2018北师大版七年级下册数学期末试卷及答案

合集下载

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018-2019学年度七年级下学期期末试卷数学一、选择题(每题3分,共18分) 1、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )—A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了..A 、1个B 、2个C 、3个D 、4个ABC D20408060510152025303540速度时间二、填空题(每空3分,共27分)7、单项式313xy-的次数是.8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到万元,这个数据用科学记数法可表示为万元.10、如图∠AOB=1250,AO⊥OC,B0⊥0D则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是.;12、若229a ka++是一个完全平方式,则k等于.13、()32+m(_________)=942-m14、已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.15、观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:{3×4×5×6+1=361=192;……根据以上结果,猜想析研究(n+1)(n+2)(n+3)(n+4)+1= 。

2018年北师大版初一数学下册期末考试试卷word版含答案

2018年北师大版初一数学下册期末考试试卷word版含答案

2018年北师大版初一下册期末考试数学试卷一、选择题(每题3分,共18分) 1、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A 、1个 B 、2个 C 、3个 D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米 5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4个二、填空题(每空3分,共27分) 7、单项式313xy -的次数是 . 8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形. 9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 . 12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .ODCBA15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

2018年北师大版七年级下册期末考试数学试卷

2018年北师大版七年级下册期末考试数学试卷

2018年北师大版七年级下册期末考试数学试卷考试时间:100分钟总分:100分一、选择题(每小题3分,共30分) 1、下列运算正确的是( )。

A ;B ;C ; D2、用科学记数法表示-0.0000907( )A 、9.07×10-4 B 、-9.07×10-5 C 、9.07×10-5 D 、-9.07×10-4 3、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A 1个; B 2个; C 3个; D 4个4、某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:(2a 2+3ab -b 2)-(-3a 2+ab +5b 2)=5a 2 ■■■■ -6b 2,空格的地方被墨水弄脏了,请问空格中的一项是( )A 、+2abB 、+3abC 、+4abD 、-ab 5、如图,不能推出a ∥b 的条件是( )A 、∠1=∠3B 、∠2=∠4C 、∠2=∠3D 、∠2+∠3=180° 6、下列各式能用平方差公式计算的是( )A 、(2a +b )(2b -a )B 、(12x +1)(-12x -1) C 、(3x -y )(-3x +y ) D 、(-x -y )(-x +y )7、如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是( )A 9°B 18°C 27°D 36°8、若2-)23-(=a ,1-)1-(=b ,0)2π-(=c ,则 a 、b 、c 的大小关系是( ) 1055a a a =+2446a a a =⨯a a a =÷-10044a a a =- a bc2 1 4 3第5题EMDCBAdc b a4321第12题第13题第14题A 、a >b >cB 、a >c >bC 、c >a >bD 、c >b >a9、 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( ) A 、∠BCA=∠F B 、BC ∥EF C 、∠B=∠E D 、∠A=∠EDF10、如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、180二.填空题(每小3分,共18分)11、小明从镜子中看到电子表时间是 ,这时的时刻应是 。

2018年七年级数学下期末测试卷(北师大有答案)

2018年七年级数学下期末测试卷(北师大有答案)

2018年七年级数学下期末测试卷(北师大有答案)本资料为woRD文档,请点击下载地址下载全文下载地址期末测试一、选择题题号2345678912345答案BBDcDcDBcAcAADc1.下列成语所描述的事件是必然事件的是A.拔苗助长B.瓮中捉鳖c.水中捞月D.守株待兔2.下列世界博览会会徽图案中是轴对称图形的是3.已知一个等腰三角形的一个底角为30°,则它的顶角等于A.30°B.40°c.75°D.120°4.下列运算正确的是A.a2+a3=a5B.2=a2-4c.2a2-3a2=-a2D.=a2-25.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是A.5,1,3B.2,4,2c.3,3,7D.2,3,46.如图,直线AB、cD相交于o,射线om平分∠Aoc,oN⊥om,若∠Aom=35°,则∠coN的度数为A.35°B.45°c.55°D.65°7.如图所示,点E在△ABc外部,点D在Bc边上,DE 交Ac于F,若∠1=∠2,∠E=∠c,AE=Ac,则A.△ABc≌△AFEB.△AFE≌△ADcc.△AFE≌△DFcD.△ABc≌△ADE8.若a+b=3,ab=2,则a2+b2的值为A.6B.5c.4D.29.如图,线段AD,AE,AF分别是△ABc的高线,角平分线,中线,比较线段Ac,AD,AE,AF的长短,其中最短的是A.AFB.AEc.ADD.Ac0.如图所示,货车匀速通过隧道时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是1.一枚质地均匀的正方体骰子,其六面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是A.12B.16c.13D.232.如图,已知∠1=∠B,∠2=∠c,则下列结论不成立的是A.∠B=∠cB.AD∥Bcc.∠2+∠B=180°D.AB∥cD3.在正方形网格中,∠AoB的位置如图所示,到∠AoB 两边距离相等的点应是A.m点B.N点c.P点D.Q点4.一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于A.30°B.45°c.60°D.75°15.如图,在边长为a的正方形中,剪去一个边长为b 的小正方形,将余下的部分剪开后拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a,b的恒等式为A.2=a2-2ab+b2B.2=a2+2ab+b2c.a2-b2=D.a2+ab=a二、填空题6.计算3的结果是x3y3.7.空气就是我们周围的气体.我们看不到它,也品尝不到它的味道,但是在刮风的时候,我们就能够感觉到空气的流动.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数据0.001293用科学记数法表示为1.293×10-3.8.如图,已知AB∥cD,∠1=120°,则∠c=60°.9.如图所示,在△ABc中,Dm,EN分别垂直平分AB和Ac,交Bc于点D,E,若∠DAE=50°,则∠BAc=115°,若△ADE的周长为19cm,则Bc=19cm.20.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事.有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟.其中正确的说法是①③.三、解答题21.先化简,再求值:2-,其中a=-32.解:原式=a2+4a+4-a2+1=4a+5.当a=-32时,原式=4×+5=-1.22.如图,在△ABc中,D是AB上一点,DF交Ac于点E,DE=FE,AE=cE,请判断AB与cF是否平行?并说明你的理由.解:AB∥cF.理由:因为DE=FE,AE=cE,∠AED=∠cEF,所以△AED≌△cEF.所以∠EAD=∠EcF.所以AB∥cF.23.如图,将Rt△ABc沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.如果Ac=6cm,Bc=8cm,试求△AcD的周长;如果∠cAD∶∠BAD=1∶2,求∠B的度数.解:由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得DA=DB,所以DA+Dc+Ac=DB+Dc+Ac=Bc+Ac=14.设∠cAD=x,则∠BAD=2x,因为DA=DB,所以∠B=∠BAD=2x.在Rt△ABc中,∠B+∠BAc=90°,即2x+2x+x =90°.解得x=18°.所以∠B=2x=36°.24.某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y与时间x之间的关系如折线图所示.根据图象解答下列问题:洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?已知洗衣机的排水速度为每分钟19升.①求排水时洗衣机中的水量y与时间x与之间的关系式;②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.解:洗衣机的进水时间是4分钟;清洗时洗衣机中水量为40升.①y=40-19=325-19x.②当x=17,y=325-19×17=2.因此,排水时间为2分钟,排水结束时洗衣机中剩下的水量为2升.25.向如图所示的正三角形区域内扔沙包,沙包随机落在某个正三角形内.扔沙包一次,落在图中阴影区域的概率是38;要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑几个小正三角形?请在图中画出.解:因为图形中有16个小正三角形,要使沙包落在图中阴影区域和空白区域的概率均为12,所以图形中阴影部分的小三角形要达到8个,还需要涂黑2个.画图略.26.乘法公式的探究及应用.如图1,可以求出阴影部分的面积是a2-b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a-b,长是a+b,面积是;比较左、右两图的阴影部分面积,可以得到乘法公式a2-b2=;运用你所得到的公式,计算下列各题:①;②10.3×9.7.解:①原式=4m2-=4m2-n2+2np-p2.②10.3×9.7==102-0.32=99.91.27.已知:cD是经过∠BcA顶点c的一条直线,cA=cB.E、F分别是直线cD上两点,且∠BEc=∠cFA=∠α.若直线cD经过∠BcA的内部,且E,F在射线cD上.①如图1,若∠BcA=90°,∠α=90°,则BE=cF;②如图2,若0°<∠BcA<180°,请添加一个关于∠α与∠BcA关系的条件∠BcA=180°-∠α,使①中的结论仍然成立,并说明理由;如图3,若直线cD经过∠BcA的外部,∠α=∠BcA,请提出关于EF,BE,AF三条线段数量关系的合理猜想:EF =BE+AF.解:理由:在△BcE中,∠cBE+∠BcE=180°-∠BEc =180°-∠α.因为∠BcA=180°-∠α,所以∠cBE+∠BcE=∠BcA.而∠BcA=∠AcF+∠BcE,所以∠cBE=∠AcF.又因为Bc=cA,∠BEc=∠cFA,所以△BcE≌△cAF.所以BE=cF.。

