土石坝毕业设计_说明

合集下载

粘土斜墙土石坝毕业设计

粘土斜墙土石坝毕业设计

1.综合说明1.1枢纽概况及工程目的某水库工程是河北省和水利部“八·五”重点工程建设项目之一。

该工程是以供水、灌溉、发电、养殖等综合利用为主的大型控制枢纽工程。

青龙河流域水量充沛,控制流域面积6340km2,,多年平均径流量9.6亿m3,是滦河流域较大的一条支流。

但由于降雨、径流的年际年内分配极不均匀,必须修建大型控制工程调节水量,丰富的水资源才能得以充分开发利用。

水库按满足秦皇岛市生活、工业用水和滦河中下游农业用水的需要设计,工程规模是:正常蓄水位141 m,调节库容7.09亿m3,水库库容系数0.77,水量利用系数为70%。

坝后式电站装机容量20Mw。

根据《水利水电枢纽工程等级划分及设计标准》SDJ12-78的规定,一期工程为二等工程,大坝为II级建筑物,正常应用洪水为100年一遇,非常运用洪水为1000年一遇。

辅助建筑物按Ⅲ级设计,临时建筑物按Ⅳ级设计。

1.2水库枢纽设计基础资料1.2.1地形、地质(1)地形:见1:2000坝址地形图。

(2)库区工程地质条件。

水库位于高山区,构造剥蚀地形。

青龙河侵蚀能力较强,沿河形成不对称河谷,由于构造运动影响,河流不断下切,形成岸边阶地、陡岸。

流域内地形北高南低,平均高程与500m,最高峰海拔1680m。

河道蜿蜒曲折,河谷宽度400~100m不等,河道比降1/400~1/600。

库区两岸基岩出露高程大部分在200米左右,库区左岸非可溶性岩层分布广泛,其中主要由绢云母、千枚岩、石英、砂质页岩组成。

透水性较小,也没有发现沟通库内外的大断层。

库区可溶性岩层分布于青龙河右岸,从隔水层分布、熔岩发育情况分析,水库蓄水后向邻近河流渗透的可能性很小。

经过对库区断层的分析,水库向外流域及下游渗漏的可能性很小。

库区外岩层抗风化作用较强,库岸基本上是稳定的。

(3)坝址区工程地质条件位于坝区中部背斜的西北,岩层倾向青龙河上游,两岸山体较厚。

河床宽约300米,河床地面高程85m,河床砂卵石覆盖层平均厚度5—7米,渗透系数K=1×10-2厘米/秒。

土石坝毕业设计资料

土石坝毕业设计资料

土石坝毕业设计资料题目:土石坝设计及施工技术的综合分析摘要:该毕业设计主要以土石坝的设计和施工技术为研究对象,通过对土石坝的相关理论知识进行深入学习和总结,结合实际案例,分析土石坝的设计原理和施工过程中的技术要点。

通过对土石坝设计与施工工艺的综合分析,进一步提高土石坝工程的质量和安全性。

本文主要分为引言、土石坝的设计原理、土石坝施工技术以及结论四个部分。

1.引言土石坝作为一种常见的水利工程建筑物,起到了水库蓄水和防洪的重要作用,因此对其设计和施工技术进行研究具有重要意义。

本章主要介绍研究背景和研究目的,明确本论文的主要内容和研究方法。

2.土石坝的设计原理介绍土石坝的定义、分类和设计原则。

分析土石坝的重力坝和堆石坝两种主要设计方式,并对其设计原理进行详细解释。

重点介绍土石坝的坝体结构设计、防渗措施及排水设计等方面的原理和方法。

3.土石坝施工技术从土石坝施工的准备阶段、基础施工、坝体施工和防渗施工四个方面,详细介绍了土石坝施工过程中的关键技术要点。

包括土石料的选择、卸料和压实技术、重力坝的坝体施工流程、堆石坝的填筑和压实方法,以及防渗层的施工工艺等。

4.结论通过对土石坝设计与施工技术的综合分析,总结了土石坝设计和施工技术的关键要点。

强调了设计中应考虑的因素和施工过程中的注意事项,以及土石坝工程质量和安全性的重要性。

最后,提出了进一步研究和改进土石坝设计与施工技术的建议。

关键词:土石坝、设计原理、施工技术、质量、安全性注:以上摘要只为示例,实际内容可以根据具体情况进行调整和增加。

具体内容请查看附件。

土石坝初步设计---毕业设计

土石坝初步设计---毕业设计

⼟⽯坝初步设计---毕业设计前⾔毕业设计是我们在校期间最后的、总结性的重要教学环节,其⽬的是:1.巩固、加深、扩⼤我们所学的基本理论和专业知识,并使之系统化;2.培养我们运⽤所学的理论知识解决实际技术问题功能⼒,初步掌握设计原则、⽅法和步骤;3.培养我们具有正确的设计思想,树⽴严肃认真、实事求是和刻苦钻研的⼯作作风;4.锻炼我们独⽴思考、独⽴⼯作的能⼒,并加强计算、绘图、编写说明书及使⽤规范、⼿册等技能训练。

