方法的科学。
如,我们要听某一门课,必须做以下识别:1)看课表—文字识别;2)找教室和座位—景物识别;3)听课—声音识别。
再比如,医生给病人看病:1)首先要了解病情;问2)再做一些必要的检验;查3)根据找到的能够诊断病情的主要特征,如体温、血压、血相等,做出分类决策,即诊断。
对于比较简单的问题,可以认为识别就是分类。
如,对于识别从“0”到“9”这十个阿拉伯数字的问题。
对于比较复杂的识别问题,就往往不能用简单的分类来解决,还需要对待识别模式的描述。
模式识别(国家级精品课程讲义)
1.1 概述-模式识别的基本方法
一、统计模式识别
理论基础:概率论,数理统计 主要方法:线性、非线性分类、Bayes决策、聚类分析 主要优点:
1)比较成熟 2)能考虑干扰噪声等影响 3)识别模式基元能力强 主要缺点: 1)对结构复杂的模式抽取特征困难 2)不能反映模式的结构特征,难以描述模式的性质 3)难以从整体角度考虑识别问题
模式类(Class):具有某些共同特性的模式 的集合。
模式识别的例子
计算机自动诊断疾病:
1. 获取情况(信息采集) 测量体温、血压、心率、 血液化验、X光透射、B超、心电图、CT等尽可 能多的信息,并将这些信息数字化后输入电脑。 当然在实际应用中要考虑采集的成本,这就是 说特征要进行选择的。
2. 运行在电脑中的专家系统或专用程序可以分析 这些数据并进行分类,得出正常或不正常的判 断,不正常情况还要指出是什么问题。
5元
反 射 光 波 形
10元
20元 50元 100元
1 2 3 4 5 6 7 8
1.1 概述-系统实例
数据采集、特征提取:
长度、宽度、磁性、磁性的位置,光反射亮度、光 透射亮度等等
特征选择:
长度、磁性及位置、反射亮度
分类识别:
确定纸币的面额及真伪
1.1 概述-系统实例
训练集:是一个已知样本集,在监督学习方法 中,用它来开发出模式分类器。
模式识别
★ 相关学科
●统计学 ●概率论 ●线性代数(矩阵计算)
●形式语言 ●人工智能 ●图像处理 ●计算机视觉
等等
讲授课程内容及安排
第一章 第二章 第三章 第四章 第五章 第六章 第七章
引论 聚类分析 判别域代数界面方程法 统计判决 学习、训练与错误率估计 最近邻方法 特征提取和选择 上机实习
模式识别(3-2)
0
x为其它
解:此为多峰情况的估计
-2.5 -2 0
2x
设窗函数为正态
(u) 1 exp[ 1 u2], hN h1
2
2
N
❖
用
Parzen
窗 法 估 计 两 个 均 匀 分 布 的 实 验
h1 0.25 10.0
1.0 0.1 0.01 0.001 10.0 1.0 0.1 0.01 0.001 10.0 1.0 0.1 0.01 0.001 10.0 1.0 0.1 0.01 0.001
Parse窗口估计
例2:设待估计的P(x)是个均值为0,方差为1的正态密度
函数。若随机地抽取X样本中的1个、 16个、 256个作为
学习样本xi,试用窗口法估计PN(x)。 解:设窗口函数为正态的, σ=1,μ=0
(| x xi |)
1
exp[
1
(
|
x
xi
|
2
)]
设hN h1
hN
2
2 hN
N
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 2 0 2
h1 1 2 0 2
h1 4 2 0 2
Parse窗口估计
讨论:由图看出, PN(x)随N, h1的变化情况 ①正当态N=形1时状,的P小N(丘x),是与一窗个函以数第差一不个多样。本为中心的
概率密度估计
数学期望: E(k)=k=NP
∴对概率P的估计: P k。
N
模式识别第三章
第三章概率密度函数的估计1.概率密度函数的估计方法及分类概率密度函数估计方法分为两大类:参数估计和非参数估计。
参数估计中,一直概率密度函数的形式,但其中部分或全部参数未知,概率密度函数的估计就是用样本来估计这些参数。
主要方法又有两类:最大似然估计和贝叶斯估计。
非参数估计,就是概率密度函数的形式也未知,或者概率密度函数不符合目前研究的任何分布模型,因此不能仅仅估计几个参数,而是用样本把概率密度函数数值化地估计出来。
主要方法有:直方图法、K N 近邻估计法、Parzen 窗口。
2.最大似然估计假定一个随机试验有若干个可能的结果。
如果在一次试验后出现了结果,那么,一般认为试验条件对“结果出现”有利,即这个试验中“出现”的概率(站在试验前的立场上考察)最大。
3.贝叶斯估计与最大似然估计区别在这两种估计中,都是假设样本概率密度函数形式已知,需要估计的是是概率密度函数中的参数。
虽然使用贝叶斯方法和最大似然估计的结果很相似,但这两个方法在本质上有很大的不同。