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018-2019学年度七年级下学期期末试卷数学一、选择题(每题3分,共18分) 1、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米;5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4个二、填空题(每空3分,共27分) 7、单项式313xy -的次数是 . ABC D20408060510152025303540速度时间ODCBA'8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空:<1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018-2019学年度七年级下学期期末试卷数学一、选择题(每题3分,共18分) 1、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .ABC D20408060510152025303540速度时间DA9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元. 10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

(北师大版)2018-2019学年七年级数学下学期期末考试试卷(含答案)

(北师大版)2018-2019学年七年级数学下学期期末考试试卷(含答案)

2018-2019学年下学期期末考试七年级数学(北师大版)注意:本试卷分试题卷和答题卡两部分,考试时间90分钟,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡一、选择题(每小题3分,共30)1.以下是回收、绿色包装、节水、低碳四个标志,其中是轴对称图形的是( );;;2.下列计算正确的是( )A.(2x+y)2=4x2+2xy +y2B.(2x4)3=8x7C.-2x6÷x2=-2x3D.(x-y)(y-x)2=(x-y)33.如图,下列条件中,不能判断直线a∥b的是( )A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°4.下列事件中,属于不确定事件的是()A.在△ABC中,∠A+∠B+∠C=180B.如果a、b为有理数,那么a+b =b+aC.两个负数的和是正数D.若∠α=∠β,则∠α和∠β是一对对顶角5.如图,在折纸活动中,聪聪制作了一张△ABC纸片,点D、E别在边AB、AC上,将△ABC沿着DE折叠压平,A与A'重合,若∠A=65°,则∠1+∠2=()A.120°B.130° C.105° D.75°6.小茗同学骑自行车去上学,一开始以某一速度匀速行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是加快车速.如图所示的四个图象中(S表示距离,t表示时间)符合以上情况的图象是( )7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短8.如图,在一个等边三角形纸片中取三边的中点,以虚线为折痕折叠纸片,图中阴影部分的面积是整个图形面积的()A.14B.13C.23D.389.如图,两个正方形的面积分别为25,16,两阴影部分的面积分别为a,b(a>b),则(a-b)等于()A. 9B.8 C,7 D.610.如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC ≌△ADC ',△AEB≌△AEB',且C ' D∥EB'∥BC,BE、CD交于点F,若∠BAC=36°,则∠BFC的大小是()A.106°B.108° C.110° D.112°二、填空题(每小题3分,共15分)11.英国两位物理学家安德烈和康斯坦丁成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料其理论厚度仅0.00000000034米,将0.00000000034这个数用科学记数法可表示为2.已知∠A=35°,则∠A的余角的3倍是13.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在3号板上的概率是14.任意写下一个三位数(三位数字都不相同).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差.不断重复这个过程……,最后一定会得到相同的结果,这个结果是 15.若m+n=17,mn=70则m-n=三、解答题(本大题共7个小题,共55分)16.(6分)先化简,再求值[(x+2y)2-(x+y)(3x-y)-5y 2]÷(2x),其中x= -32,y=1。

北师大版七年级(下)期末数学试卷(含解析) (18)

北师大版七年级(下)期末数学试卷(含解析) (18)

