杜广生工程流体力学思考题答案
新版工程流体力学课后习题答案(杜广生)-新版.pdf

p2 + Hg gh=p1
pB =p2+ 水 g( h H - H B)
联立以上三式,可得:
pA + 水 g( H A H)=pB 水 g(h+H H B)+ H ggh
化简可得:
h= (pA
pB )+ 水 g( H A
( Hg
水 )g
H B)
2.744 105 1.372 105 +1000 9.8 (548-304) 10-2
《工程流体力学(杜广生) 》习题答案
《工程流体力学(杜广生) 》习题答案
第一章 习题
1. 解: 依据相对密度的定义: d
f
13600 13.6。
w 1000
式中, w 表示 4 摄氏度时水的密度。
2. 解: 查表可知,标准状态下:
CO2 1.976kg / m3 , SO2 2.927kg / m3 , O2 1.429kg / m3 ,
pA =pa + Hg gh2 - 水 gh1=101325+13550 9.8 900 10-3-1000 9.8 800 10-3=212.996 kPa
4. 解:
设容器中气体的真空压强为 pe ,绝对压强为 pab
如图所示,选取 1-1 截面为等压面,则列等压面方程: pab + g h=pa
查表可知水银在标准大气压, 20 摄氏度时的密度为 13.55 103 kg/m3
因此,可以计算
h 得到:
h=
pA -pB Hg g
(2.7+2.9)
= 13.55
103
104 =0.422m
工程流体力学课后习题答案综述

《工程流体力学(杜广生)》习题答案第一章习题1. !¥:根据相对密度的定义:d =3 =13622 =13.6。
、1000式中,P w 表示4摄氏度时水的密度。
2.解:查表可知,标准状态下:P CO = 1.976kg / m 3, P SO = 2.927kg /m 3, P O = 1.429kg / m 3 ,P N = 1.251kg/m 3, P HO = 0.804kg/m 3 ,因此烟气在标准状态下的密度为:;?= ^1 • ;2「2 •川 3-1.976 0.135 2.927 0.003 1.429 0.052 1.251 0.76 0.804 0.05 -1.341kg/m 33.命车:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为 4atm的空气的等温体积模量:K T =4x101325 = 405.3x103Pa ;(2)气体等痼压缩时,其体积弹性模量等于等痼指数和压强的乘积,因此,绝对压强为 4atm 的空气的等痼体积模量:K S = p=1.4 4 101325 = 567.4 103Pa式中,对于空气,其等痼指数为1.4。
4. !¥:根据流体膨胀系数表达式可知:dV = : V V dT =0.005 8 50 =2m 3因此,膨胀水箱至少应有的体积为2立方米。
5. !¥:由流体压缩系数计算公式可知:1 103」5 q 2=0.51 10 m 2/ N (4.9-0.98) 1056. !¥:根据动力粘度计算关系式:■' - 口 -678 4.28 10♦ =2.9 10~Pa S7. 命军:根据运动粘度计算公式:dV V k = 一 ----- dp999.48.解:查表可知,15摄氏度时空气的动力粘度P=17.8310"Pa ,s,因此,由牛顿内摩擦定律可知:,U & 0.3F-」A — =17.83 10 二 0.2 ------------------ =3.36 10 Nh 0.0019.解:如图所示,高度为h 处的圆锥半径:r=htanot ,则在微元高度 dh 范围内的圆锥表面积:dh 2 二 h tan :dh cos :由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:d :,ir h tan 工 V" 6 "T"则在微元dh 高度内的力矩为:dM = dA ,h tan :2- h tan : r= ----------------------------- cos :dh h tan 二二2 二」x 3 tan -■ cos :h 3dh 因此,圆锥旋转所需的总力矩为: --tan 3 上 H 3 - - tan 3 上 H 4M= dM=2T — ■ta — h 3dh=2f — ■ta— cos 0 cos10.解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即: n 二 D■.= -----60 由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即: 3 =" dy 、则轴与轴承之间的总切应力为: T 二.A 二」一二Db d 克服轴承摩擦所消耗的功率为:因此,轴的转速可以计算得到: 60U 60 1 P 6 60r3 -350.7乂103乂0.8乂103 MM “n==—J - ------ =---------------------------- =2832.16P 二「二、二Db O ■ D 二 D"二 Db 3.14 0.2 V 0.245 3.14 0.2 0.3r/min= 1.3 10-m 2/s dA=2 二 r ----- cos:11.解:根据转速n可以求得圆盘的旋转角速度:2 二n 2 二90 --= ------ = ----------- =3 二6060如图所示,圆盘上半径为r处的速度: ■. =•‘「,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:—=-dy则微元宽度dr上的微元力矩:r 3二 3 2」3 .dM= dA r=」——2-rdr r=2 二」——rdr=6 一— r dr因此,转动圆盘所需力矩为:D 2」23 2」(D 2)4 2 0.4 0.234M = dM=6二一r dr=6二-------------- =6 3.14 ----------------3 ----------- =71.98 N m 、0、 4 0.23 10 412.解:摩擦应力即为单位面积上的牛顿内摩擦力。
工程流体力学第二版习题答案-(杜广生)