在最大似然估计方法中,我们把需要估计的参数向量看作是一个确定而未知的参数。
而在贝叶斯学习方法中,我们把参数向量看成是一个随机变量,已有的训练样本使我们把对于参数的初始密度估计转化为厚颜概率密度。
4.直方图方法a. 把样本x 的每个分量在其取值范围内分成k 个等间隔的小窗。
如果x 是d 维向量,则会得到k d 个小体积或者称作小舱,每个小舱的体积记作V ;b. 统计落入小舱内的样本数目q ic. 把每个小舱内的概率密度看作是常数,并用q i /(NV)作为其估计值,其中N 为样本总数。
在上述直方图估计中,采用的是把特征空间在样本范围内等分的做法。
小舱的体积选择应该与样本总数相适应。
避免小舱过宽或过窄,随样本数的增加,小舱体积应尽可能小,同时又必须保证小舱内有足够充分逗得样本,但每个小舱内的样本数有必须是总样本数中很小的一部分。
5.K N 近邻估计方法K N 近邻估计就是一种采用可变大小的小舱的密度估计方法,基本做法是:根据总样本确定一个参数K N ,即在总样本数为N 时要求每个小舱内拥有的样本个数。
模式识别习题及答案
模式识别习题及答案模式识别习题及答案模式识别是人类智能的重要组成部分,也是机器学习和人工智能领域的核心内容。
通过模式识别,我们可以从大量的数据中发现规律和趋势,进而做出预测和判断。
本文将介绍一些模式识别的习题,并给出相应的答案,帮助读者更好地理解和应用模式识别。
习题一:给定一组数字序列,如何判断其中的模式?答案:判断数字序列中的模式可以通过观察数字之间的关系和规律来实现。
首先,我们可以计算相邻数字之间的差值或比值,看是否存在一定的规律。
其次,我们可以将数字序列进行分组,观察每组数字之间的关系,看是否存在某种模式。
最后,我们还可以利用统计学方法,如频率分析、自相关分析等,来发现数字序列中的模式。
习题二:如何利用模式识别进行图像分类?答案:图像分类是模式识别的一个重要应用领域。
在图像分类中,我们需要将输入的图像分为不同的类别。
为了实现图像分类,我们可以采用以下步骤:首先,将图像转换为数字表示,如灰度图像或彩色图像的像素矩阵。
然后,利用特征提取算法,提取图像中的关键特征。
接下来,选择合适的分类算法,如支持向量机、神经网络等,训练模型并进行分类。
最后,评估分类结果的准确性和性能。
习题三:如何利用模式识别进行语音识别?答案:语音识别是模式识别在语音信号处理中的应用。
为了实现语音识别,我们可以采用以下步骤:首先,将语音信号进行预处理,包括去除噪声、降低维度等。
然后,利用特征提取算法,提取语音信号中的关键特征,如梅尔频率倒谱系数(MFCC)。
接下来,选择合适的分类算法,如隐马尔可夫模型(HMM)、深度神经网络(DNN)等,训练模型并进行语音识别。
最后,评估识别结果的准确性和性能。
习题四:如何利用模式识别进行时间序列预测?答案:时间序列预测是模式识别在时间序列分析中的应用。
为了实现时间序列预测,我们可以采用以下步骤:首先,对时间序列进行平稳性检验,确保序列的均值和方差不随时间变化。
然后,利用滑动窗口或滚动平均等方法,将时间序列划分为训练集和测试集。
第三章 知觉和模式识别
大字母识别 快于小字母;
3种关系条 件下,大字 母识别反应 时无显著差 异;小字母 的识别有差 异,其中冲 突条件下最 慢。
知觉加工的总体特征优先
总体特征知觉先于局部特征被知觉,知觉过程 开始于总体组织,然后才开始对局部特征的分 析。 当人有意识看总体特征时,知觉加工不受局部 特征影响,但当人注意看局部特征时,知觉加 工受总体特征影响,否则无法解释小字母识别 在冲突条件下最长。
知觉信息加工过程
觉察(detection): 发现事物的存在,而不知道 它是什么;类似与感觉 分辨(discrimination): 把一个事物或其属性与另 一个事物或其属性区别开来。 确认(identification): 人们利用已有的知识经验 和当前获得的信息,确定知觉的对象是什么。
功能连通分析
当ACC与其他脑区的联结通过PPIs进行分析时, 发现了显著的侧IFG(一 个重要的语言区)的联结特异性增加; 而右侧ACC在进行视空间判断任务时,与右侧 顶叶(参与了空间判断)的联结特异性增强。
没有其他脑区显示出跟左侧或右侧ACC显著的 任务-决定的功能联结性变化。
三 整体加工和局部加工
自然界中的许多物体 是以等级结构的形式 组成。 人类的知觉系统如何 加工等级结构的物体, 是长期以来研究争论 的热点。
Navon(1977)开创性 地采用等级刺激的范 式来研究人类的等级 加工过程。
整体加工和局部加工
Navon(1977) :听觉的字母识别作业
实验程序
知觉加工过程的脑机制