2017 — 2018学年第二学期期末检测试题答案七年级数学一、选择题(每小题3分,共30分)1-5 CCAAB6-10 DBCCD二、填空题(每题3分,共15分)11. 2.5×10-1012.1/2 13.45°14.20°15.75°三、解答题(共75分)16. 解:(1)①原式=4-1+1 1 3()②原式=12a2b4+116a4b8÷2414a b⎛⎫⎪⎝⎭……2分=4-1+3 ……3分=12a2b4+14a2b4……3分=6;……4分=34a2b4;……4分(2)原式=9x2-4-5x2+5x-(4x2-4x+1) ……2分=9x2-4-5x2+5x-4x2+4x-1 ……3分=9x-5,……4分当x=13-时,原式=-8. ……5分17. (答案举例如下,每画对一个图给2分,共6分)18. (1)如图,……2分(2)15×(0.942+0.946+0.951+0.949+0.948)=15×4.736=0.9472≈0.95.……4分(3)一共有5+13+22=40种等可能的结果,其中摸到黄球的结果又5种∴P(摸出一个球是黄球)=51408=.……6分(4)设取出了x个黑球,则放入了x个黄球,则51513224+x=++,解得x=5.答:取出了5个黑球.……8分19. (每空1分,共6分)垂直的定义;已证;SAS;全等三角形对应角相等;直角三角形中两锐角互余;等量代换.20. 解:(1)在△ABC中,∠B=30°,∠ACB=70°,∴∠BAC=180°-30°-70°=80°,∵AD平分∠BAC,∴,……2分又∵AE⊥BC,∴∠AEC=90°,∴∠BAE=90°-∠B=90°-30°=60°,……4分∴∠DAE=∠BAE-∠BAD=60°-40°=20° ……5分又∵CF∥AD,∴∠CFE=∠DAE=20° ……6分(2).……8分21. (1)根据题意画出图形,如图所示.……3分(2)解:由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m. ……5分∵点E、C、B在一条直线上,∴∠DCE=∠ACB.∵∠BAC=∠EDC=90°,AC=DC,∠DCE=∠ACB,∴△ABC≌△DEC. ……7分∴AB=DE.∵DE=60m,∴AB=60m. ……9分答:A、B两根电线杆之间的距离大约为60m. ……10分22.解:(1) ∵在等边三角形ABC 中,AD 是高∴BD =DC ,即AD 是线段BC 的垂直平分线 ∴BP =PC∴BP +PE =PC +PE =EC ……3分∵在等边三角形ABC 中,点E 是AB 的中点 ∴CE ⊥AB ∴∠ADB =∠CEB =90° 在△ADB 和△CEB 中∠ADB =∠CEB ,∠B =∠B ,AB =CB∴△ADB ≌△CEB ∴EC =AD =6 ∴BP +PE =6 ……6分(2)如图,……8分PM +PC 的最小值为5. ……10分23.(1)答:DE ⊥DA ……1分理由:∵△ABC 中,∠BAC =90°,AB =AC ∴∠B =45°……2分∵MN ∥BC ∴∠DAE =∠B =45° ……3分∵DE =DA∴∠DAE =∠DEA =45°∴∠EDA =90° 即DE ⊥DA ……4分(2)解:∵∠DEA =45°∠DEA +∠DEB =180°∴∠DEB =180°-∠DEA =135° ……5分(3)答:DB =DP ……6分理由:如答图2,∵∠DEA =∠DAE =45°∴∠DAP =∠DAE + ∠BAC = 135°∵∠DEB =135°∴∠DEB =∠DAP =135° ……7分∵∠1+∠EDP =90°,∠EDP +∠2=90°,∴∠1=∠2. ……8分在△BDE 与△PDA 中,∠1=∠2,DE =DA ,∠DEB =∠DAP =135°∴△BDF ≌△PDA (ASA ) ∴DB =DP . ……9分(4)答:DE ⊥DA , DB =DP 成立. ……10分理由:∵△ABC 中,∠BAC =90°,AB =AC ∴∠ABC =45°∵MN ∥BC ∴∠DAE =∠ABC =45° ……11分∵DE =DA ∴∠DAE =∠DEA =45°∴∠EDA =90° 即DE ⊥DA ……12分∵DE ⊥DA , DE =DA ∴∠E =∠DAE =45°∴∠DAP =180°-∠DAE -∠BAC = 45°∵∠1+∠ADB =90°,∠ADB +∠2=90°,∴∠1=∠2. ……11分在△BDE 与△PDA 中,∠1=∠2,DE =DA ,∠E =∠DAP =45°∴△BDF ≌△PDA (ASA )∴DB =DP . ……12分(答图2)(图3)图3D(5)如右图……13分答:DE⊥DA,DB=DP成立.……14分。

(word完整版)2018-2019北师大版七年级数学下册期末考试试卷及答案,推荐文档

(word完整版)2018-2019北师大版七年级数学下册期末考试试卷及答案,推荐文档

速度C DA B时间2018-2019 学年度七年级下学期期末试卷数学一、选择题(每题 3 分,共 18 分) 1、下列运算正确的是( )。

A 、 a 5 + a 5 = a 10B 、 a 6 ⨯ a 4 = a 24C 、 a 0 ÷ a -1 = aD 、 a 4 - a 4 = a 02、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A 、1 个B 、2 个C 、3 个D 、4 个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )4B 、1 153C 、1 D25154、1 纳米相当于 1 根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径是( )A 、6 万纳米B 、6×104 纳米C 、3×10-6 米D 、3×10-5 米5、下列条件中,能判定两个直角三角形全等的是()A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为 40 分钟;(2)AB 表示汽车匀速行驶;(3) 在第 30 分钟时,汽车的速度是 90 千米/时;(4)第 40 分钟时,汽车停下来了.A 、1 个B 、2 个C 、3 个D 、4 个8060 40 20二、填空题(每空 3 分,共 27 分)1D 7、单项式- xy 3 的次数是.38、一个三角形的三个内角的度数之比为 2:3:4,则该三角形按角分应为三角O C 1 BA 、)形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006 年中央财政用于“三农”的支出将达到 33970000万元,这个数据用科学记数法可表示为万元.10、如图∠ AOB=1250,AO ⊥ OC ,B0 ⊥ 0D 则∠ COD=.11、小明同学平时不用功学习,某次数学测验做选择题时,他有 1 道题不会做,于是随意选了一个答案(每小题 4 个项),他选对的概率是.12、若 a 2 + 2ka + 9 是一个完全平方式,则 k 等于 .13、(2m + 3)()= 4m 2 - 914、已知:如图,矩形 ABCD 的长和宽分别为 2 和 1,以 D 为圆心, AD 为半径作 AE 弧,再以 AB 的中点F 为圆心,FB 长为半径作 BE 弧,则阴影部分的面积为.15、观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;……根据以上结果,猜想析研究(n+1)(n+2)(n+3)(n+4)+1= 。