本次毕业设计为⼟⽯坝设计,设计满⾜枢纽布置安全要求。

本设计结合国内外⼀些⼟⽯坝实例作出⽐较合理的选择,设计以减⼩⼯程量,布局经济合理为原则。

本设计共分六章。

第⼀章为本⼯程的⼀些概况,包括枢纽任务、流域概况、⽓候特性、⽔⽂特性、⼯程地质、建筑材料、经济资料等的介绍;第⼆章为洪⽔调节计算,主要内容为泄洪⽅式和拟定泄洪建筑物孔⼝尺⼨的选择,及防洪库容、上游设计和校核洪⽔位和相应的下泄流量的确定;第三章为坝型选择及枢纽布置,主要通过不同⽅案的初步技术经济⽐较,选定坝型,并确定⽔利枢纽的布置⽅案;第四章为⼟⽯坝的设计,主要通过分析⽐较,确定⼤坝基本剖⾯型式与轮廓尺⼨,通过渗流验算和静⼒稳定计算以论证选⽤坝坡的合理性;第五章为泄⽔建筑物的设计,主要为泄⽔⽅案、线路的选择和隧洞的⽔⼒计算;第六章为施⼯组织设计,也是本次设计的深⼊部分,主要进⾏施⼯导流和施⼯控制性进度的设计,⽽施⼯交通运输、施⼯总布置由于能⼒有限和时间关系并没有做进⼀步的设计。

由于没有参加过实际⼯程的施⼯组织设计,⼯作经验有限,查阅参考资料⼜有许多局限性,设计中定会存在⼀些缺点和错误,请⽼师批评指正。

摘要本⽔利枢纽⼯程由挡⽔建筑物、泄⽔建筑物和⽔电站建筑物等组成,同时具有防洪、发电、灌溉、渔业等综合作⽤。

本次设计主要内容如下:1.根据防洪要求,对⽔库进⾏洪⽔调节计算,确定坝顶⾼程及溢洪道尺⼨;2.对可能的⽅案进⾏⽐较,确定枢纽组成建筑物的型式、轮廓尺⼨及⽔利枢纽布置⽅案;3.通过详细设计和⽐较,确定⼤坝的基本剖⾯和轮廓尺⼨,拟定地基处理⽅案与坝⾝构造;4.坝型选定后,选择建筑物的型式及轮廓尺⼨,确定布置⽅案;拟定细部构造,进⾏⽔⼒、静⼒计算。

西南地区某水利工程土石坝毕业设计(斜心墙土石坝).

西南地区某水利工程土石坝毕业设计(斜心墙土石坝).

第一章土石坝工程概况1.1 工程流域概述该江位于我国西南地区,该江从东南向西北流向,全长约为122公里,该流域面积2558平方公里,在坝址以上流域面积约为780平方公里。

本流域大多部分为山岭地带,山脉山丘和盆地交错于其间,地形变化多端,流域内支流很多,但多为小的山区流河流,汛期河流的含沙量较大,流速快。

全区农田面积仅占总面积的20%,林木面积约占全区的30%,其种类有松、杉等。

其余为荒山及草皮覆盖,冲积层较厚,土多,两岸有崩塌现象。

本流域内因山脉连绵,纵横交错,交通不便,故居民较少。

1.2工程地质资料1.2.1坝址地质资料该坝址位于该江中游地段的峡谷地带,河床比较平缓,坡降不太大,两岸高山耸立,纵横交错构成高山深谷的地貌特征,汛期河流的含沙量较大,流速快,冲积层较厚,土多,两岸有崩塌现象,适合用土石坝。

1.2.2地震资料本地区地震烈度定为7度,基岩与混凝土之间的摩擦系数取0.65。

1.3当地气候特征1.3.1气温情况该地年平均气温约为12.8度,最高气温为30.5度,平均发生在7-8月,最低气温为-5.3度,平均发生在1-2月份。

表1-1 月平均气温统计表(度)1 2 3 4 5 6 7 8 9 10 11 12 年平均4.8 8.3 11.2 14.8 16.3 18.0 18.8 18.3 16.0 12.4 8.65.9 12.8表1-5 平均温度日数月份日数平均温度21 2 32 4 5 6 7 8 9 10 11 12℃ 6 1.2 0.3 0 0 0 0 0 0 0 0 3.1℃25.26.830.730 31 30 31 31 30 31 3027.9℃0 0 0 0 0 0 0 0 0 0 0 01.3.2降水量情况该地最大年降水量可达1213毫米,最小为617毫米,多年平均降水量为905毫米。

表1-2 各月降雨日数统计表日数月份平均降雨量1 2 3 4 5 6 7 8 9 10 11 12<5mm 2.6 2.2 4.3 4.2 7.0 8.6 11.58.5 9.6 9.5 4.8 4.35~10mm 0.3 0.2 0.2 1.4 2.0 2.4 2.7 2.7 2.6 2.4 0.8 0.1 10~30mm 0.1 0.1 0.7 0.5 2.3 4.6 4.9 3.8 2.2 1.3 0.6 0.1 >30mm 0 0 0 0 0 0 0 0 0 0 0 01.3.3风力和风向通常1-4月风力较大,实测最大风速为19.1 m/s,相当于8级风力,风向为西北偏西。