——来自认知神经科学的证据
视觉加工有两个主要的功能:一是目标知觉,即它是 什么?二是空间知觉,即它在哪里?
统计模式识别
分类器
01
Fisher分 类器
02
线性鉴别函 数LDA
03
SVM
04
K-means
06
Adboosti ng
05
Boosting
Fisher分类器
Fisher线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合)将高维问题降低到一维 问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。
指纹识别是最成熟的一项生物信息识别技术。目前,各种类型的指纹识别系统已在公安、海关、公司门禁、 PC机设锁等多种场合得到应用,成为展现图像识别技术实用价值的标志。指纹识别系统既有应用于公司、家庭或 个人计算机的嵌入式系统一指纹锁,也有用于刑侦、护照通关、络身份认证等领域的大型系统。嵌入式系统存储 的指纹(特征)数较少(一般在100枚以内),可用简单的算法实现高精度识别,所要解决的主要问题是如何用简单、 小巧、廉价的设备实现指纹的正确采集和识别。大型系统往往需要储存上百万的指纹,因此如何提高指纹的比对 速度便成为关键。为了能够进行快速处理,需要对指纹进行很好的组织和采用高速算法。
K-means
K-means分类器K-Means算法是以距离作为相似度的评价指标,用样本点到类别中心的误差平方和作为聚类 好坏的评价指标,通过迭代的方法使总体分类的误差平方和函数达到最小的聚类方法。
(1)从 n个数据对象任意选择 k个对象作为初始聚类中心; (2)循环(3)到(4)直到每个聚类不再发生变化为止 (3)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新 对相应对象进行划分; (4)重新计算每个(有变化)聚类的均值(中心对象)
统计模式识别的原理与方法
统计模式识别的原理与⽅法1统计模式识别的原理与⽅法简介 1.1 模式识别 什么是模式和模式识别?⼴义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进⾏观测所得到的具有时间和空间分布的信息;把模式所属的类别或同⼀类中模式的总体称为模式类(或简称为类)]。
⽽“模式识别”则是在某些⼀定量度或观测基础上把待识模式划分到各⾃的模式类中去。
模式识别的研究主要集中在两⽅⾯,即研究⽣物体(包括⼈)是如何感知对象的,以及在给定的任务下,如何⽤计算机实现模式识别的理论和⽅法。
前者是⽣理学家、⼼理学家、⽣物学家、神经⽣理学家的研究内容,属于认知科学的范畴;后者通过数学家、信息学专家和计算机科学⼯作者近⼏⼗年来的努⼒,已经取得了系统的研究成果。
⼀个计算机模式识别系统基本上是由三个相互关联⽽⼜有明显区别的过程组成的,即数据⽣成、模式分析和模式分类。
数据⽣成是将输⼊模式的原始信息转换为向量,成为计算机易于处理的形式。
模式分析是对数据进⾏加⼯,包括特征选择、特征提取、数据维数压缩和决定可能存在的类别等。
模式分类则是利⽤模式分析所获得的信息,对计算机进⾏训练,从⽽制定判别标准,以期对待识模式进⾏分类。
有两种基本的模式识别⽅法,即统计模式识别⽅法和结构(句法)模式识别⽅法。
统计模式识别是对模式的统计分类⽅法,即结合统计概率论的贝叶斯决策系统进⾏模式识别的技术,⼜称为决策理论识别⽅法。
利⽤模式与⼦模式分层结构的树状信息所完成的模式识别⼯作,就是结构模式识别或句法模式识别。
模式识别已经在天⽓预报、卫星航空图⽚解释、⼯业产品检测、字符识别、语⾳识别、指纹识别、医学图像分析等许多⽅⾯得到了成功的应⽤。
所有这些应⽤都是和问题的性质密不可分的,⾄今还没有发展成统⼀的有效的可应⽤于所有的模式识别的理论。
1.2 统计模式识别 统计模式识别的基本原理是:有相似性的样本在模式空间中互相接近,并形成“集团”,即“物以类聚”。
《模式识别与机器学习》习题和参考答案
性函数。上式可以看作对 x 的各分量进行线性组合,然后平移,所以 r (x) 服从一
维高斯分布。下面计算一维高斯分布 p(r (x) | w 1) 的期望 m1 和方差 1 :
m1 [r (x) | w 1]
1
(μ 2 μ1 ) 1μ1 (μ1 1μ1 μ 2 1μ 2 )
190%
(2-13)
最小风险贝叶斯决策会选择条件风险最小的类别,即 h( x) 1 。
3.
给出在两类类别先验概率相等情况下,类条件概率分布是相等对角协方差
矩阵的高斯分布的贝叶斯决策规则,并进行错误率分析。
答:
(1)首先给出决策面的表达式。根据类条件概率分布的高斯假设,可以
得到
p(x | w i )