北师大版七年级下册数学期末试卷及答案

北师大版七年级下册数学期末试卷及答案

2018—2018学年下学期期末水平质量检测七年级数学试卷(全卷满分:100分,考试时间:120分钟)在很多人的印象中,数学是一门内容枯燥、难以理解的课程。

事实又是怎样的呢?一位哲人曾经说过:“生活中并不缺乏美,而是缺乏发现美的眼睛。

” 事物的数学背景,往往蕴藏在丰富多彩的生活现象中,这需要我们独到的眼光,细心的观察,大胆的想象,创造性思考,做个生活的有心人,才能获得“发现”。

同学们,经过一年的学习,你是否体会到数学就在我们的身 边?那么让我们用“发现”的眼光一同走进这次水平测试吧。

祝你成功!注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、细心填一填(每小题2分,共计20)1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方式,那么k 的值是.3.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,∠2=130°,则直线a 、b 的位置关系是. 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2018年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为万元.5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是.6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .7. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是.8.现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .9.某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为 千米.10.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)11.下列图形中不是..正方体的展开图的是( )A B C D 12. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-13. 下列结论中,正确..的是( ) A .若22b a ,b a ≠≠则 B .若22b a , b a >>则 C .若b a ,b a 22±==则 D .若b1a 1,b a >>则14. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30° 15. 由四舍五入得到近似数3.00万( )A .精确到万位,有1个有效数字B . 精确到个位,有1个有效数字C .精确到百分位,有3个有效数字D . 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为( )A .2(n -1)B .2n -1C .2(n +1)D .2n +1 17.下列关系式中,正确..的是( ) A .()222b a b a -=- B.()()22b a b a b a -=-+C .()222b a b a +=+ D.()222b 2ab a b a +-=+18. A .1月至3 减小B .1月至3 持平C .1月至3生产D . 1月至3月每月产量不变,4、5两月均停止生产 19.下列图形中,不一定...是轴对称图形的是( ) A .等腰三角形 B .线段 C .钝角 D .直角三角形 20. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A .1B .2C . 3D .4三、精心算一算(21题3分,22题5分,共计8分)21.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.四、认真画一画(23题4分,24题4分,共计8分)23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)五、请你做裁判(第25题小4分,第26小题4分,共计8分)25.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27. 下面是我县某养鸡场2001~2018年的养鸡统计图:(1)从图中你能得到什么信息. (2)各年养鸡多少万只?(3)所得(2)的数据都是准确数吗?(4)这张图与条形统计图比较,有什么优点?28.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且AC =BD ,AB =CD .小明认为图中的两个三角形全等,他的思考过程是:在△ABO 和△DCO 中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的思考过程.七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29.如图所示,要想判断AB是否与CD 平行,我们可以测量那些角;请你写出三种方案,并说明理由.30.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达). (4)运用你所得到的公式,计算下列各题:①7.93.10⨯② )2)(2(p n m p n m +--+八、信息阅读题(6分)31.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y (含备用零钱)的关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?2018—2018学年下学期期末水平质量检测七年级数学试卷参考答案及评分标准一、细心填一填(每题2分,共计20)1. 5x ;2a . 2.±2. 3.平行. 4.3.397×107 5.83 6.26或22㎝7. AC=AE (或BC=DE ,∠E=∠C ,∠B=∠D ) 8.-20 9. 45 10.B6395二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)21.解:=1212y 2y - =12y ……3分 22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- (3)分当x=0时,原式四、认真画一画(23题4分,24题423.解:理由是: 垂线段最短 . ……2分 作图……2分24.解每作对一个给1分五、请你做裁判!(第25题小4分,第26小题6分,共计10分)25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的. ……2分 根据小赵的设计可以设宽为x 米,长为(x +2)米,根据题意得2x +(x +2)=35 解得x=11.因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分 六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2018年养了6万只.(3)近似数.(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分添加的条件为:∠B=∠C (或∠A=∠D 、或符合即可)…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行 (3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)22b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=22b a -.(4): 评分标准:每空1分,(4)小题各1分八、信息阅读题(6分)31.(1)解:由图象可以看出农民自带的零钱为5元;(2)()元5.030520=- (3)()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.。

2018年北师大版数学七下期末检测卷(含答案)

2018年北师大版数学七下期末检测卷(含答案)