土石坝毕业设计

土石坝毕业设计

引言概述:
土石坝作为一种常见的重要水利工程结构,被广泛应用于水资源利用、洪水控制、水流调节等方面。

在毕业设计中,我们将对土石坝进行综合分析和设计,通过详细的介绍和研究土石坝的各方面内容,以期提高对土石坝工程设计和施工的认识和理解。

正文内容:
1.土石坝的概念和分类
1.1土石坝的定义
1.2土石坝的分类
1.3土石坝的结构特点
2.土石坝的材料与力学性质
2.1土石坝使用的材料
2.2土石坝材料的力学性质
2.3土石坝材料的可行性分析
3.土石坝的基本设计原理
3.1土石坝的稳定性分析
3.2土石坝的渗透性分析
3.3土石坝的抗震性设计
3.4土石坝的温度效应分析
3.5土石坝的变形与监测
4.土石坝的施工工艺和质量管理
4.1土石坝的施工工艺
4.2土石坝的施工监测
4.3土石坝的质量管理
5.土石坝的经济性与环境影响
5.1土石坝的经济性分析
5.2土石坝的社会影响
5.3土石坝的环境影响评价
总结:
通过对土石坝的综合分析和设计,我们深入了解了土石坝的概念、分类、结构特点以及土石坝材料的力学性质。

在基本设计原理方面,我们分析了土石坝的稳定性、渗透性、抗震性、温度效应、变形与监测等方面。

我们还介绍了土石坝的施工工艺、质量管理以及土石坝的经济性和环境影响等方面内容。

通过本文对土石坝的全面论述,希望能够提高对土石坝工程设计和施工的认识和理解,为相关领域的实践工作提供一定的参考价值。

土石坝毕业设计

土石坝毕业设计

土石坝毕业设计1. 引言土石坝是一种常见的水利工程结构,用于水库的蓄水和防洪。

在毕业设计中,我们将研究土石坝的设计原理、施工过程和监测方法,以及可能遇到的问题和解决方案。

本文档将详细介绍土石坝的相关内容,并提供设计和建设土石坝的指导。

2. 土石坝的基本原理土石坝是一种以土石材料为主要构造材料的大坝,主要由堤体、坝基和坝顶组成。

堤体由多种土石材料堆积而成,形成防洪和蓄水的屏障。

坝基是土石坝的基础,承受来自水体和土壤的力。

坝顶则是坝体的上部,用于堵塞水流并支撑堤体。

3. 土石坝的设计3.1 坝型选择在设计土石坝时,首先需要根据实际情况选择合适的坝型。

常见的土石坝坝型包括碾压土石坝、心墙土石坝和重力土石坝。

不同的坝型适用于不同的地质和水力条件。

本文将介绍各种坝型的特点和适用范围,以供设计参考。

3.2 坝体稳定性分析为了确保土石坝的安全性,需要进行坝体稳定性分析。

这项分析用于确定坝体在正常和极端载荷条件下的稳定性,并评估任何可能的破坏机制。

本文将介绍常用的稳定性分析方法,包括切片法、有限元法和稳定性计算软件的应用。

3.3 坝体渗流分析土石坝的渗流是一个重要的问题,如果不能得到有效控制,可能会导致坝体破坏。

因此,在设计土石坝时,需要进行渗流分析,以确定坝体内部的渗流路径和渗流通量。

本文将介绍渗流分析的基本原理和方法,包括渗流试验和数值模拟。

3.4 坝体材料选择土石坝的堤体材料是其结构的基础,对坝体的稳定性和安全性有重要影响。

在设计土石坝时,需要选择合适的材料,并确定其物理和力学性质。

本文将介绍常见的土石材料和其特点,以及如何选择和测试合适的材料。

4. 土石坝的施工4.1 坝基处理坝基是土石坝的基础,其处理对于坝体的稳定性至关重要。

在施工土石坝之前,需要对坝基进行处理,包括地质勘察、坑底平整和加固措施的设计。

本文将介绍坝基处理的基本原理和具体方法,以保证坝体在施工和运营中的稳定性。

4.2 堤体填筑堤体填筑是土石坝施工的核心环节,涉及大量的土石材料运输和堆积。

土石坝毕业设计

土石坝毕业设计

前言1、设计任务书及原始资料是工作的依据,因此首先要全面了解设计任务,熟悉该河流的一般自然地理条件,坝址附近的水文和气象特性,枢纽及水库的地形、地质条件,当地材料,对外交通及有关规划设计的基本数据,只有在熟悉基本资料的基础上才能正确地选择建筑物的类型,进行枢纽布置、建筑物设计及施工组织设计。

因此,应把必要的资料整理到说明书中。

通过对资料的了解和分析,初步掌握原始资料中对设计和施工有较大影响的主要因素和关键问题,为以后设计工作的进行打下良好的基础。

2、本次设计内容及要求:(1)坝轴线选择。

(2)坝型选择。

(3)枢纽布置。

(4)挡水建筑物设计:包括土坝断面设计、平面布置、渗流计算、稳定计算、细部构造设计、基础处理等。

(5)泄水建筑物设计:溢洪道或导流洞设计(仅选其中一项),以水利计算为主。

选取溢洪道设计。

(6)施工导流方案论证(选作内容)。

仅作简单的阐述。

3、工程设计概要ZH水库位于QH河干流上,水库控制流域面积4990km2,库容5.05×108m3。

水库以灌溉发电为主,结合防洪,可引水灌溉农田71.2×104亩,远期可发展到10.4×105亩。

灌区由一个引水流量45m3/s的总干渠和4条分干渠组成,在总干渠渠首及下游24km处分别修建枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kw·h。