1/2
2 |
p(C, M ) p(C | M ) p(M ) 0.2 0.6 0.12
p( M | C )
p(C | M ) p( M )
0.12
0.25
p(C | M ) p( M ) p(C | F ) p( F ) 0.12 0.36
(2-1)
(2-2)
2. 举例说明最小风险贝叶斯决策与最小错误率贝叶斯决策的不同。
R(h( x) 1| x)
(h( x) 1| w 1) p( w 1| x) (h( x) 1| w 2) p( w 2 | x)
98.1%
(2-12)
R ( h( x ) 2 | x )
(h( x) 2 | w 1) p( w 1| x) (h( x) 2 | w 2) p( w 2 | x)
(2-16)
统计模式识别方法
统计模式识别方法在模式识别中,有许多不同的方法和技术可以用于统计模式识别。
这些方法可以分为监督学习和无监督学习的两大类。
监督学习是指在训练数据中标记了类别或标签的情况下进行模式识别。
常用的监督学习方法包括:1. 支持向量机(Support Vector Machines,SVM):通过在输入空间上建立一个超平面来划分不同类别的样本。
2. k最近邻算法(k-Nearest Neighbors,k-NN):通过比较新样本与训练样本的相似度来确定新样本的类别。
3. 决策树(Decision Trees):以树的形式表示模式识别的决策规则,并以此来分类新的样本。
4. 随机森林(Random Forest):将多个决策树组合起来进行模式识别,提高分类的准确性。
无监督学习是指在没有标签或类别信息的情况下进行模式识别。
常用的无监督学习方法包括:1. 聚类分析(Cluster Analysis):将数据集划分为不同的簇,每个簇内的样本具有较高的相似性。
2. 主成分分析(Principal Component Analysis,PCA):通过线性变换将原始数据映射到低维空间,以便于可视化或降低计算复杂度。
3. 非负矩阵分解(Nonnegative Matrix Factorization,NMF):将非负矩阵分解为两个非负矩阵的乘积,以便发现数据的潜在结构。
4. 混合高斯模型(Gaussian Mixture Models,GMM):通过拟合多个高斯分布来描述数据集的分布情况。
此外,还有许多其他的统计模式识别方法,如神经网络、贝叶斯分类、隐马尔可夫模型等,它们在不同的场景和问题中有不同的适用性和优势。
在实际应用中,常常需要根据具体需求选择最合适的模式识别方法。
(完整word版)模式识别习题解答第三章(word文档良心出品)
题1:在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。
问该模式识别问题所需判别函数的最少数目是多少?答:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。
再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。
故共需要4+21=25个判别函数。
题2:一个三类问题,其判别函数如下:d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-11.设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。
2.设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。
绘出其判别界面和多类情况2的区域。
3.设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。
答:三种情况分别如下图所示:1.2.3.题3:两类模式,每类包括5个3维不同的模式,且良好分布。
如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。
)答:(1)若是线性可分的,则权向量至少需要14N n =+=个系数分量; (2)若要建立二次的多项式判别函数,则至少需要5!102!3!N ==个系数分量。