因此,转动圆盘所需力矩为:
12.解:
摩擦应力即为单位面积上的牛顿内摩擦力。由牛顿内摩擦力公式可得:
13.解:
活塞与缸壁之间的间隙很小,间隙中润滑油的速度分布可以看作线性分布。
间隙宽度:
因此,活塞运动时克服摩擦力所消耗的功率为:
14.解:
对于飞轮,存在以下关系式:力矩M=转动惯量J*角加速度 ,即
《工程流体力学》习题答案(杜广生主编)
第一章习题
1.解:依据相对密度的定义: 。
式中, 表示4摄氏度时水的密度。
2.解:查表可知,标准状态下: , , , , ,因此烟气在标准状态下的密度为:
3.解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:
列等压面方程: ,式中:
因此,B点的计示压强为:
12.解:
如图所示,取1-1截面为等压面,列等压面方程:
解方程,可得:
13.解:
图示状态为两杯压强差为零时的状态。
取0-0截面为等压面,列平衡方程: ,由于此时 ,因此可以得到: (1)
当压强差不为零时,U形管中液体上升高度h,由于A,B两杯的直径和U形管的直径相差10倍,根据体积相等原则,可知A杯中液面下降高度与B杯中液面上升高度相等,均为 。
因此,可以解得A,B两点的压强差为:
如果 ,则压强差与h之间存在如下关系:
10.解:
如图所示,选取1-1,2-2,3-3截面为等压面,列等压面方程:
对1-1截面:
对2-2截面:
对3-3截面:
联立上述方程,可以解得两点压强差为:
11.解:
如图所示,选取1-1截面为等压面,并设B点距离1-1截面垂直高度为h
工程流体力学第二版习题答案-(杜广生)(完整资料).doc

【最新整理,下载后即可编辑】《工程流体力学》习题答案(杜广生主编)第一章 习题1. 解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:112231.9760.1352.9270.003 1.4290.052 1.2510.760.8040.051.341/n nkg m ρραραρα=++=⨯+⨯+⨯+⨯+⨯=3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm 的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:31.44101325567.410S K p Pa κ==⨯⨯=⨯式中,对于空气,其等熵指数为1.4。
4. 解:根据流体膨胀系数表达式可知:30.0058502V dV V dT m α=⋅⋅=⨯⨯= 因此,膨胀水箱至少应有的体积为2立方米。
5. 解:由流体压缩系数计算公式可知:392511050.5110/(4.90.98)10dV V k m N dp -⨯÷=-=-=⨯-⨯6. 解:根据动力粘度计算关系式:74678 4.2810 2.910Pa S μρν--==⨯⨯=⨯⋅7. 解:根据运动粘度计算公式:3621.310 1.310/999.4m s μνρ--⨯===⨯ 8. 解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:630.317.83100.2 3.36100.001U F AN h μπ--==⨯⨯⨯⨯=⨯9. 解:如图所示,高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积:2=2=tan cos cos dh h dA rdh παπαα由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:===tan d r h υυωωαυδδδ则在微元dh 高度内的力矩为:332===2tan tan tan tan cos cos h h dM dA r dh h h dh ωαπαωατμαπμδαδα⋅⋅因此,圆锥旋转所需的总力矩为:33430==2=24tan tan cos cos H H M dM h dh ωαωαπμπμδαδα⎰⎰10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=60n Dπυ由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:=d dy υυδ则轴与轴承之间的总切应力为:==T A Db υτμπδ克服轴承摩擦所消耗的功率为:2==P T Db υυμπδ因此,轴的转速可以计算得到:3-360606050.7100.810====2832.16r/min 3.140.20.245 3.140.20.3P n D D Db υδππμπ⨯⨯⨯⨯⨯⨯⨯11.解:根据转速n 可以求得圆盘的旋转角速度:2290===36060n ππωπ⨯如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:=d dy υυδ则微元宽度dr 上的微元力矩:3233==2=2=6r dM dA r rdr r r dr r dr ωπμτμππμπδδδ⋅⋅ 因此,转动圆盘所需力矩为:4422322-30(2)0.40.23==6=6=6 3.14=71.98N m 40.23104DD M dM r dr μμππδδ⨯⨯⨯⋅⨯⎰⎰12. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
工程流体力学复习思考题1-4章

复习思考题第一章1-1试从力学的角度,比较流体与固体的差别。
答:固体在承受一定的外力后才会发生形变;而流体只要承受任何切力都会发生流动,直到切力消失;流体不能承受拉力,只能承受压力。
1-2气体和液体的物理力学特性有何异同?答:液体:有一定的体积,一定的自由表面,无可压缩性气体:无一定的体积,无自由表面,有明显的而可压缩性1-3何为连续介质?流体力学中为何需要引进连续介质假设?答:把流体当做是由密集质点构成的、内部无空隙的连续体来研究,这就是连续介质模型。
建立连续介质模型,是为了避开分子运动的复杂性,将流体运动中的物理量视为空间和时间的连续函数,可以用数学分析法研究流动。
1-4连续介质模型能否适用于含有气泡的液体?答:若气泡相对于液体而言可以看作孤立的点的话,则含有气泡的液体可以适用连续介质模型。
1-5 什么是牛顿内摩擦定律?它的应用条件是什么?答:处于相对运动的两层相邻流体之间的内摩擦力 T,其大小与流体的物理性质有关,并与流速梯度和流层的接触面积A成正比,而与接触面上的压力无关。
应用条件:仅适用于层流流动,不适用于湍流流动;仅适用于牛顿流体,不适用于非牛顿流体。
1-6流体的动力粘滞系数与运动粘滞系数有何不同?答:动力粘度表示液体在一定剪切应力下流动时,内摩檫力的量度,用u表示。
运动粘度是液体在重力下流动时,内摩檫力的量度,用v表示。
1-7流体粘性与哪些因素有关?它们随温度是如何变化的?答:与流体种类,温度,压力有关。
液体随温度增大而降低,气体随温度增大而增大,压力对粘度影响较小。
1-8 什么是理想流体?为什么要引进理想流体的概念?理想流体有无能量损失?答:理想流体是指没有粘滞性的流体。
引进理想流体可以使流体流动基本规律的分析和计算得以简化,没有能量损失。
1-9 什么情况下要考虑液体的压缩性和表面张力的影响?答:当外界压强变化较大,如发生水击现象时必须考虑压缩性;液体有较大的曲率时才会考虑表面张力。
工程流体力学答案(杜广生)第四章