水库防洪标准为百年设计,万年校核。

枢纽工程由挡水坝、溢洪道、导流泄洪洞、灌溉发电洞及枢纽电站组成。

摘要:土坝设计渗流计算稳定计算细部结构第一章基本数据第一节工程概况及工程目的本水库建成后具有灌溉、发电、防洪、解决工业用水和人畜吃水等多方面的效益,是一座综合利用的水库。

水库近期可灌溉农田71.2×104亩,远期可发展到10.4×105亩。

枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kwh。

土石坝毕业设计说明书

土石坝毕业设计说明书
1.2.
三百梯水库为一般小(2)型水库。水库大坝坝型为砂壤土均质坝,最大坝高为14.42m,大坝总长76.00m。根据《水利水电工程等级划分及洪水标准》SL252—2000及《防洪标准》GB50201-94之规定,确定为小(2)型水库系Ⅴ等工程,主要建筑物为5级,次要建筑物为5级。
1.3.
1.
大坝:三百梯水库于1956年10月动工,至1957年3月完工,根据“三查三定资料”,大坝坝型为砂壤均质土坝,坝顶高程为341.56m,坝顶长度76.0m,顶宽2.0m,最大坝高14.42m;上游坝坡上段坡比1:1.82,下段坡比1:3.5,下游坝坡上段坡比1:2.25和1:1.84,坝坡下段坡比1:2.35和1:2.86,下游坝脚未设排水棱体和反滤层,坝底总宽77.72m。
水库所在河流属长江水系璧南河的中段右岸支流上,库区内植被一般。水库大坝坝址河谷底高程327.14m(黄海高程系统,下同)。坝址以上集雨面积1.56km2,水库总库容32.26万m3(复核后成果),三百梯水库工程是一座以农业灌溉为主,兼有农村居民点供水、防洪以及养殖等综合效益的小㈡型水利工程,设计灌溉面积914亩,有效灌面593亩。
水库所在河流属长江水系璧南河中段右岸一支流,库区内植被一般。水库坝址是不对称“U”型河谷,谷底高程326.00m(黄海高程系统,下同)。原坝址以上集雨面积1.56km2。
三百梯水库大坝为砂壤土均质坝,最大坝高14.42m,总库容31.6万m3(复核前),根据SL252-2000《水利水电工程等级划分及洪水标准》和GB50201-94《防洪标准》规定,该水库工程规模为小㈡型水利工程,工程等别为Ⅴ级,主要建筑物为5级水工建筑物。洪水标准为20年一遇设计,设计洪水位为340.16m,相应洪峰流量为22.283/s,设计下泄流量为17.63m3/s;200年一遇校核,校核洪水位为340.77m,相应洪峰流量为34.75m3/s,校核下泄流量为29.86m3/s。