2018年北师大版数学七下期末检测卷(含答案)一、选择题(每题3分,共36分)1.下列各式的变形中,正确的是( )A. a 3+a 3=a 6B. a 3÷a=3C. x 2-1=(x-1)(x+1)D. 2.如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数A. 40°B. 50°C. 60°D. 90°3.圆的面积公式为s =πr 2,其中变量是( )A. s B. π C. r D. s 和r4.如图,△ABC ≌△DEF ,则此图中相等的线段有( )A. 2对 B. 3对 C. 4对 D. 5对5.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.6.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是( )A. B. C. D.7.下列事件发生的概率为0的是( )A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上 B. 今年冬天黑龙江会下雪 C. 随意掷两个均匀的骰子,朝上面的点数之和为 1 D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域8.若 ,则m ,k 的值分别是( )A. m=—2,k=6,B. m=2,k=12,C. m=—4,k=—12D. m=4,k=-12、9.正常人的体温一般在37℃左右,在不同时刻体温也在变化.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是( ).A. 清晨5时体温最低B. 下午5时体温最高C. 这一天中小明体温T (单位:℃)的范围是36.537.5T ≤≤D. 从5时至24时,小明体温一直在升高10.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A. 105° B. 110° C. 115° D. 120°11.如图,大树AB 与大数CD 相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A. 13sB. 8sC. 6sD. 5s12.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= ( )A. 70°B. 110°C. 130°D. 140°二、填空题(共12分)13.若x2+(m-1)x+9是完全平方式,则m的值为___________.14.如图,a//b,则∠A=____________.15.某商店进了一批货,每件进价为4元,售价为每件6元,如果售出x件,售出x件的总利润为y元,则y与x的函数关系式为__.16.如图,△ABE,△BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD 与EB相交于点M,BD与EC相交于点N,下列说法正确的有:___________①AD=EC;②BM=BN;③MN∥AC;④EM=MB.三、解答题(共7小题;共52分)17.计算:(1)(2a)3•b4÷12a3b2(2)(x+3y)2+(2x+y)(x﹣y)18.先化简,再求值:(-x+3)2-(x+1)(x-1),其19.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠1,∠2+∠3=180°.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由.20.如图,在平行四边形ABCD中,AM、CN都是BD的垂线,M、N是垂足.求证:(1)AM=CN;(2)∠MAN=∠NCM.21.甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.22.小明某天上午9时骑自行车离开家,15时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?23.如图1,点D为△ABC边BC的延长线上一点.(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.求证:1902 MCP A ∠=︒-∠;(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.2018年北师大版数学七下期末检测卷(答案)1.C.2.B.3.D.4.C.5.A.6.B.7.C.8.D.9.D.10.C.11.B.12.D.13.或7.14.22°.15.y=2x.16.①②③17.(1)(2)3x2+5xy+8y218.原式=-6x+10=1319.(1)证明:∵∠2+∠3=180°,∠1+∠3=180°∴∠1=∠2,∴CE∥GF;(2)解:∠AED+∠D=180°,理由如下:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠1,∴∠FGD=∠1,∴AB∥CD,∴∠AED+∠D=180°20.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD.∵AM、CN都是BD的垂线,∴∠AMD=∠BNC=90º.在△ADM和△BCN中,∵∠ADB=∠CBD,∠AMD=∠BNC,AD=BC,∴△ADM≌△BCN,∴AM=CN;(2)∵AM、CN都是BD的垂线,∴AM∥CN;由(1)得,AM=CN;∴四边形AMCN是平行四边形∴∠MAN=∠NCM.21.解:(1)∵袋子中装有相同大小的3个球,球上分别标有数字1,2,3,∴甲摸到标有数字3的球的概率为13;(2)游戏公平,甲获胜的概率=12,乙获胜的概率=12,所以游戏是公平的.22.解:(1)图象表示了时间、距离的关系,自变量是时间,因变量是距离. (2)由图象看出10时他距家15千米,13时他距家30千米. (3)由图象看出12:00时他到达离家最远的地方,离家30千米. (4)由图象看出11时距家19千米,12时距家30千米,11时到12时他行驶了30- 19=11(千米). (5)由图象看出12:00~13:00时距离没变且时间较长,得12:00~13:00休息并吃午餐. (6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).23.(1)解:∵:3:4A B ∠∠=,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠ 140=°,∴34140k k +=°, 解得 20k =°.∴360A k ∠==°.(2)证明:(3)猜想∠BQC=90°+14∠A . 证明如下: ∵BQ 平分∠CBN ,CQ 平分∠BCN ,∴1122QBC CBN QCB BCN ∠=∠∠=∠,, ∴11802Q CBN BCN ∠=︒-∠+∠() 1180(1802N =︒-︒-∠) 1902N =︒+∠. 由(2)知: 12M A ∠=∠,又由轴对称性质知:∠M =∠N , ∴1904BQC A ∠=︒+∠.。

2018年北师大版七年级数学下册期末考试试卷

2018年北师大版七年级数学下册期末考试试卷

2018年北师大版七年级数学下册期末考试试卷2018年北师大版七年级下册数学期末试卷一、选择题(本题共12个小题,每小题2分,共24分)1.下列运算正确的是()A。

a×a=aB。

a×a=aC。

a³+a³=a⁶D。

a⁵+a⁵=a¹⁰2.下面有4个汽车标志图案,其中不是轴对称图形的是()3.0.米用科学记数法表示,正确的是()A。

4.3×10⁻⁵B。

4.3×10⁻⁴C。

4.3×10⁻³D。

4.3×104.若(x²+mx+1)(x-2)的积中x的二次项系数为零,则m的值是()A。

1B。

-1C。

-2D。

25.如图2,已知B、E、C、F在同一直线上,BE=CF,AB∥DE,则下列条件中,不能判断△ABC≌△DEF的是()6.下列各幅图像中,可以大致反映成熟的苹果从树上掉下来的过程中(即落地前),速度随时间变化情况的是()7.XXX在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图3所示的统计图,则符合这一结果的实验可能是()8.下列各题中,适合用平方差公式计算的是()9.以下所给线段长为三边,能构成三角形的是()A。

1cm,2cm,3cmB。

3cm,4cm,6cmC。

1cm,1cm,3cmD。

2cm,3cm,7cm10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()11.一只小狗在如图5的方砖上走来走去,最终停在阴影方砖上的概率是()12.如图4,边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则另一边长是()二、填空题13.计算(-a+b)(a+b)=a^2-b^2;14.若小球在如图6所示的地面上自由滚动,并随即停留在某块方砖上,那么它最终停留在黑色区域的概率是1/4.15.如图,已知∠1=70°,∠2=70°,∠3=60°,则∠4=80度。