题4:用感知器算法求下列模式分类的解向量w : ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T} ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T}解:将属于2w 的训练样本乘以(1)-,并写成增广向量的形式x1=[0 0 0 1]',x2=[1 0 0 1]',x3=[1 0 1 1]',x4=[1 1 0 1]';x5=[0 0 -1 -1]',x6=[0 -1 -1 -1]',x7=[0 -1 0 -1]',x8=[-1 -1 -1 -1]';迭代选取1C =,(1)(0,0,0,0)w '=,则迭代过程中权向量w 变化如下:(2)(0 0 0 1)w '=;(3)(0 0 -1 0)w '=;(4)(0 -1 -1 -1)w '=;(5)(0 -1 -1 0)w '=;(6)(1 -1 -1 1)w '=;(7)(1 -1 -2 0)w '=;(8)(1 -1 -2 1)w '=;(9)(2 -1 -1 2)w '=; (10)(2 -1 -2 1)w '=;(11)(2 -2 -2 0)w '=;(12)(2 -2 -2 1)w '=;收敛所以最终得到解向量(2 -2 -2 1)w '=,相应的判别函数为123()2221d x x x x =--+。
模式识别_孙即祥_第3章习题解
第三章习题答案一、设一3类问题有如下判决函数d1(x) = - x1d2(x) = x1 + x2 -1d3(x) = x1 - x2 -1试画出下列各种情况的判决边界及各类的区域:(1)满足3.4.2节中的第一种情况;(2)满足3.4.2节中的第二种情况, 且令d12(x) = d1(x),d13(x) = d2(x),d23(x) = d3(x);(3)满足3.4.2节中的第三种情况。
解:1、两分法2、Wi/Wj 两分法3、没有不确定区的Wi/Wj两分法二、证明感知器的收敛性。
证明:如果模式是线性可分的,则存在判别函数的最佳权向量解,利用梯度下降法求解函数的极小值点,即为。
构造准则函数(k<0)当 <0时,当时,,∵训练模式已符号规范化,∴寻求的最小值,且满足。
令k=1/2,求得准则函数的梯度由梯度下降法,增广权矢量的修正迭代公式为:取=1,则上述准则下的梯度下降法的迭代公式与感知器训练算法是一致的。
∵梯度下降法是收敛到极小值点的,∴感知器算法也是收敛的。
三、习题3.4证明:MSE解为其中:则对应的化简由上式可得:由(1)式可得:代入(2)式得:∵为标量∴为一标量∴∵、设为行向量,如果设为列向量则而Fisher最佳判别矢量为不考虑标量因子的影响,和完全一致∴当余量矢量时MSE解等价于Fisher解。
四、解:设、在判别界面中(1)-(2)得∵在判别界面中∴平面则平面的单位法矢量为设点P在判别界面d( )=0中,则∵∴当和方向相同时,即为点到平面的距离时五、以下列两类模式为样本,用感知器算法求其判决函数。
(令 w(1) =(-1,-2,-2)T)ω1:{(0,0,0)’, (1,0,0)’, (1,0,1)’, (1,1,0)’,}ω2:{(0,0,1)’, (0,1,1)’, (0,1,0)’, (1,1,1)’,}解(1)将训练样本分量增广化及符号规范化,将训练样本增加一个分量1,且把来自类的训练样本的各分量乘以-1,则得到训练模式集:(2)运用感知器算法,任意给增广权矢量赋初值,取增量,迭代步数k=1,则有(3)由上面的结果可以看出,经过迭代能对所有训练样本正确分类∴=判别界面方程为3x1-2x2-3x3+1=0六、用MSE(梯度法)算法检验下列模式的线性可分性。
模式识别理论
• 模糊聚类法—Fuzzy clustering method • PCA投影分类法等等
主成分分析的数学 与几何意义示意图
16个脑组织试样进行分析,在色谱图中
取多达156参量(可辨认的156个峰处的峰 高),组成(16156)阶矩阵,通过将矩阵作 主成分分解,分别求得对应于两个最大特征 值的得分矢量t1和t2,并以t1和t2为投影轴作 图,得到下图。其中正方形是有肿瘤的脑组 织样,圆是正常脑组织样。
(3)对连接所得到的树进行检查,找到 最小路径的边,将其割断就得到两类,如 此继续分割,直至类数已达到所要分的类 数。
• • •
缺点:未对训练点进行信息压缩,每判断一个点 都要将其对所有已知点的距离计算一遍,工作量较 大。
简化的KNN法—类重心法
将训练集中每类样本点的重心求出,然 后判别未知样本点与各类样本点重心的 距离。未知样本点距哪一类重心距离最 近,即未知样本属于哪一类。
例:有两种地层,用7种指标的分析数据 判别,先从已经准确判断的地层中各取 9个样本,测得的数据如下表:
x
x
ytΒιβλιοθήκη oyoy二维模式向一维空间投影示意图
(1)求解Fisher准则函数
~sW2
~sW21
~sW22
u(SW1
SW2 )u
uSWu
类间离差度为:
~sB2
(m~1
m~2
)2
(um1
um2
)(um1
um2
)
uSBu
J F (u)
(m~1 m~2 )2 ~sW21 ~sW22