土石坝毕业设计

土石坝毕业设计

土石坝毕业设计土石坝毕业设计在水利工程领域中,土石坝作为一种常见的水利工程结构,承担着调节水流、防洪、蓄水等重要功能。

而作为水利工程专业的毕业设计课题,土石坝的设计无疑是一个具有挑战性和实践性的任务。

本文将从土石坝的设计原理、工程实施和环境影响等方面进行探讨。

一、土石坝的设计原理土石坝是利用土石材料充填建筑而成的一种水利工程结构。

其设计原理主要包括坝体稳定性、坝顶宽度、坝体材料选择等方面。

首先,坝体稳定性是土石坝设计中最关键的问题。

设计师需要考虑到土石材料的强度、抗滑性和抗冲刷性等因素,以确保土石坝在各种外力作用下不发生破坏。

其次,坝顶宽度的设计需要考虑到坝体的自重和水压力等因素,以保证坝顶的稳定性和安全性。

最后,坝体材料的选择需要根据工程实际情况和经济性来确定,常见的土石材料有黏土、砂土和碎石等。

二、土石坝的工程实施土石坝的工程实施包括坝基处理、坝体充填和坝顶建设等步骤。

首先,坝基处理是土石坝工程实施中的重要环节。

设计师需要对坝基进行地质勘察和地质力学分析,以确定坝基的稳定性和承载能力。

其次,坝体充填需要根据设计要求,选取合适的土石材料进行填筑,同时要进行合理的压实和加固,以确保坝体的稳定和坝顶的安全。

最后,坝顶建设需要进行防渗处理和排水系统的设计,以防止水流对坝顶的侵蚀和损坏。

三、土石坝的环境影响土石坝的建设对周围环境产生一定的影响,主要包括水文影响、生态影响和社会影响等方面。

首先,土石坝的建设会改变水流的路径和速度,对下游的水文条件产生影响,可能引起洪水和干旱等问题。

其次,土石坝的建设会破坏原有的生态系统,导致生物多样性的减少和生态平衡的破坏。

最后,土石坝的建设会对周围的居民和社会经济产生影响,可能导致土地沉降、人口迁移和经济发展等问题。

综上所述,土石坝的毕业设计是一个具有挑战性和实践性的任务。

设计师需要充分理解土石坝的设计原理,合理进行工程实施,并考虑到土石坝建设对环境的影响。

通过毕业设计的实践,学生们可以深入了解土石坝的工程特点和设计要求,提高自己的专业能力和实践能力。

土石坝毕业设计

土石坝毕业设计

土石坝毕业设计土石坝是一种以土壤和石块为主要材料,经过合理布置而形成的一种坝型结构。

它具有施工简单、成本低等特点,被广泛应用于水利工程中。

本篇文章将以土石坝的设计为主题,探讨其毕业设计的相关内容。

首先,土石坝毕业设计的目标是什么?在进行设计之前,我们需要明确自己的设计目标,即希望通过设计实现什么样的效果。

土石坝主要用于水库、蓄水池等地的水利工程,我们可以根据具体的需求确定设计目标,比如最大蓄水容量、坝高、坝体稳定性等。

在确定设计目标之后,我们可以根据这些目标制定相应的设计方案。

其次,土石坝的毕业设计需要考虑哪些因素?土石坝的设计需要综合考虑多个因素,包括地质条件、水文条件、工程经济等。

首先,地质条件可以影响土石坝的选址和坝体的稳定性。

我们需要对地质条件进行详细的勘察和分析,确定合适的选址,并进行坝址地质勘察。

其次,水文条件可以影响土石坝的蓄水容量和坝体的稳定性。

我们需要对水文条件进行详细的分析和计算,确定合适的蓄水容量,并进行洪水计算。

最后,工程经济是设计中一个重要的考虑因素。

我们需要根据工程经济的原则,进行合理的材料选用和设计布局,以实现经济、合理地利用资源。

最后,土石坝毕业设计的设计内容有哪些?土石坝的毕业设计主要包括选址、设计计算以及施工方案等内容。

首先,选址是土石坝设计的第一步,我们需要根据地质条件、水文条件等因素选择合适的选址,并进行坝址地质勘察。

其次,设计计算是土石坝设计的核心内容,我们需要根据设计目标和具体的地质、水文条件进行相关计算,包括坝体稳定性计算、蓄水容量计算等。

最后,施工方案是土石坝设计的最后一步,我们需要制定合理的施工方案,包括施工工艺、材料选用等内容。

综上所述,土石坝毕业设计是一个系统性的工程设计过程。

我们需要确定设计目标,综合考虑地质、水文、工程经济等因素,设计相关内容,最终实现设计的目标。

土石坝的毕业设计可以培养我们的综合分析和创新能力,为将来从事相关工作打下基础。

心墙土石坝毕业设计

心墙土石坝毕业设计

心墙土石坝毕业设计心墙土石坝毕业设计一、引言心墙土石坝是一种常见的大型水利工程,用于水库的建设和管理。

在这个毕业设计中,我将探讨心墙土石坝的设计原理、施工过程以及对环境的影响。

二、设计原理心墙土石坝是由土石材料构成的坝体,其主要作用是阻挡水流,形成水库。

设计心墙土石坝时,需要考虑以下几个因素:1. 坝体稳定性:土石坝的稳定性是设计的关键。

需要考虑土石材料的强度、抗滑性以及坝体的坡度等因素,确保坝体在水压力下不会发生破坏。

2. 水流控制:心墙土石坝需要能够有效地控制水流,防止水流冲刷坝体。

设计时需要考虑坝体的渗透性、渗流路径等因素,确保水流不会对坝体产生破坏。

3. 泥沙淤积:水库中会有大量的泥沙淤积,如果不及时清理,会影响水库的容量。

设计时需要考虑泥沙淤积的情况,合理设置泥沙排放设施,保证水库的正常运行。

三、施工过程心墙土石坝的施工过程包括以下几个步骤:1. 坝基处理:首先需要对坝基进行处理,确保坝基的稳定性。

可以采用灌浆、挖槽等方式,加固坝基的承载能力。

2. 土石材料的选择:根据设计要求,选择适合的土石材料进行施工。

土石材料需要具备一定的强度和稳定性,以确保坝体的稳定性。

3. 坝体的堆筑:将土石材料按照设计要求堆筑成坝体。

在堆筑过程中,需要注意坝体的坡度和层厚,确保坝体的稳定性和均匀性。

4. 心墙的设置:在坝体中设置心墙,用于控制水流。

心墙可以采用混凝土、钢筋等材料进行构建,确保其稳定性和密封性。

5. 辅助设施的建设:在心墙土石坝周围需要建设一些辅助设施,如泄洪口、闸门等,用于控制水流和坝体的运行。

四、环境影响心墙土石坝的建设和运行对环境会产生一定的影响,主要包括以下几个方面:1. 生态破坏:心墙土石坝的建设需要占用大量土地和水资源,可能导致周围生态环境的破坏。