2018年北师大版七年级数学下学期期末试卷word版含答案

2018年北师大版七年级数学下学期期末试卷word版含答案

2018年北师大版七年级数学下学期期末试卷一、选择题(每小题3分,共30分)1.下列计算中,正确的是( )A .a 2•a 5=a 10B .(a 4)3=a 12C .(3a )2=6a 2D .a 6÷a 2=a 32.下列手机屏幕解锁图案中不是轴对称图形的是( )A .B .C .D .3.如图,下列条件中,能判定DE ∥AC 的是( )A .∠EDC=∠EFCB .∠AFE=∠ACDC .∠3=∠4D .∠1=∠24.如图,为估计池塘岸边A 、B 两点的距离,小林在池塘的一侧选取一点O ,测得OA=10米,OB=7米,则A 、B 间的距离不可能是( )A .4米B .9米C .15米D .18米5.有四张不透明的卡片,正面分别标有数字3、、、π.除正面的数字不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张,抽到写有无理数卡片的概率是( )A .B .C .D .6.如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的( )A .三边高的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三边中线的交点7.已知,△ABC 中,AB=AC ,BE ∥AC ,∠BDE=110°,∠BAD=70°,则∠E=( )A.20° B.30° C.40° D.50°8.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE 的长度为()A.5 B.6 C.7 D.89.5月12日,抚州市某中学进行了全校师生防灾减灾大演练,警报拉响后同学们匀速跑步到操场,在操场指定位置清点人数后,再沿原路匀速步行回教室,同学们离开教学楼的距离y与时间x的关系的大致图象是()A. B. C.D.10.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC二、填空题(每小题3分,共24分)11.若y2+my+16是完全平方式,则m= .12.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为.13.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.14.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元,设门票的总费用为y 元,则y与x的函数关系为.15.∠1=120°,∠1与∠2互补,∠3与∠2 互余,则∠3= .16.如图,△ABC中,DE是BC的垂直平分线,若AC=7cm,△ABE的周长为13cm,则AB的长为cm.17.根据如图所示的计算程序,若输入的值x=8,则输出的值y为.18.如图,直线l是四边形ABCD的对称轴,若AD∥BC,则下列结论:(1)AB∥CD;(2)AB=AD;(3)BO=CO,(4)BD平分∠ABC.其中正确的有(填序号).三、解答题19.(1)计算:()﹣2+(3.14﹣π)0﹣|﹣5|(2)先化简,再求值:(2x+1)(2x﹣1)﹣5x(x﹣1)+(x﹣1)2,其中x=﹣.20.如图,南开中学高二年级的学生分别在五云山寨M,N两处参加社会时间活动.先要在道路AB,AC形成的锐角∠BAC内设一个休息区P,使P到两条道路的距离相等,并且使得PM=PN,请用直尺和圆规作出P 点的位置(不写作法,值保留作图痕迹).21.为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=38°,测楼顶A视线PA与地面夹角∠APB=52°,量得P到楼底距离PB与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB=33米,计算楼高AB是多少米?22.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?23.在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.24.如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC的延长线于点F.(1)判断FC与AD的数量关系,并说明理由;(2)若AB=BC+AD,则BE⊥AF吗?为什么?(3)在(2)的条件下,若EC⊥BF,EC=3,求点E到AB的距离.2018年北师大版七年级数学下学期期末试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列计算中,正确的是()A.a2•a5=a10B.(a4)3=a12 C.(3a)2=6a2D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则化简求出答案.【解答】解:A、a2•a5=a7,故此选项错误;B、(a4)3=a12,正确;C、(3a)2=9a2,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.2.下列手机屏幕解锁图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.3.如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4 D.∠1=∠2【考点】平行线的判定.【分析】可以从直线DE、AC的截线所组成的“三线八角”图形入手进行判断.【解答】解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选C.4.如图,为估计池塘岸边A、B两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B间的距离不可能是()A.4米B.9米C.15米D.18米【考点】三角形三边关系.【分析】根据三角形的三边关系定理得到3<AB<17,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:10﹣7<AB<10+7,即:3<AB<17,∴AB的值在3和17之间.故选D.5.有四张不透明的卡片,正面分别标有数字3、、、π.除正面的数字不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张,抽到写有无理数卡片的概率是()A.B.C.D.【考点】概率公式;无理数.【分析】让是无理数的数的个数除以数的总数即为所求的概率.【解答】解:所有的数有4个,无理数有、π共2个,∴抽到写有无理数的卡片的概率是.故选A.6.如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边高的交点 B.三条角平分线的交点C.三边垂直平分线的交点 D.三边中线的交点【考点】三角形的重心.【分析】根据题意得:支撑点应是三角形的重心.根据三角形的重心是三角形三边中线的交点.【解答】解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选D.7.已知,△ABC中,AB=AC,BE∥AC,∠BDE=110°,∠BAD=70°,则∠E=()A.20° B.30° C.40° D.50°【考点】等腰三角形的性质.【分析】根据题意和图形可知:∠BAE是三角形ABD的外角,即可求得∠ABD的度数,又在等腰三角形ABC 中可以求得∠C的度数,又知道BE∥AC,可得∠C=∠CBE,最后根据三角形内角和定理可得答案.【解答】解:∵在△ABD中,∠BDE=110°,∠BAD=70°,∴∠BDE=∠BAD+∠ABD=110°,∴∠ABD=110°﹣70°=40°,又∵AB=AC,∴△ABC为等腰三角形,∠ABD=∠C=40°,又∵BE∥AC,∴∠C=∠DBE=40°,∴在△BDE中,∠E=180°﹣∠BDE﹣∠DBE=180°﹣110°﹣40°=30°,故选:B.8.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE 的长度为()A.5 B.6 C.7 D.8【考点】等腰三角形的性质.【分析】根据△ABC中,AB=AC,EP⊥BC,可以得到∠E=∠EFA,然后根据角相等得出边相等即可求得答案.【解答】解:∵在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,∴∠B=∠C,∠BPE=∠EPC=90°,∴在直角△BPF和直角△EPC中有:∠BFP=∠E,又∵∠BFP=∠EFA,∴∠E=∠EFA,∴AE=AF,又∵AF=2,BF=3,AB=AC=AF+BF=2+3=5,AE=AF=2,∴CE=AE+AC=5+2=7,故选:C.9.5月12日,抚州市某中学进行了全校师生防灾减灾大演练,警报拉响后同学们匀速跑步到操场,在操场指定位置清点人数后,再沿原路匀速步行回教室,同学们离开教学楼的距离y与时间x的关系的大致图象是()A. B. C.D.