• 只要找到相似关图的最大生成树,就可以 根据最大生成树进行模糊聚类分析,其分 类准则是:对于规定的阈值水平,路径强 度大于的顶点可归为一类。
模式识别
目前,模式识别已经在图像识别、语音识别、自然语言处理 等领域取得了广泛应用,成为推动人工智能发展的重要驱动 力之一。同时,随着大数据时代的到来,模式识别面临着更 加复杂和多样化的挑战和机遇。
应用领域及前景展望
应用领域
模式识别被广泛应用于各个领域,如金融风控、医疗诊断、智能交通、智能家居等。在金融领域,模式识别可以 帮助银行等机构自动识别欺诈行为,提高风险控制能力;在医疗领域,模式识别可以辅助医生进行疾病诊断和治 疗方案制定,提高医疗质量和效率。
利用卷积层、池化层等 结构提取图像特征,实
现图像分类与识别。
循环神经网络
适用于处理序列数据, 如语音识别、自然语言
处理等。
深度生成模型
如生成对抗网络(GAN)、 变分自编码器(VAE)等, 可用于生成新的模式样本或
实现无监督学习。
其他先进方法探讨
集成学习方法
将多个分类器集成在一起,提高模式识别的 准确率和鲁棒性。
半监督学习方法
利用部分有标签数据和大量无标签数据进行 训练,提高模式识别的泛化能力。
特征选择与降维方法
通过特征选择和降维技术降低模式特征的维 度和冗余性,提高识别性能。
迁移学习方法
将在一个领域学习到的知识迁移到另一个领 域,实现跨领域的模式识别。
04
模式识别在实际问题 中应用案例
文字识别技术及应用场景
目标跟踪技术
目标跟踪是在视频序列中跟踪感兴趣目标的位置和运动轨 迹的技术,可应用于视频监控、运动分析、人机交互等领 域。
目标检测与跟踪系统
目标检测与跟踪系统结合了目标检测和目标跟踪技术,实 现了对图像序列中目标的自动检测和持续跟踪,为智能视 频监控和自动驾驶等应用提供了有力支持。
模式识别习题及答案
第一章 绪论1.什么是模式?具体事物所具有的信息。
模式所指的不是事物本身,而是我们从事物中获得的___信息__。
2.模式识别的定义?让计算机来判断事物。
3.模式识别系统主要由哪些部分组成?数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。
第二章 贝叶斯决策理论1.最小错误率贝叶斯决策过程? 答:已知先验概率,类条件概率。
利用贝叶斯公式得到后验概率。
根据后验概率大小进行决策分析。
2.最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率类条件概率分布 利用贝叶斯公式得到后验概率如果输入待测样本X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
3.最小错误率贝叶斯决策规则有哪几种常用的表示形式? 答:4.贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了(平均)错误率 最小。
Bayes 决策是最优决策:即,能使决策错误率最小。
5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这个概率进行决策。
6.利用乘法法则和全概率公式证明贝叶斯公式答:∑====mj Aj p Aj B p B p A p A B p B p B A p AB p 1)()|()()()|()()|()(所以推出贝叶斯公式7.朴素贝叶斯方法的条件独立假设是(P(x| ωi) =P(x1, x2, …, xn | ωi)⎩⎨⎧∈>=<211221_,)(/)(_)|()|()(w w x w p w p w x p w x p x l 则如果∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P 2,1),(=i w P i 2,1),|(=i w x p i ∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P ∑===Mj j j i i i i i A P A B P A P A B P B P A P A B P B A P 1)()|()()|()()()|()|(= P(x1| ωi) P(x2| ωi)… P(xn| ωi))8.怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi) 后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方差,最后得到类条件概率分布。
模式识别(PPT)
第一章 模式识别概论
什么是模式(Pattern)?