在流动相似条件下,模型与原型的雷诺数必然相等,即: Re = Re ,
l l =
所以有: =
l l 0.0131 = =10 8=1.16m /s l l 0.9
流动相似,压力相似准则数欧拉数相同,即 Eu =Eu ,
p p = 2 2
20 C 空气的运动粘度为 15 10 m /s
-6
2
qV =
d 50 15 10-6 0.12=1.125 10-2 m3 /s qV = -5 d 200 4.0 10
12. 解:
根据与沉降速度有关的物理量可以写出物理方程式:
f ( f , d , s , , , g ) 0
L : 1 a2 b2 3c2 T : 0 a2
c2 0
第 3 页 共 4 页
d1 d2
《工程流体力学(杜广生) 》习题答案
对3, : L T
2
-1
( LT 1 )a3 ( L )b3 ( ML3 )c3
M : 0 c3 a3 1
故而有: 3
根据量纲一致原则:
gd
f
2
s , ) f d
因此,有: f
f d f s, gd
15. 解:
根据与流速有关的物理量可以写出物理方程式:
f ( , p , d1 , d 2 , , ) 0
取 , d 2 , 为基本量,可以组成零量纲量为:
所以有: p =
2 0.4 82 p = 6307.5=120Pa 2 1000 1.162
3. 解:
《工程流体力学》思考题解答第1-5章思考题解答

第1章 1.1 绪论
答:流体与固体相比,流体的抗剪切性能很差,静止的流体几乎不能承受任何微小的 剪切力;在一般情况下,流体的抗压缩性能也不如固体的抗压缩性能强。 液体与气体相比,液体的压缩性与膨胀性均很小,能够承受较大的外界压 力,而气体由于压缩性和膨胀性都很大,所以气体不能承受较大的外界压力。气 体受压时,变形通常会非常明显。 1.2 答:④ 1.3 答:① 1.4 答:④ 1.5 答:① 1.6 答:④ 1.7 答:④ 1.8 正确。 1.9 错误。 1.10 答:量纲:是物理量的物理属性,它是唯一的,不随人的主观意志而转移。而单位是 物理量的度量标准,它是不唯一的,能够受到人们主观意志的影响。本题中,时间、 力、面积是量纲,牛顿、秒是单位。 1.11 基本,导出。 1.12 答:量纲的一致性原则。 1.13 答:若某一物理过程包含 n+1 个物理量(其中一个因变量,n 个自变量) ,即: q =f(q1,q2,q3, …,qn) 无量纲π数的具体组织步骤是: (1)找出与物理过程有关的 n+1 个物理量,写成上面形式的函数关系式; (2)从中选取 m 个相互独立的基本物理量。对于不可压缩流体运动,通常取三个基 本物理量,m=3。 (3)基本物理量依次与其余物理量组成[ (n+1)-m]个无量纲π项:
q b c q q2 q3
a 1
4 5
q4 b4 c4 q q2 q3
a4 1
q5 b5 c5 q q2 q3
a5 1
(1)
…………
n
qn bn cn q q2 q3
an 1
式中 ai、bi、ci 为各π项的待定指数,由基本物理量所组成的无量纲数π1=π2=π3 =1。
新版工程流体力学第二版习题答案-(杜广生)-新版.pdf

=
=1.31m
(13550-1000) 9.8
6. 解:
如图所示,选取 1-1,2-2 截面为等压面,则列等压面方程可得:
pab 水g(h2 h1 )=p1
p1+ Hg g(h2 h3)=p2 =pa
因此,联立上述方程,可得:
pab =pa Hg g(h2 h3)+ 水 g(h2 h1) =101325 13550 9.8 (1.61 1)+1000 9.8 (1.61 0.25)=33.65 kPa
N2 1.251kg / m3 , H2O 0.804kg / m3 ,因此烟气在标准状态下的密度为:
11
22
nn
1.976 0.135 2.927 0.003 1.429 0.052 1.251 0.76 0.804 0.05
1.341kg / m3
3. 解:( 1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为
4atm
的空气的等温体积模量:
KT 4 101325 405.3 103 Pa ;
( 2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为 熵体积模量:
4atm 的空气的等
K S p 1.4 4 101325 567.4 103 Pa
式中,对于空气,其等熵指数为 1.4。
4. 解: 根据流体膨胀系数表达式可知:
对 3-3 截面: pB + 油ghB + Hg gh2 =p3
联立上述方程,可以解得两点压强差为:
p =pA =( Hg
pB = Hg gh1 油 gh1 油gh2 + Hg gh2 油 )g(h1+h2)=(13600-830) 9.8 (60+51) 10-2
流体力学实验思考题解答(全)

流体力学课程实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +.即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表1.1的实测数据或实验直接观察可知.同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时.试根据记录数据确定水箱的真空区域。
答:以当00<p 时.第2次B 点量测数据(表1.1)为例.此时06.0<-=cm p Bγ.相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面.由等压面原理知.相对测压管2及水箱内的水体而言.该水平面为等压面.均为大气压强.故该平面以上由密封的水、气所占的空间区域.均为真空区域。
(2)同理.过箱顶小杯的液面作一水平面.测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中.自水面向下深度为0∇-∇=H A P γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等.亦与测压管4液面高于小水杯液面高度相等.均为0∇-∇=H A P γ。
3、 若再备一根直尺.试采用另外最简便的方法测定0γ。
答:最简单的方法.是用直尺分别测量水箱内通大气情况下.管5油水界面至水面和油水界面至油面的垂直高度w h 和o h .由式o o w w h h γγ=.从而求得o γ。
4、 如测压管太细.对测压管液面的读数将有何影响?答:设被测液体为水.测压管太细.测压管液面因毛细现象而升高.造成测量误差.毛细高度由下式计算γθσd h cos 4= 式中.σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水.mm dyn /28.7=σ或m N /073.0=σ.3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小.可认为0.1cos =θ。
于是有 dh 7.29= ()mm d h 单位均为、 一般说来.当玻璃测压管的内径大于10mm 时.毛细影响可略而不计。
工程流体力学课后习题答案 (杜广生)