【考点】函数的图象.【分析】根据在每段中,离教学楼的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:匀速跑步到操场,在这个阶段,离教学楼的距离随时间的增大而增大;第二阶段:在操场停留了一段时间,这一阶段离教学楼的距离不随时间的变化而改变.故D错误;第三阶段:沿原路匀速步行回教学楼,这一阶段,离教学楼的距离随时间的增大而减小,故A错误;并且这段的速度小于于第一阶段的速度,则C正确.故选:C.10.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.二、填空题(每小题3分,共24分)11.若y2+my+16是完全平方式,则m= ±8 .【考点】完全平方式.【分析】利用完全平方公式的题中判断即可求出m的值.【解答】解:∵y2+my+16是完全平方式,∴m=±8,故答案为:±812.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为 3.4×10﹣10.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.【考点】三角形的稳定性.【分析】将其固定,显然是运用了三角形的稳定性.【解答】解:一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.故答案为:三角形的稳定性.14.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元,设门票的总费用为y 元,则y与x的函数关系为y=10x+30 .【考点】函数关系式.【分析】根据学生人数乘以学生票价,可得学生的总票价,根据师生的总票价,可得函数关系式.【解答】解:由题意,得y=10x+30,故答案为y=10x+30.15.∠1=120°,∠1与∠2互补,∠3与∠2 互余,则∠3= 30°.【考点】余角和补角.【分析】根据互余两角之和为90°,互补两角之和为180°,求解即可.【解答】解:∵∠1=120°,∠1与∠2互补,∴∠2=60°,∵∠3与∠2 互余,∴∠3=30°.故答案为:30°.16.如图,△ABC中,DE是BC的垂直平分线,若AC=7cm,△ABE的周长为13cm,则AB的长为 6 cm.【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到EB=EC,根据三角形的周长公式计算即可.【解答】解:∵DE是BC的垂直平分线,∴EB=EC,∵△ABE的周长为13cm,∴AB+AE+BE=AB+AE+EC=AB+AC=13cm,又AC=7cm,∴AB=6cm,故答案为:6.17.根据如图所示的计算程序,若输入的值x=8,则输出的值y为 3 .【考点】函数值.【分析】根据把自变量的值代入相应的函数关系式,可得答案.【解答】解:x=8>0,把x=8代入y=x﹣5,得y=8﹣5=3.故答案为:3.18.如图,直线l是四边形ABCD的对称轴,若AD∥BC,则下列结论:(1)AB∥CD;(2)AB=AD;(3)BO=CO,(4)BD平分∠ABC.其中正确的有(1)(2)(4)(填序号).【考点】轴对称的性质.【分析】根据轴对称的性质可得∠1=∠2,∠3=∠4,根据两直线平行,内错角相等可得∠2=∠3,从而得到∠1=∠3=∠4,然后根据内错角相等,两直线平行可得AB∥CD,等角对等边可得AB=BC,再根据等腰三角形三线合一的性质可得BD平分∠ABC,AO=CO.【解答】解:如图,∵直线l是四边形ABCD的对称轴,∴∠1=∠2,∠3=∠4,∵AD∥BC,∴∠2=∠3,∴∠1=∠3=∠4,∴AB∥CD,AB=BC,故(1)(2)正确;由轴对称的性质,AC⊥BD,∴BD平分∠ABC,AO=CO(等腰三角形三线合一),故(4)正确.但不能得出BO=CO,故(3)错误;综上所述,正确的是(1)(2)(3)(4).故答案为:(1)(2)(4).三、解答题19.(1)计算:()﹣2+(3.14﹣π)0﹣|﹣5|(2)先化简,再求值:(2x+1)(2x﹣1)﹣5x(x﹣1)+(x﹣1)2,其中x=﹣.【考点】整式的加减—化简求值.【分析】(1)首先计算乘方,然后从左向右依次计算,求出算式()﹣2+(3.14﹣π)0﹣|﹣5|的值是多少即可.(2)首先去括号,合并同类项,将代数式化为最简式,然后把x的值代入,求出算式(2x+1)(2x﹣1)﹣5x(x﹣1)+(x﹣1)2的值是多少即可.【解答】解:(1)()﹣2+(3.14﹣π)0﹣|﹣5|=9+1﹣5=10﹣5=5(2)当x=﹣时,(2x+1)(2x﹣1)﹣5x(x﹣1)+(x﹣1)2=4x2﹣1﹣5x2+5x+x2﹣2x+1=3x=3×(﹣)=﹣120.如图,南开中学高二年级的学生分别在五云山寨M,N两处参加社会时间活动.先要在道路AB,AC形成的锐角∠BAC内设一个休息区P,使P到两条道路的距离相等,并且使得PM=PN,请用直尺和圆规作出P 点的位置(不写作法,值保留作图痕迹).【考点】作图—应用与设计作图.【分析】分别作出MN的中垂线和∠BAC的角平分线,两线的交点就是P点位置.【解答】解:如图所示:P点即为所求.21.为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=38°,测楼顶A视线PA与地面夹角∠APB=52°,量得P到楼底距离PB与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB=33米,计算楼高AB是多少米?【考点】全等三角形的应用.【分析】利用全等三角形的判定方法得出△CPD≌△PAB(ASA),进而得出AB的长.【解答】解:∵∠CPD=38°,∠APB=52°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=52°,在△CPD和△PAB中∵,∴△CPD≌△PAB(ASA),∴DP=AB,∵DB=33,PB=8,∴AB=33﹣8=25(m),答:楼高AB是25米.22.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?【考点】函数的图象.【分析】(1)图象与y轴的交点就是李大爷自带的零钱.(2)0到100时线段的斜率就是他每千克黄瓜出售的价格.(3)计算出降价后卖出的量+未降价卖出的量=总共的黄瓜.(4)赚的钱=总收入﹣批发黄瓜用的钱.【解答】解:(1)由图可得农民自带的零钱为50元.(2)÷100=360÷100=3.6(元).答:降价前他每千克黄瓜出售的价格是3.6元;(3)÷(3.6﹣1.6)=120÷2=60(千克),100+60=160(千克).答:他一共批发了160千克的黄瓜;(4)530﹣160×2.1﹣50=144(元).答:李大爷一共赚了144元钱.23.在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.【考点】概率公式.【分析】(1)用黄球的个数除以所有球的个数即可求得概率;(2)根据概率公式列出方程求得红球的个数即可.【解答】解:(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得: =,解得:x=5.故后来放入袋中的红球有5个.24.如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC的延长线于点F.(1)判断FC与AD的数量关系,并说明理由;(2)若AB=BC+AD,则BE⊥AF吗?为什么?(3)在(2)的条件下,若EC⊥BF,EC=3,求点E到AB的距离.【考点】全等三角形的判定与性质.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答;(2)由(1)知△ADE≌△FCE,得到AE=EF,AD=CF,由于AB=BC+AD,等量代换得到AB=BC+CF,即AB=BF,证得△ABE≌△FBE,即可得到结论;(3)在(2)的条件下有△ABE≌△FBE,得到∠ABE=∠FBE,根据角平分线的性质即可得到结果.【解答】证明:(1)∵AD∥BC,∴∠ADC=∠ECF,∵E是CD的中点,∴DE=EC,∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD;(2)由(1)知△ADE≌△FCE,∴AE=EF,AD=CF,∵AB=BC+AD,∴AB=BC+CF,即AB=BF,在△ABE与△FBE中,,∴△ABE≌△FBE,∴∠AEB=∠FBE=90°,∴BE⊥AE;(3)在(2)的条件下有△ABE≌△FBE,∴∠ABE=∠FBE,∴E到BF的距离等于E到AB的距离,∵CE⊥BF,CE=3,∴点E到AB的距离为3.。