什么是模式?
• 广义地说,存在于时间和空间中可观察的物 体,如果我们可以区别它们是否相同或是否 相似,都可以称之为模式。 • 模式所指的不是事物本身,而是从事物获得 的信息,因此,模式往往表现为具有时间和 空间分布的信息。 • 模式的直观特性:
结构模式识别
• 该方法通过考虑识别对象的各部分之间的联 系来达到识别分类的目的。 • 识别采用结构匹配的形式,通过计算一个匹 配程度值(matching score)来评估一个未知 的对象或未知对象某些部分与某种典型模式 的关系如何。 • 当成功地制定出了一组可以描述对象部分之 间关系的规则后,可以应用一种特殊的结构 模式识别方法 – 句法模式识别,来检查一个 模式基元的序列是否遵守某种规则,即句法 规则或语法。
实例:句法模式识别(续)
• 多级树描述结构
实例:句法模式识别(续)
• 训练过程:
– 用已知结构信息的图像作为训练样本,先 识别出基元(比如场景图中的X、Y、Z等 简单平面)和它们之间的连接关系(例如 长方体E是由X、Y和Z三个面拼接而成), 并用字母符号代表之; – 然后用构造句子的文法来描述生成这幅场 景的过程,由此推断出生成该场景的一种 文法。
模式识别
- 概念、原理及其应用
引 言
课程对象
• 计算机应用技术专业硕士研究生的专业 基础课 • 电子科学与技术学科硕士研究生的专业 基础课
与模式识别相关的学科
• • • •
• • • • •
统计学 概率论 线性代数(矩阵计算) 形式语言
机器学习 人工智能 图像处理 计算机视觉 …
教学方法
• 着重讲述模式识别的基本概念,基本方 法和算法原理。 • 注重理论与实践紧密结合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后练习1
见附录
用用最小距离分类判别方法时的识别函数 最小距离分类判别方法时的识别界面 画出该识别界面将训练样本的区分结果图示 对未知类别样本的识别
2011/3
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
11
线性识别函数、扩展特征向量和扩展权向量
线性识别函数、扩展特征向量和扩展权向量(续4)
2011/3
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
16
§3.3 用广义线性识别函数做分类判别(边书P85~)
最小欧氏距离判别存在的问题(例)—各类离散程度不同 x2
0
x1
2011/3
i
2011/3
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
3
模式和模式类
清 清 清 清 ↓
C7E5
2011/3
华 华 华 华 ↓
BBAA
大 大 大 大 ↓
B4F3
学 学 学 学 ↓
D1A7
→ 方正舒体 → 隶书 → 幼圆体 → 华文彩云体
设界面上的一点
T
P = p1, p 2,..., p n
T 1 T P • (Mi − M j ) − Mi • Mi − M j • M j = 0 2
2011/3 Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别 7
(
(
)
)
识别界面(续1)
用最小欧氏距离(Euclidean distance)分类
对未知类别的一个输入模式X,计算
Di = X − M i , i = 1,2,..., s i, j ∈ { ,2,..., s} 1 如果 D j = min {Di}
s
那么
X ∈ω j
最小欧氏距离判别的线性识别函数(边书P83~) 2 1 T ⎛ T 2 T = X − M i = X • X − 2⎜ X • M i − M i • M i ⎞ ⎟ Di 2 ⎝ ⎠
§3.2 最小欧氏距离分类判别和线性识别函数
设需要识别的模式总共有s个类: ω1,ω2,…,ωs
例:汉字 例:数字
人工观察后,确定需要抽取(测量)n个特征 物理模式 → n维特征向量:X=(x1,x2,…,xn)T 设每个类各有一个代表这个类的“标准模式”(模板)
(例如,求同类样本的均值),记作
M1, M2,…, Ms (n维向量),可取 1 Mi= ∑ X Ni 为ωi 类中的样本数 N i X ∈ω
那么
X ∈ω j
s
注: • 最小欧氏距离判别的识别函数是线性函数 • 线性判别函数不局限于最小欧氏距离判别---线性界面不局限于中垂面(不再是最小欧氏距离判别) • 最小欧氏距离判别是线性判别的一个特例 • 线性分类器采用线性函数进行分类判别
2011/3 Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别 10
( X ) = W iT X ' di
j
的几何意义(边书P84-85)
第 i 类与第 j 类之间的界面方程
d (X
T Wi
)=
'
d i (X ) − d
T
(X ) = 0
X −W j X ' = 0 −W j ) X ' = 0
13