在设计和施工过程中,需要采取一些措施减少对生态环境的影响。

2. 水质变化:心墙土石坝会改变水流的速度和流向,可能导致水质发生变化。

设计时需要考虑水库的水质管理,保证水库的水质符合相关标准。

土石坝坝体设计毕业设计

土石坝坝体设计毕业设计

目录摘要 (1)Abstract (2)前言 (3)第1章设计的基本资料 (4)1.1概况 (4)1.2基本资料 (4)1.2.1地震烈度 (4)1.2.2水文气象条件 (4)1.2.3坝址地形、地质与河床覆盖条件 (5)1.2.4建筑材料概况 (6)1.2.5其他资料 (7)第2章工程等级及建筑物级别 (8)第3章坝型选择及枢纽布置 (9)3.1 坝址选择及坝型选择 (9)3.1.1 坝址选择 (9)3.1.2 坝型选择 (9)3.2 枢纽组成建筑物确定 (9)3.3 枢纽总体布置 (9)第4章大坝设计 (10)4.1 土石坝坝型选择 (10)4.2 坝的断面设计 (10)4.2.1 坝顶高程确定 (10)4.2.2 坝顶宽度确定 (12)4.2.3 坝坡及马道确定 (13)4.2.4 防渗体尺寸确定 (13)4.2.5 排水设备的形式及其基本尺寸的确定 (14)4.3 土料设计 (14)4.3.1 粘性土料设计 (15)4.3.2 石渣坝壳料设计(按非粘性土料设计) (16)4.4 土石坝的渗透计算 (17)4.4.1 计算方法及公式 (17)4.4.2 计算断面及计算情况的选择 (18)4.4.3 计算结果 (18)4.4.4 渗透稳定计算 (19)4.5 稳定分析计算 (19)4.5.1 计算方法与原理 (19)4.5.2 计算公式 (20)4.5.3 稳定成果分析 (20)4.6 地基处理 (20)4.6.1 坝基清理 (21)第页I4.6.2 土石坝的防渗处理 (21)4.6.3 土石坝与坝基的连接 (21)4.6.4 土石坝与岸坡的连接 (21)4.7 土坝的细部结构 (21)4.7.1 坝的防渗体、排水设备 (21)4.7.2 反滤层设计 (22)4.7.3 护坡及坝坡设计 (22)4.7.4 坝顶布置 (23)第5章溢洪道设计 (24)5.1 溢洪道路线选择和平面位置的确定 (24)5.2 溢洪道基本数据 (24)5.3 工程布置 (24)5.3.1 引渠段 (24)5.3.2 控制段 (25)5.3.3 泄槽 (26)5.3.4 出口消能段 (32)5.4 衬砌及构造设计 (33)5.5 地基处理及防渗 (33)结论 (34)感想体会 (35)致谢 (36)参考文献 (37)II附录一:计算书 (38)附录二:外文翻译 (68)第页III摘要适当修建大坝可以实现一个流域地区防洪、灌溉的综合效益。

土石坝除险加固毕业设计

土石坝除险加固毕业设计

土石坝除险加固毕业设计土石坝除险加固毕业设计近年来,由于气候变化和自然灾害的频繁发生,土石坝的安全性备受关注。

土石坝是一种常见的水利工程结构,但由于长期受到水流的冲刷和侵蚀,其稳定性可能会受到威胁。

因此,进行土石坝除险加固成为一项重要的毕业设计课题。

1. 背景介绍土石坝是一种由土石材料堆积而成的坝体,用于阻挡水流并形成水库。

然而,由于水流的冲刷和侵蚀,土石坝的稳定性可能会受到威胁。

因此,加固土石坝成为提高其安全性的关键。

2. 问题分析在进行土石坝除险加固的毕业设计之前,需要对土石坝的问题进行分析。

这包括评估土石坝的稳定性、检测坝体的裂缝和渗漏情况,以及研究可能的灾害风险。

3. 加固设计在进行土石坝除险加固设计时,需要考虑多种因素。

首先,需要选择合适的加固材料和技术,例如混凝土、钢筋等。

其次,需要确定加固的具体位置和方式,以确保土石坝的整体稳定性。

最后,还需要考虑加固后的效果评估和监测。

4. 加固材料和技术选择在进行土石坝除险加固设计时,需要选择合适的加固材料和技术。

混凝土是一种常用的加固材料,可以用于修复和加固坝体的裂缝和破损部分。

钢筋可以增加土石坝的强度和稳定性。

此外,还可以考虑使用地下注浆技术、土工合成材料等。

5. 加固位置和方式确定在进行土石坝除险加固设计时,需要确定加固的具体位置和方式。

这需要通过对土石坝的结构和力学特性进行分析,以确定加固的重点和优先级。

例如,可以通过在坝体表面加设混凝土面板、设置钢筋筋带等方式来加固土石坝。

6. 效果评估和监测在进行土石坝除险加固设计后,需要对加固效果进行评估和监测。

这包括对加固后土石坝的稳定性、渗漏情况、裂缝变化等进行监测和分析。

只有通过科学的监测和评估,才能确保土石坝的安全性。

7. 毕业设计的意义和挑战进行土石坝除险加固的毕业设计具有重要的意义和挑战。

首先,这是一个实际问题,需要综合运用所学的理论知识和技术手段。

其次,这是一个具有一定难度的工程设计任务,需要克服各种技术和经济上的限制。

土石坝毕业设计

土石坝毕业设计

土石坝毕业设计一、土石坝的定义和分类土石坝是冲积或岩石料堆积而成,坝体外部由土堆砌而成,坝体内部由砾石、碎石、砂土等材料填充,构成一种人工堤体。

土石坝按其产生的材料性质可分为土坝和石坝两大类。

按照坝体的结构形式,土石坝可分为心墙式土石坝和偏墙式土石坝两大类。

心墙式土石坝结构形式如图1所示:二、土石坝的设计原则1、安全性原则土石坝的设计必须保证安全,首要原则就是要保证坝体的稳定性,根据坝底宽度、坝高、坝体稳定系数等要素进行合理选取,保证其稳定性。