(完整word版)2018北师大版七年级下册数学期末试卷及答案

(完整word版)2018北师大版七年级下册数学期末试卷及答案

第2题图nmba70°70°110°12第六题图DCB A 七年级数学(下)期末考试卷一、填空题(每小题3分,共30分)1、计算)1)(1(+-x x = 。

2、如图,互相平行的直线是 。

4、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 .7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:则=na 。

8、已知412+-kx x 是一个完全平方式,那么k 的值为 。

9、近似数25。

08万精确到 位,有 位有效数字,用科学计数法表示为 .10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。

二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211aa a =÷-DCBA DC B A FED CB A C. 226)3(x x = D 。

222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.91B. 61C. 51 D 。

31 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随) )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小 B 。

数学书封面的大小 C. 课桌面的大小 D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE ,DF 平分∠CDE ,则∠BFD= ( )A. 110°B. 115° C 。

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018-2019学年度七年级下学期期末试卷数学一、选择题(每题3分,共18分) 1、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( ) A 、一锐角对应相等 B 、两锐角对应相等 C 、一条边对应相等 D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了. A 、1个 B 、2个 C 、3个 D 、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.ABC D20408060510152025303540速度时间ODCBA9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元. 10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .12、若229a ka ++是一个完全平方式,则k 等于 .13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018-2019北师大版七年级数学下册期末考试试卷及答案

2018—2019学年度七年级下学期期末试卷数学一、选择题(每题3分,共18分) 1、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .ABC D20408060510152025303540速度时间DA9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元. 10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2题图nmba70°70°110°12第六题图DCB A 七年级数学(下)期末考试卷一、填空题(每小题3分,共30分)1、计算)1)(1(+-x x = 。

2、如图,互相平行的直线是 。

4、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。

7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:则=na 。

8、已知412+-kx x 是一个完全平方式,那么k 的值为 。

9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。

10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。

二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211aa a =÷- C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.91B. 61 C. 51 D. 31DCBA DC B A FEDC B A ED CBA 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( )A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④ 三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y乙甲BA OEDCB A蓝蓝蓝黄蓝黄红20、(6分) 某地区现有果树24000棵,计划今后每年栽果树3000棵。

(1)试用含年数x (年)的式子表示果树总棵数y (棵);(2)预计到第5年该地区有多少 棵果树? 21、(8分)小河的同旁有甲、乙两个村庄(左图),现计划在河岸AB 上建一个水泵站,向两村供水,用以解决村民生活用水问题。

(1) 如果要求水泵站到甲、乙两村庄的距离相等,水泵站M 应建在河岸AB 上的何处? (2)如果要求建造水泵站使用建材最省, 水泵站M 又应建在河岸AB 上的何处?22、(8分)超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会。

摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、 40元。

一次性购物满300元者,如果不摇奖可返还现金15元。

(1)摇奖一次,获一等奖的概率是多少?(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算。

23、(8分)如图,已知△ABC 中,AB = AC,点D 、E 分别在AB 、AC 上,且BD = CE,如何说明OB=OC 呢?解:∵AB=AC ∴∠A B C =∠A C B ( )又∵BD = CE ( ) BC = CB ( )∴△BCD ≌△CBE ( )∴∠( ) = ∠( ) ∴OB = OC ( )。

24、.(10分)(2012·南宁中考)如图所示,∠BAC=∠ABD=90°,AC=BD ,点O 是AD ,BC 的交点,点E 是AB 的中点.(1)图中有哪几对全等三角形,请写出来; (2)试判断OE 和AB 的位置关系,并给予证明.第3页 共4页0距离/千米时间/时30252015105151413121110925、(8分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题。

(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间? (3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?26、(10分)把两个含有45°角的直角三角板如图放置,点D 在AC 上连接AE 、BD ,试判断AE 与BD的关系,并说明理由。

七年级数学(下)期末考试卷答案一、二、三、19、 7.5 , 29,y x 2123+ 20、x y 300024000+=,390005==y x 时,21、如图:22、P 一等奖=161,60×161+50×81+40×41=20 20﹥15 ∴选择摇奖。

23、等边对等角 、 已知 、 SAS 、 ∠ DCB 、 等角对等边。

24、图略 ,(1)农村居民纯收入不断增加,特别是进入2000年后增幅更大;(2)2005年农村人均纯收入达3865元;(3)2005年农村人均纯收入是1990年的5倍多;(供参考)25、(1)12点,30千米 (2)10:30 , 30 分钟 (3)13~15点,15千米/小时(4)10千米/小时26、延长BD交AE于F ,证△BCD≌△ACE ,可得BD=AE ,BD⊥AE .321333222111D C B A 6006006006004004004004002002002002000000ssss t t t tFED C BA 七年级下数学期末测试卷(二)一、选择题(每小题3分,共24分)1.如图所示,BC ∥DE ,∠1=108°,∠AED=75°,则∠A 的大小是( ) (A)60° (B)33° (C)30° (D)23°2.下列运算正确的是( ) (A)3a-(2a-b)=a-b(B)(a 3b 2-2a 2b)÷ab=a 2b-2 (C)(a+2b)(a-2b)=a 2-2b 2(D)(-12a 2b)3=-18a 6b 33.从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是( ) (A)标号小于6 (B)标号大于6 (C)标号是奇数 (D)标号是34、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s(单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是()5、现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为( )A. 1B. 2C. 3D. 46、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130°7、一个三角形的两边长分别为3和8,且第三边的长为奇数,则这个三角形的周长是 ( )A. 18B. 19C. 20D. 18或20ED CB A 8、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC,AE 平分∠BAD ,下列结论: ① ∠AE D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( )A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④二、填空题(每小题3分,共18分)9.如图,直线a ,b 被直线c 所截(即直线c 与直线a ,b 都相交),且a ∥b ,若∠1=118°,则∠2的度数=____度.10.已知412+-kx x 是一个完全平方式,那么k 的值为 。

11.若代数式x 2+3x+2可以表示为(x-1)2+a(x-1)+b 的形式,则a+b 的值是____.12.在分别写有整数1到10的10张卡片中,随机抽取1张卡片,则该卡片的数字恰好是奇数的概率是____.13.在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若CD=4,则点D 到斜边AB 的距离为____.14.某市出租车价格是这样规定的:不超过2千米,付车费5元,超过的部分按每千米1.6元收费,已知李老师乘出租车行驶了x(x >2)千米,付车费y 元,则所付车费y 元与出租车行驶的路程x 千米之间的函数关系为________________.三、解答题15.(15分)(1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-0距离/千米时间/时302520151051514131211109 (3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y16.(13分)如图所示,∠BAC=∠ABD=90°,AC=BD ,点O 是AD ,BC 的交点,点E 是AB 的中点. (1)图中有哪几对全等三角形,请写出来;(2)试判断OE 和AB 的位置关系,并给予证明.17、(12分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题。

(1)玲玲到达离家最远的地方是什么时间?离家多远? (2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少? (4)玲玲全程骑车的平均速度是多少?18、(8分) 某地区现有果树24000棵,计划今后每年栽果树3000棵。

相关文档
最新文档