T (W i
T
2011/3
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
W X + wn +1 = 0
T
T
在识别界面上任取一点P
w W P = − n +1 W W W W
T
P构成的识别界面(超)平面的单位法向量
2011/3
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
14
线性识别函数、扩展特征向量和扩展权向量(续3)
(
)
( X ) = W i X ' i = 1, 2 ,..., s di (不局限于最小欧氏距离) T 其中 Wi = (wi1 , wi 2 ,..., win , wi ( n +1) ) X ' = ( x1 , x2 ,..., xn ,1)T
◆一般的线性识别函数
T
wi1 , wi 2 ,..., win , wi ( n +1) 可以是任意的权重系数,不局限于与第i类均值向量有关
1 T 1 T di ( X ) − d j ( X ) = X • (Mi − M j) − 2 Mi • Mi + 2 M j • M j = 0 T
T
d i (X ) > d j (X ) ⇒ X ∈ω i d i (X ) < d j (X ) ⇒ X ∈ω j 识别界面 d i ( X ) = d j ( X )
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别 1
2011/3
有监督学习的基本概念(续)(边书P227)
物 理 模 式
数 据 获 取
预 处 理
特 征 提 取
比较分类 (判决)
结果输出
识别过程
特征库
训练过程
2011/3 Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别 2
2011/3
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
24
广义线性识别函数举例
高次多项式(2个特征值、2次多项式) 广义线性识别函数
2 d i ( X ) = wi1 x12 + wi 2 x1 x2 + wi 3 x2 + wi 4 x1 + wi 5 x2 + wi 6
清 华
大 学
4
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
学习(训练)、模式(样本)、模式类
→0 →1 →2 →3 →4
2011/3 Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别 5
省略与 i 无关的项,得相应的线性的识别函数:
1 T d i (X ) = X • M i − 2 M i • M i
T
2011/3
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
6
识别函数(续)
求最小距离 → (i=?)时,X的线性识别函数 d i ( X ) 最大? 考虑只有ωi, ωj两个类的问题时,即给定未知类别模式X:
T
Wi = wi1 , wi 2 ,..., win , wi ( n +1) T i = 1, 2 ,..., s 设扩展权向量(n+1维) 1 T j = 1, 2 ,..., n wi ( n +1) = − M i M i 其中 wij = mij 2 T ( X ) = W i X ' i = 1, 2 ,..., s 最小欧氏距离判别是线性识别函数 d i
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
17
用广义线性识别函数做分类判别(续1)
线性识别函数存在的问题(例)—非凸决策区(不是线性可分) x2
○○○○○○○○○○○○○○○ ○○○○○○○○○○○○○○○ ○○○○○○○○○○○○○○○ ○○○○○○○○○○○○○○○ ○○○○○○○○○ △△△△△△△ ○○○○○○○○○ ○○○○○○○○○ △△△△△△△ ○○○○○○○○○ △△△△△△△ ○○○○○○○○○ ○ ○ ○○ ○ ○ ○ ○ ○ △△△△△△△
2011/3
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
20
线性识别函数存在的问题(实例续2)
2011/3
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
21
线性识别函数存在的问题(实例续2)
w W P = − n +1 W W
P
T
W W
W X W
T
d(X)的值正比于点X到 识别平面的距离Dx X
T W X + w n +1
W
原点
2011/3
−
w n +1 W
WT X + wn+1 = 0
15
Xinggang Lin, Tsinghua University 第三章 用有标签样本进行学习的统计模式识别
( (
)
)
j
2
Mi−M
Mj