《工程流体力学(杜广生)》习题答案第一章 习题1. 解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:112231.9760.1352.9270.003 1.4290.052 1.2510.760.8040.051.341/n nkg m ρραραρα=++=⨯+⨯+⨯+⨯+⨯=3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:31.44101325567.410S K p Pa κ==⨯⨯=⨯式中,对于空气,其等熵指数为1.4。
4. 解:根据流体膨胀系数表达式可知:30.0058502V dV V dT m α=⋅⋅=⨯⨯=因此,膨胀水箱至少应有的体积为2立方米。
5. 解:由流体压缩系数计算公式可知:392511050.5110/(4.90.98)10dV V k m N dp -⨯÷=-=-=⨯-⨯ 6. 解:根据动力粘度计算关系式:74678 4.2810 2.910Pa S μρν--==⨯⨯=⨯⋅7. 解:根据运动粘度计算公式:3621.310 1.310/999.4m s μνρ--⨯===⨯8. 解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:630.317.83100.2 3.36100.001U F AN h μπ--==⨯⨯⨯⨯=⨯ 9. 解:如图所示,高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积: 2=2=tan cos cos dh h dA rdh παπαα由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:===tan d r h υυωωαυδδδ则在微元dh 高度内的力矩为:332===2tan tan tan tan cos cos h h dM dA r dh h h dh ωαπαωατμαπμδαδα⋅⋅因此,圆锥旋转所需的总力矩为:33430==2=24tan tan cos cos H H M dM h dh ωαωαπμπμδαδα⎰⎰10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=60n Dπυ 由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:=d dy υυδ则轴与轴承之间的总切应力为:==T A Db υτμπδ克服轴承摩擦所消耗的功率为:2==P T Db υυμπδ因此,轴的转速可以计算得到:3-360606050.7100.810====2832.16r/min 3.140.20.245 3.140.20.3P n D D Db υδππμπ⨯⨯⨯⨯⨯⨯⨯11.解:根据转速n 可以求得圆盘的旋转角速度:2290===36060n ππωπ⨯ 如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:=d dy υυδ则微元宽度dr 上的微元力矩:3233==2=2=6r dM dA r rdr r r dr r dr ωπμτμππμπδδδ⋅⋅ 因此,转动圆盘所需力矩为:4422322-30(2)0.40.23==6=6=6 3.14=71.98N m 40.23104DD M dM r dr μμππδδ⨯⨯⨯⋅⨯⎰⎰12. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
工程流体力学第二版习题答案解析-[杜广生]
![工程流体力学第二版习题答案解析-[杜广生]](https://img.taocdn.com/s3/m/69030e8165ce0508763213b5.png)
《工程流体力学》习题答案(杜广生主编)第一章 习题1. 解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:112231.9760.1352.9270.003 1.4290.052 1.2510.760.8040.051.341/n nkg m ρραραρα=++=⨯+⨯+⨯+⨯+⨯=3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:31.44101325567.410S K p Pa κ==⨯⨯=⨯式中,对于空气,其等熵指数为1.4。
4. 解:根据流体膨胀系数表达式可知:30.0058502V dV V dT m α=⋅⋅=⨯⨯=因此,膨胀水箱至少应有的体积为2立方米。
5. 解:由流体压缩系数计算公式可知:392511050.5110/(4.90.98)10dV V k m N dp -⨯÷=-=-=⨯-⨯ 6. 解:根据动力粘度计算关系式:74678 4.2810 2.910Pa S μρν--==⨯⨯=⨯⋅7. 解:根据运动粘度计算公式:3621.310 1.310/999.4m s μνρ--⨯===⨯8. 解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:630.317.83100.2 3.36100.001U F AN h μπ--==⨯⨯⨯⨯=⨯ 9. 解:如图所示,高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积:2=2=tan cos cos dh h dA rdh παπαα由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:===tan d r h υυωωαυδδδ则在微元dh 高度内的力矩为:332===2tan tan tan tan cos cos h h dM dA r dh h h dh ωαπαωατμαπμδαδα⋅⋅因此,圆锥旋转所需的总力矩为:33430==2=24tan tan cos cos H H M dM h dh ωαωαπμπμδαδα⎰⎰10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=60n Dπυ 由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:=d dy υυδ则轴与轴承之间的总切应力为:==T A Db υτμπδ克服轴承摩擦所消耗的功率为:2==P T Db υυμπδ因此,轴的转速可以计算得到:60=r/min n D υπ11.解:根据转速n 可以求得圆盘的旋转角速度:2290===36060n ππωπ⨯ 如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:=d dy υυδ则微元宽度dr 上的微元力矩:3233==2=2=6r dM dA r rdr r r dr r dr ωπμτμππμπδδδ⋅⋅ 因此,转动圆盘所需力矩为:4422322-30(2)0.40.23==6=6=6 3.14=71.98N m 40.23104DD M dM r dr μμππδδ⨯⨯⨯⋅⨯⎰⎰12. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
工程流体力学答案第三章(杜广生)习题解答