其次,要考虑水库在不同水位时对土石坝的压力、坝体的受力情况等因素。

最后,要考虑坝体建成后的安全管理,包括巡视、检查和维护等。

2、实用性原则土石坝的设计要考虑其实用性。

研究坝体的设计结构、节水措施、释放节流等方面的问题,确保坝体使用效果良好。

3、经济性原则土石坝的设计要充分考虑经济性原则,通过选用适当的材料、采用合理的施工工艺和工程技术等手段降低工程造价。

1、坝体面积和高度土石坝的面积和高度是决定坝体安全稳定性的重要要素,设计要合理选定。

高度过低,不仅不能保证水库的供水量,也不能达到防洪目的;高度过大,则可能因为承受过大的水压而发生变形或破坏。

2、坝体材料土石坝的材料选用直接影响着工程质量和安全性。

应根据坝址地质、岩土工程特征、施工条件和地方安排等因素进行选取。

土质材料的选用应该具备良好的工程性质和物理化学性质,石坝则应选用强度高、质量好的石料。

3、坝底、坝壳和冲淤土石坝的坝底、坝壳对整个工程结构的稳定性起到至关重要的作用,应严格按照规划要求施工。

坝底选择时应满足基础稳固、耐水冲蚀、无废弃土、地质均匀等要求。

冲淤等问题也必须采取相应的技术措施来解决。

1、坝填设计法该设计法主要是以坝的填筑工艺为基础,根据填筑体形成原理及其填筑高差、接缝、夯实密度等方面的特点,确定坝体平断面形状、坝顶标高等设计目标,设计分层夯实高度、夯实次数等。

总体思路是先确定坝基面形,然后按照设计截面高度、夯实层数、夯实厚度等要素,计算出每一层的夯土量和每层施工的夯实次数。

土石坝(黏土心墙)毕业设计说明书、计算书

土石坝(黏土心墙)毕业设计说明书、计算书

目录摘要 0Abstract (1)前言 (2)第1章设计的基本资料 (4)1。

1概况 (4)1.2基本资料 (4)1.2。

1地震烈度 (4)1.2。

2水文气象条件 (4)1.2。

3坝址地形、地质与河床覆盖条件 (5)1。

2。

4建筑材料概况 (6)1。

2.5其他资料 (7)第2章工程等级及建筑物级别 (8)第3章坝型选择及枢纽布置 (9)3。

1 坝址选择及坝型选择 (9)3.1.1 坝址选择 (9)3。

1。

2 坝型选择 (9)3。

2 枢纽组成建筑物确定 (9)3。

3 枢纽总体布置 (9)第4章大坝设计 (10)4.1 土石坝坝型选择 (10)4。

2 坝的断面设计 (10)4。

2.1 坝顶高程确定 (10)4。

2.2 坝顶宽度确定 (13)4。

2.3 坝坡及马道确定 (13)4.2.4 防渗体尺寸确定 (13)4。

2.5 排水设备的形式及其基本尺寸的确定 (14)4。

3 土料设计 (15)4。

3.1 粘性土料设计 (15)4.3.2 石渣坝壳料设计(按非粘性土料设计) (16)4。

4 土石坝的渗透计算 (17)4。

4.1 计算方法及公式 (17)4.4。

2 计算断面及计算情况的选择 (18)4.4.3 计算结果 (18)4。

4。

4 渗透稳定计算 (19)4.5 稳定分析计算 (20)4。

5。

1 计算方法与原理 (20)4。

5。

2 计算公式 (20)4.5。

3 稳定成果分析 (21)4。

6 地基处理 (21)4.6。

1 坝基清理 (21)4.6。

2 土石坝的防渗处理 (21)4。

6。

3 土石坝与坝基的连接 (22)4.6.4 土石坝与岸坡的连接 (22)4.7 土坝的细部结构 (22)4。

7。

1 坝的防渗体、排水设备 (22)4.7.2 反滤层设计 (23)4。

7.3 护坡及坝坡设计 (23)4.7.4 坝顶布置 (25)第5章溢洪道设计 (26)5.1 溢洪道路线选择和平面位置的确定 (26)5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3工程地质条件
1、库区工程地质条件
库区两岸分水岭高程均在820m以上,基岩出露高程大部分在800m左右,主要为紫红色砂岩,间夹砾岩、粉砂岩和砂质叶岩。新鲜基岩透水性不大。未发现大的构造断裂,水库蓄水条件良好。
QH河为山区河流,两岸居民及耕地分散,除库水位以下有一定淹没外,浸没问题不大,库区也未发现重要矿产。
岩基未发现大范围的夹层,基岩的透水性不大。河床中段及近右岸地段,沿113-111-115-104-114各钻孔联机方向,在岩面下21~47m深度范围内,有一强透水带,w=5.46~30L/(s·m·m),下限最深至基岩下约80m。基岩透水性从上游向下游有逐渐增大的趋势,左岸台地黄土与基岩交界处的砾岩(最大厚度6m)透水性强,渗透系数K=10m/d。左岸单薄分水岭岩层仍发属于中强透水性,平均w=0.48~30L/(s·m·m),应考虑排水,增加岩体稳定。
3、坝址区其它建筑物地段的工程地质条件
坝址区其它建筑物包括导流泄洪洞、灌溉发电洞及枢纽电站。按上坝线方案,导流泄洪洞、溢洪道均布置在左岸单薄分水岭,灌溉发电洞则布置在左岸东凹沟附近三级阶地上。下坝线方案溢洪道可布置在右岸Z沟,灌溉发电洞移至上坝线溢洪道轴线西侧40m左右,导流泄洪洞位置与上坝线位置相同。
(2)下坝址
位于上坝址同一背斜的东南翼,岩层倾向下游;河床宽约120m,左岸为二、三级阶地,右岸731m高程以下为基岩,以上为三级阶地。土层的物理力学性质见附图6“工程地质剖面图”。
左岸基岩有一条宽200~250m呈北东方向的强透水带,右岸Z沟单薄分水岭的透水性亦很大,左右岸岩石中等透水带下限均可达岩面下80m左右。河床地段基岩透水性与中等透水带厚度具有从上游向下游逐渐变小的趋势。下游发现承压水,二、三级阶地砾石层透水性与上坝线相同,左岸坝脚靠近塌滑体。
由于市库区沿岸山峰重迭,村庄零散,耕地不多,故淹没损失较小。按库区移民高程770m统计,共需迁移人口3115人,淹没耕地12157亩,房屋1223间,窑洞1470孔。
第二节、工程等别
ZH水库工程,水库总库容5.05×108m3,灌溉农田71.2×104亩,远期可发展到10.4×105亩。水电站总装机容量31.45MW,年发电量1.129×108kw·h。
2、本次设计内容及要求:
(1)坝轴线选择。
(2)坝型选择。
(3)枢纽布置。
(4)挡水建筑物设计:包括土坝断面设计、平面布置、渗流计算、稳定计算、细部构造设计、基础处理等。
(5)泄水建筑物设计:溢洪道或导流洞设计(仅选其中一项),以水利计算为主。选取溢洪道设计。
(6)施工导流方案论证(选作内容)。仅作简单的阐述。
3、工程设计概要
ZH水库位于QH河干流上,水库控制流域面积4990km2,库容5.05×108m3。水库以灌溉发电为主,结合防洪,可引水灌溉农田71.2×104亩,远期可发展到10.4×105亩。灌区由一个引水流量45m3/s的总干渠和4条分干渠组成,在总干渠渠首及下游24km处分别修建枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kw·h。水库防洪标准为百年设计,万年校核。
坝址区左岸有一大塌滑体,体积约45×104m3,对工程布置有一定的影响。
本区地震基本烈度为6度,建筑物按7度设防。
(1)上坝址
上坝址位于坝区中部背斜的西北,岩层倾向QH河上游。河床宽约300m,河床砂卵石覆盖层平均厚度5m,渗透系数1×10-2cm/s。一级阶地(Q4)表层具中偏强湿陷性。左岸730m高程以上为三级阶地(Q2),具中偏弱湿陷性。
枢纽工程由挡水坝、溢洪道、导流泄洪洞、灌溉发电洞及枢纽电站组成。
摘要:土坝设计渗流计算稳定计算细部结构
第一章基本数据
第一节工程概况及工程目的
本水库建成后具有灌溉、发电、防洪、解决工业用水和人畜吃水等多方面的效益,是一座综合利用的水库。水库近期可灌溉农田71.2×104亩,远期可发展到10.4×105亩。枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kwh。除满足农业提水灌溉用电外,还剩余50%的电力供工农业用电。防洪方面,水库控制流域面积4990km2,占全流域面积的39%,对下流河道防洪、削减洪峰、减轻防汛负担也有一定的作用,可将下游100年一遇的洪水流量6010m3/s削减到3360m3/s,相当于17年一遇;可将50年一遇洪水流量6000m3/s削减到2890m3/s,相当于12年一遇。另外,每年还可供给城市及工业用水0.63×108m3。
根据以上数据,参照《水利水电枢纽工程等级划分》SL252-2000的规定,本工程等别为II等工程。
2、建筑物级别
根据本工程的等别及水工建筑物级别划分的规定知,永久性主要建筑物为2级建筑物;永久性次要建筑物为3级建筑物;临时建筑物为4级建筑物。
2.2地形和地质图
ZF坝区地形图见附图,ZF土坝坝线工程地质剖面图见附图6。
前 言
1、设计任务书及原始资料是工作的依据,因此首先要全面了解设计任务,熟悉该河流的一般自然地理条件,坝址附近的水文和气象特性,枢纽及水库的地形、地质条件,当地材料,对外交通及有关规划设计的基本数据,只有在熟悉基本资料的基础上才能正确地选择建筑物的类型,进行枢纽布置、建筑物设计及施工组织设计。因此,应把必要的资料整理到说明书中。通过对资料的了解和分析,初步掌握原始资料中对设计和施工有较大影响的主要因素和关键问题,为以后设计工作的进行打下良好的基础。
2、坝址区工程地质条件
QH河在ZF水库坝址区呈一弯度很大的S形。坝段位于S形的中、上段。坝段右岸为侵蚀河岸,岸坡较陡,基岩出露。上下坝线有约300m长的低平山梁(单薄分水岭),左岸为侵蚀堆积岸,岸坡较缓,有大片土层覆盖。右岸单薄分水岭是QH河环绕坝段左岸山体相对侧向侵蚀的结果。
坝址区基岩以紫红色、紫灰色细砂岩为主,间来件砾岩、粉砂岩和少数砂质叶岩。地层岩相变化剧烈,第四系除厚度不大的砂层、卵石层外,主要是黄土类土,在大地构造上处于相对稳定区,未发现有大的断裂构造迹象。
相关文档
最新文档