2
12. 解:
根据支管内的流量和流速,可以求得支管的直径: 由 qm = qV = A=
1 2 d 4
代入支管 1 的参数:
500 1 1 = 25 d12 ,解得: d1 0.052m 52mm 3600 0.3816 4
代入支管 2 参数:
1500 1 1 2 ,解得: d 2 0.09m 90mm = 25 d 2 3600 0.3816 4
可以采用任一截面来计算质量流量,这里采用截面 1 来进行计算:
2
2
0.3 qm = qV =1 A1 =850 2 120.1kg / s 2
2
10. 解:
根据不可压缩管流的连续性方程,可得:
0 A0 =1 A1 +2 A2 ,式中下标 0、1、2 分别表示总管、第一支管、第二支管
因为是定常流动,所以: 因此,加速度:
x =0 t
q d V 2 2 d q dA( x) 1 dA( x) qV A( x) = qV = ax x x = V 2 3 dx A( x) dx A( x) A ( x) dx A ( x) dx
6. 解:
ay
az
z x z y z z z 0 0 0 8z3 8z3 t x y z
3 2 3
将质点坐标(3,1,2)代入上式,可得: ax 2 x y 3 x y 27 , a y 9 y 9 , az 8 z 64
第 3 页 共 25 页
《工程流体力学(杜广生) 》习题答案
代入输气管的参数:
2000 1 1 = 0 0.12 ,解得: 0 27m /s 3600 0.3816 4
工程流体力学第二版习题答案-(杜广生)

《工程流体力学》习题答案(杜广生主编)第一章 习题1. 解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:式中,对于空气,其等熵指数为1.4。
4. 解:根据流体膨胀系数表达式可知:因此,膨胀水箱至少应有的体积为2立方米。
5. 解:由流体压缩系数计算公式可知:6. 解:根据动力粘度计算关系式:7. 解:根据运动粘度计算公式:8. 解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:9. 解:如图所示,高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积: 由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有: 则在微元dh 高度内的力矩为: 因此,圆锥旋转所需的总力矩为:10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=60n Dπυ由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:=d dy υυδ则轴与轴承之间的总切应力为:==T A Db υτμπδ克服轴承摩擦所消耗的功率为:2==P T Db υυμπδ因此,轴的转速可以计算得到:11.解:根据转速n 可以求得圆盘的旋转角速度:2290===36060n ππωπ⨯ 如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:=d dy υυδ则微元宽度dr 上的微元力矩: 因此,转动圆盘所需力矩为:12. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
流体力学实验思考题解答(全)

流体力学课程实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +.即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
从表1.1的实测数据或实验直接观察可知.同一静止液面的测压管水头线是一根水平线。
2、 当0<B p 时.试根据记录数据确定水箱的真空区域。
答:以当00<p 时.第2次B 点量测数据(表1.1)为例.此时06.0<-=cm p Bγ.相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面.由等压面原理知.相对测压管2及水箱内的水体而言.该水平面为等压面.均为大气压强.故该平面以上由密封的水、气所占的空间区域.均为真空区域。
(2)同理.过箱顶小杯的液面作一水平面.测压管4中该平面以上的水体亦为真空区域。
(3)在测压管5中.自水面向下深度为0∇-∇=H A P γ的一段水注亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等.亦与测压管4液面高于小水杯液面高度相等.均为0∇-∇=H A P γ。
3、 若再备一根直尺.试采用另外最简便的方法测定0γ。
答:最简单的方法.是用直尺分别测量水箱内通大气情况下.管5油水界面至水面和油水界面至油面的垂直高度w h 和o h .由式o o w w h h γγ=.从而求得o γ。
4、 如测压管太细.对测压管液面的读数将有何影响?答:设被测液体为水.测压管太细.测压管液面因毛细现象而升高.造成测量误差.毛细高度由下式计算γθσd h cos 4= 式中.σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。
常温(C t ︒=20)的水.mm dyn /28.7=σ或m N /073.0=σ.3/98.0mm dyn =γ。
水与玻璃的浸润角θ很小.可认为0.1cos =θ。
于是有 dh 7.29= ()mm d h 单位均为、 一般说来.当玻璃测压管的内径大于10mm 时.毛细影响可略而不计。
工程流体力学答案 杜广生 习题解答

za
+
p0 g
+
a2 2g
=z4
+
p4 g
+
42 2g
(1)
式中, za =H ,a =0 (面积远大于管子截面积) , z4 =0 , p4 =0 (出口为大气压,故而表压为 0)
代入式(1)可得:4 =
2
g
za
+
p0 g
=
2
9.8
5+
147150 1000 9.8
=19.81m/s
因此,流量
ax
x t
x
x x
y
x y
(4x3
2 y xy)(12x2
y) (3x
y3
z)(2 x)
ay
y t
x
y x
y
y y
3(4x3
2 y xy) 3y2 (3x
y3
z)
将质点坐标(2,2, 3)代入上式,可得: ax 2004 , ay 108
4.解:
(1)根据已知条件,x yz+t ,y xz t ,z xy ,流体流动速度与时间 t 有关,因此,该流动属
因此,加速度:
ax
x
dx dx
=
qV A( x)
d
qV A( x)
dx
=
qV2 A( x)
1 A2 (x)
dA( x) dx
=
qV2 A3 ( x)
dA( x) dx
6. 解:
根据已知条件,有:
x
y 2 (x
y)
,y
x 2 (x
y)
,代入流线微分方程: dx x
工程流体力学第二版习题测验答案(杜广生)

(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm的空气的等熵体积模量:
式中,对于空气,其等熵指数为1.4。
4.解:根据流体膨胀系数表达式可知:
因此,膨胀水箱至少应有的体积为2立方米。
5.解:由流体压缩系数计算公式可知:
6.解:根据动力粘度计算关系式:
7.解:根据运动粘度计算公式:
圆盘的旋转角速度:
圆盘的转动惯量: 式中,m为圆盘的质量,R为圆盘的回转半径,G为圆盘的重量。
角加速度已知:
粘性力力矩: ,式中,T为粘性内摩擦力,d为轴的直径,L为轴套长度, 为间隙宽度。
因此,润滑油的动力粘度为:
15.解:
查表可知,水在20摄氏度时的密度: ,表面张力: ,则由式 可得,
16.解:
设容器中气体的真空压强为 ,绝对压强为
如图所示,选取1-1截面为等压面,则列等压面方程:
因此,可以计算得到:
真空压强为:
5.解:
如图所示,选取1-1,2-2截面为等压面,并设1-1截面距离地面高度为H,则可列等压面方程:
联立以上三式,可得:
化简可得:
6.解:
如图所示,选取1-1,2-2截面为等压面,则列等压面方程可得:
8. 解:查表可知,15摄氏度时空气的动力粘度 ,因此,由牛顿内摩擦定律可知:
9.解:
如图所示,
高度为h处的圆锥半径: ,则在微元高度dh范围内的圆锥表面积:
由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:
则在微元dh高度内的力矩为:
因此,圆锥旋转所需的总力矩为:
10.解:
润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:
工程流体力学课后思考题

1-1:流体有哪些特性?论述液体与气体特征的异同。
1)流动性、压缩、膨胀性、粘性1-2: 什么是连续介质模型?为什么要建立?1) 将流体作为由无穷多稠密、没有间隙的流体质点构成的连续介质,于是可将流体视为在时间和空间连续分布的函数。
2) ①可以不考虑流体复杂的微观粒子运动,只考虑在外力作用下的微观运动;②可以用连续函数的解析方法等数学工具去研究流体的平衡和运动规律。
1-3:流体密度、相对密度概念,它们之间的关系?1) 密度:单位体内流体所具有的质量,表征流体的质量在空间的密集程度。
相对密度:在标准大气压下流体的密度与4℃时纯水的密度的比值。
关系: 1-4:什么是流体的压缩性和膨胀性?1) 压缩性:在一定的温度下,单位压强增量引起的体积变化率定义为流体的压缩性系数,其值越大,流体越容易压缩,反之,不容易压缩。
2) 膨胀性:当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性1-5:举例说明怎样确定流体是可压缩还是不可压缩的?气体和液体都是可压缩的,通常将气体时为可压缩流体,液体视为不可压缩流体。
水下爆炸:水也要时为可压缩流体;当气体流速比较低时也可以视为不可压缩流体。
1-6:什么是流体的黏性?静止流体是否有黏性?1) 流体流动时产生内摩擦力的性质程为流体的黏性2) 黏性是流体的本身属性,永远存在。
1-7:作用在流体上的力有哪些?质量力、表面力。
1-8: 什么是表面张力?表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力2-1: 流体静压强有哪些特性 ?如何证明?1) 特性一:流体静压强的作用方向沿作用面的内法线方向特性二:静压强与作用面在空间的方位无关,只是坐标点的连续可微函数2)2-2:流体平衡微分方程的物理意义是什么?在静止流体内的任一点上,作用在单位质量流体上的质量力与静压强的合力相平衡 2-3:什么是等压面?等压面的方程是什么?有什么重要性质?1) 在流体中压强相等的点组成的面。
杜广生工程流体力学思考题答案

精心整理牛顿流体 作用在流体上的切向应力与它所引起的角变形速度之间的关系符合牛顿内摩擦定律的流体,1-2: 什么是连续介质模型?为什么要建立?1) 将流体作为由无穷多稠密、没有间隙的流体质点构成的连续介质,于是可将流体视为在时间和空间连续分布的函数。
2) ①可以不考虑流体复杂的微观粒子运动,只考虑在外力作用下的微观运动;②可以用连续函数的解析方法等数学工具去研究流体的平衡和运动规律。
1-3:流体密度、相对密度概念,它们之间的关系?1) 密度:单位体内流体所具有的质量,表征流体的质量在空间的密集程度。
相对密度:在标准大气压下流体的密度与4℃时纯水的密度的比值。
2) 性质:在静止流体中,作用于任意点的质量力垂直于经过该点的等压面。
水头:单位重量流体所具有的能量也可以用液柱高来表示帕斯卡原理:施于在重力作用下不可压缩流体表面上的压强,将以同样大小传到液体内部任意点上2-4:写出流体静力学基本方程的几种表达式。
说明流体静力学基本方程的适用范围以及物理意义、几何意义。
1c g p z =+ρ;gp z g p z ρρ2211+=+适用于不可压缩重力流体的平衡状态;物理意义:当连续不可压缩的重力流体处于平衡状态时,在流体中的任意点上,单位重量流体的总势能为常数。
几何意义:不可压缩的重力流体处于平衡状态时,静水头线或者计示静水头线为平行于基准面的水平线。
2-5:什么是绝对压强、计时压强和真空?它们之间有什么关系?1)绝对压强:以完全真空为基准计量的压强。
2)计示压强:(相对压强,表压强)以当地大气压强为基准计量的压强。
3)大气压强体处于真空状态。
1)迹线是同一流体质点在不同时刻的位移曲线,流线是同一时刻、不同流体质点速度向量的包络线,流线是流场中某一顺势的光滑曲线,该曲线上的流体质点的运动方向和该曲线相切。
1流线不能彼此相交和转折,只能平滑过渡。
2流线越密集流速越大。
3在定常流动中,流线不随时间改变其位置和形状,流线和迹线重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿流体 作用在流体上的切向应力与它所引起的角变形速度之间的关系符合牛顿内摩擦定律的流体,1-2: 什么是连续介质模型?为什么要建立?1) 将流体作为由无穷多稠密、没有间隙的流体质点构成的连续介质,于是可将流体视为在时间和空间连续分布的函数。
2) ①可以不考虑流体复杂的微观粒子运动,只考虑在外力作用下的微观运动;②可以用连续函数的解析方法等数学工具去研究流体的平衡和运动规律。
1-3:流体密度、相对密度概念,它们之间的关系?1) 密度:单位体内流体所具有的质量,表征流体的质量在空间的密集程度。
相对密度:在标准大气压下流体的密度与4℃时纯水的密度的比值。
关系: 1-4:什么是流体的压缩性和膨胀性?1) 压缩性:在一定的温度下,单位压强增量引起的体积变化率定义为流体的压缩性系数,其值越大,流体越容易压缩,反之,不容易压缩。
2) 膨胀性:当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性1-5:举例说明怎样确定流体是可压缩还是不可压缩的?气体和液体都是可压缩的,通常将气体时为可压缩流体,液体视为不可压缩流体。
水下爆炸:水也要时为可压缩流体;当气体流速比较低时也可以视为不可压缩流体。
1-6:什么是流体的黏性?静止流体是否有黏性?1) 流体流动时产生内摩擦力的性质程为流体的黏性2) 黏性是流体的本身属性,永远存在。
3) 形成黏性的原因:1流体分子间的引力,2流体分子间的热运动1-7:作用在流体上的力有哪些?质量力、表面力。
表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力毛细现象:由于内聚力和附着力的差别使得微小间隙的液面上升和下降的现象。
上升和下降的高度与流体的种类,管子的材料、液体接触的气体种类和温度有关2-1: 流体静压强有哪些特性 ?1) 特性一:流体静压强的作用方向沿作用面的内法线方向特性二:静压强与作用面在空间的方位无关,只是坐标点的连续可微函数2-2:流体平衡微分方程的物理意义是什么?在静止流体内的任一点上,作用在单位质量流体上的质量力与静压强的合力相平衡2-3:什么是等压面?等压面的方程是什么?有什么重要性质?1) 在流体中压强相等的点组成的面。
2) 0=++dz f dy f dx f z y x3) 性质:在静止流体中,作用于任意点的质量力垂直于经过该点的等压面。
水头:单位重量流体所具有的能量也可以用液柱高来表示帕斯卡原理:施于在重力作用下不可压缩流体表面上的压强,将以同样大小传到液体内部任意点上2-4:写出流体静力学基本方程的几种表达式。
说明流体静力学基本方程的适用范围以及物理意义、几何意义。
w f d ρρ=1c g p z =+ρ;gp z g p z ρρ2211+=+适用于不可压缩重力流体的平衡状态; 物理意义:当连续不可压缩的重力流体处于平衡状态时,在流体中的任意点上,单位重量流体的总势能为常数。
几何意义:不可压缩的重力流体处于平衡状态时,静水头线或者计示静水头线为平行于基准面的水平线。
2-5:什么是绝对压强、计时压强和真空?它们之间有什么关系?1) 绝对压强:以完全真空为基准计量的压强。
p =p a +ρgℎ2) 计示压强:(相对压强,表压强)以当地大气压强为基准计量的压强。
p e =p −p a =ρgℎ3) 大气压强 p a4) 真空:当被测流体的绝对压强低于大气压强时,测得的计示压强为负值,此时,流体处于真空状态。
p v =−p e =p a −p真空的大小,与半径,旋转角度,流体密度有关。
2-6:不同形状的储液容器,若深度相同,容器底面积相同,试问液体作用在底面的总压力和液体的重力是否相同?为什么?总压力相等,·总压力的大小与容器的形状和荣琼内所盛液体的多少无关,仅取决于底面积和淹深. 液体的重力不一定相同,······2-7什么是压力中心?什么是压力体?它有何用途?什么是实压力体和虚压力体?1) 总压力的作用线和平面的交点 称压力中心。
2) 曲面和自由液面或者自由液面的延长面包容的体积。
3) 压力体用途:用来计算作用在曲面上的静水总压力的垂直分力。
------????4) 实压力体:压力体充满液体;虚压力体 :压力体中没有液体2-8:有一倾斜平板浸没在静止液体中,当此平板绕其形心转动时,其作用于此倾斜平板上的总压力是如何变化的?总压力大小不变。
3-1:拉格朗日法和欧拉法在分析流体运动上有什么区别?为什么常用欧拉法?1) 拉格朗日法是以流体中的一个质点为研究对象,欧拉法是以流动空间中的某一点为研究对象。
2) 应用拉格朗日方法研究问题在数学上存在很多困难,而且在实际问题中,需要了解的是流动参数在空间的分布规律,一般不需要了解流体质点详细的时变过程。
3-3:流线和迹线有何区别?在什么条件下流场中的流线和迹线相重合?1)迹线是同一流体质点在不同时刻的位移曲线,流线是同一时刻、不同流体质点速度向量的包络线,流线是流场中某一顺势的光滑曲线,该曲线上的流体质点的运动方向和该曲线相切。
1流线不能彼此相交和转折,只能平滑过渡。
2流线越密集流速越大。
3在定常流动中,流线不随时间改变其位置和形状,流线和迹线重合。
3-4:什么是定常流动?什么是非定常流动?举例说明不同之处。
1)2)流场中流动参量均不随时间发生变化的流动称为定常流动,否则称为非定常流动。
3)当水泵的转速不变时,进水管和出水管中的流动就是定常的。
当水泵的转速变化时,进水管和出水管中的流动就是非定常的。
3-5什么是当量直径?为什么要引入当量直径?1) 把水力半径相等的圆管直径定义为非圆管的当量直径。
2) 为了是模仿圆的直径。
3-6:什么是系统?什么是控制体?说明输运公式的意义。
1) 一群流体质点的集合。
2) 特定的空间体积。
3) 任一瞬时系统内物理量N (如质量、动量和能量等)随时间的变化率等于该瞬时其控制体内物理量的变化率与通过控制体表面的净通量之和。
3-7:连续方程的物理意义是什么?单位时间内控制体内流体质量的增量,等于通过控制体表面的质量的净通量。
3-8:应用动量方程时应注意什么问题?①动量方程是一个矢量方程,每一个量均具有方向性,必须根据建立的坐标系判断各个量在坐标系中的正负号。
②根据问题的要求正确地选择控制体,选择的控制体必须包含对所求作用力有影响的全部流体。
③方程左端的作用力项包括作用于控制体内流体上的所有外力,但不包括惯性力。
④方程只涉及到两个流入、流出截面上的流动参数,而不必顾及控制体内是否有间断面存在。
3-9:论述理想流体微元流束伯努利方程中各项的物理意义和几何意义,并说明方程适用范围。
1)H gp z g =+ρυ+22 式中左边各项的物理意义分别为单位重量流体的动能、位置势能和压强势能,几何意义分别为单位重量流体的速度水头、位置水头、压强水头。
3) 理想不可压缩的重力流体作一维定常流动时的一条流线或者一个微元流管上。
4-1:什么是几何相似、运动相似、动力相似?1) 几何相似:模型和原型的全部对应线形长度的比值为一定常数。
2) 运动相似:满足几何相似的流场中,对应时刻、对应点流速(加速度)的方向一致,大小的比例相等,即它们的速度场(加速度场)相似。
3) 动力相似:两个运动相似的流场中,对应空间点上、对应瞬时作用在两相似几何微团上的力,作用方向一致、大小互成比例,即它们的动力场相似。
4-2:常用的相似准则数有哪些?分别阐述每个准则数的物理意义。
1) 牛顿数Ne :作用力与惯性力的比值2) 弗劳德数Fr :惯性力与重力的比值3) 雷诺数Re :惯性力与粘性力的比值4) 欧拉数Eu :总压力与惯性力的比值5) 柯西数Ca :惯性力与弹性力的比值6) 马赫数Ma :惯性力与弹性力的比值7)韦伯数We:惯性力与表面张力的比值8)斯特劳哈尔数Sr:当地惯性力与迁移惯性力的比值4-3:应用动力相似进行模拟实验时,如何决定模型尺寸?如何安排实验条件?1)根据定性准则的需要决定。
__? ? ?2)①任何相似的流动都是属于同一类的流动,相似流场对应点上的各种物理量,都应为相同的微分方程所描述;②相似流场对应点上的各种物理量都有唯一确定的解,即流动满足单值条件;③由单值条件中的物理量所确定的相似准则数相等是流动相似也必须满足的条件。
4-4:什么是量纲一致性原则?量纲分析法有何用处?1)物理方程中要求每一项量纲都相同。
2)通过量纲分析,能将影响物理现象的各种变量合理组合,使问题大大简化。
4-5:常用的量纲分析法有哪些?瑞利法、π定理5-1:黏性流体总流的伯努利方程和理想流体微元流束的伯努利方程有何不同?应用条件是什么?1)黏性流体总流伯努利方程的动能项需要乘以一个动能修整系数;还需要加上机械能的损失。
层流α=2,β=4/3;紊流,都为12)①流动为定常流动;②流体为黏性不可压缩的重力流体;③方程的两过流断面必须是缓变流截面,而不必顾及两截面间是否有急变流。
5-2:什么是层流?什么是紊流?圆管中,怎样判别流层或紊流状态?1)流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动,这种流动状态称为层流。
流速小于临界流速,层流,沿程损失与平均流速的一次方成正比2)当流速超过临界流速时,流线不再清楚可辨,称为紊流。
沿程损失与平均流速的1.75~2次方成正比3)实际工程中,当Re≤2000时,流动为层流;当Re>2000时,即认为流动是紊流。
4)临界流速与流体的黏度成正比,和管子的直径成反比。
5-3试从流动特征、流速分布、切应力分布以及水头损失等方面来比较圆管中的层流和紊流特性。
① 圆管中的层流:平稳有规律的流动状态;流速分布规律为旋转抛物面;同一截面上的切向应力的大小与半径成正比;沿程损失与平均流速的一次方成正比。
② 圆管中的紊流:极不规则的流动状态;层流底层内的速度分布呈线性分布,湍流核心区速度分布呈对数分布规律;??????表征流体运动状态的各种物理量也表现出不同程度的跃变和随机性。
????5-4:输水管道的流量一定时,随着管径增加,雷诺系数是增加还是减小?雷诺数R e=υdv,当流量Q=πd24×υ一定时,有υ=4Qπd2,所以R e=4QVπd,当d增加时,雷诺数减小。
5-5为什么采用雷诺数来判别流态?雷诺数是衡量惯性力与粘性力相对强弱的一个无量纲数。
雷诺数较小时,黏滞力对流体的影响大于惯性力,流体表现为层流。
若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体表现为紊流。
5-7:什么叫水力光滑管和水力粗糙管?与哪些因素有关?由于靠近管壁湍流脉动受到限制,黏滞力的作用增强,在紧贴管壁很薄的流层中湍流脉动消失,黏滞力的阻滞作用使流速急剧下降,速度分布比较陡峭,速度梯度大.这一流体薄层称黏性底层。