南大数值分析课件第六章 曲线拟合与函数逼近.ppt
逼近和拟合专题教育课件
则在[a,b]上g( x) 0;
就称( x)为[a,b]上的权函数.
例2 设f ( x), g( x) C[a,b], ( x)为[a,b]上的权函数 ,则可
定义内积
( f , g) ab( x) f ( x)g( x)dx. 1,( f , g) ab f (x)g(x)dx.
容易验证内积定义中的 四个性质,并导出范数
项式正交.
(4)有递推关系
pn1( x) ( x n ) pn( x) n pn1( x), n 0,1,, (2.4)
其中 p0( x) 1,p1( x) 0,
n ( xpn , pn ) /( pn , pn ), n ( pn , pn ) /( pn1, pn1),n 1,2,,
称为Gram矩阵,则G非奇异的充要条件是 u1, u2,, un线性
无关.
证明:1) G非奇异 以G为系数矩阵的齐次线性 方程组
n
n
( ju j , uk ) (u j , uk ) j 0,
j1
j1
只有零解。
k 1,,n.
n
n
n
2) juj 0 ( juj , juj ) 0
有限维空间 vs 无限维空间.
Rn, C[a,b],
定理 1(维尔斯特拉斯 ) 如果f ( x) C[a,b], 那么 0,
多项式p( x),使得
| f ( x) p( x) | , 对于一切a x b.
伯恩斯坦(1912)给出一种构造性证明:伯恩斯坦多项式
Bn (
f
,
x)
n
k0
f
(n ,n )
根据定理 3,0,,n线性无关 det(G) 0.
§2 正交多项式
数值分析学习课件
§2.正交多项式
性质3. n次多项式 P (x)有n个互异实根,且全部(a, b)内。 n 性质4.设 P (x)的n个实根为x1 , x2 ,..., xn P + 1 (x) 的n+1 ,n n 个实根为 x1 , x2 ,..., xn1 ,则有
a x1 x1 x 2 x2 ...
{ j(x) = e kj x , ki kj } 对应指数多项式 /* exponential
polynomial */
§1.函数逼近的基本概念
定义 权函数:
①
离散型 /*discrete type */
根据一系列离散点 ( xi , yi ) (i 1, ... , n) 拟合时,在每一误
Pk(x)
kl kl
由 P0 1, P1 x 有递推 (k 1) Pk 1 (2k 1) xP kPk 1 k
k
0
1
2 3
P0 ( x) 1 P ( x) x 1
P2 ( x ) =
4
1 P3 ( x ) = (5 x3 - 3x) 2 1 P4 ( x ) = (35 x 4 - 30 x 2 + 3) 8
第三章
函数逼近
/* Approximation Theory */
第一讲
§1.函数逼近的基本概念
§2.正交多项式
§1.函数逼近的基本概念
已知 x1 … xm ; y1 … ym, 求一个简单易算的近 m 似函数 P(x) f(x) 使得 | P ( xi ) yi |2 最小。
i 1
已知 [a, b]上定义的 f(x),求一个简单易算的 b 近似函数 P(x) 使得 a [ P( x) f ( x)]2 dx 最小。
数值分析课件-6曲线拟合
第六章 曲线拟合的最小二乘 /函数平方逼近初步实例:考察某种纤维的强度与其拉伸倍数的关系,下表是实际测定的24个纤维样品的强度与相应的拉伸倍数是记录:编 号拉伸倍数 强 度编 号拉伸倍数 强 度1 1.9 1.4135 5.522 1.314 5.253 2.1 1.8156 5.54 2.5 2.516 6.3 6.45 2.7 2.817 6.566 2.7 2.5187.1 5.37 3.53198 6.58 3.5 2.72087944218.98.5104 3.5229811 4.5 4.2239.58.112 4.63.524108.1i i y x ii y x 一.实例讲解6.2 数据拟合(最小二乘法)§2(())m nj j i i i j a x f ϕ===-∑∑2(())mi i i S x f ==-∑三、法方程组22δ∑==nj j j x a x S 0)()(ϕ由的函数为拟合系数),,1,0(n j a j =可知因此可假设01(,,,)n F a a a 2(())mnj j i i i j a x f ϕ===-∑∑因此求最小二乘解转化为二次函数四、加权最小二乘法(,)(0,1,,)i i x f i m = 对于一组给定的数据点(,)(0,1,,)i i x f i m = 在拟合的数据点中各点的重要性可能是不一样的()(,)0,1,,i i i i x x f i mρρ= 假设=表示数据点的权(或权重),权:即权重或者密度,统称为权系数.定义加权平方误差为222m i i i δρδ==∑2(())mi i i i S x f ρ==-∑-----(9)6.3 连续函数的最佳平方逼近§0102**222*[,],{,,,}[,].(),()();()[()()]()[()()]()().min n ni i i b a b a S f C a b span C a b S x S x a x f S x f x S x dx x f x S x dx S x f x ϕϕϕϕρρ=∈Φ∈Φ=⊂∀∈Φ=-=-=-∑⎰⎰ 设为的最佳平方逼近1. 最佳平方逼近问题-----(14)0(,)(,)(,)()()()(,)()()()0,1,,x n k i i k k i b k i k i a b k k k a a f d x x x dx d f x f x x dxk nG dϕϕϕϕϕρϕϕϕρϕ=⎧==⎪⎪⎪=⇒⎨⎪==⎪⎪=⎩⇒=∑⎰⎰ ⎪⎪⎪⎪⎭⎫ ⎝⎛),(),(),(01000n ϕϕϕϕϕϕ ),(),(),(11101n ϕϕϕϕϕϕ ),(),(),(10n n n n ϕϕϕϕϕϕ G =最小二乘法方法评注曲线拟和的最小二乘法是实验数据处理的常用方法。
数值分析06函数逼近
函数逼近的历史与发展
早期发展
早在古希腊时期,数学家就开始研究用简单的几何图形来近 似表示复杂的曲线。随着数学的发展,函数逼近的理论和方 法不断完善和丰富。
现代进展
随着计算机科学和数值分析的兴起,函数逼近在数值计算、 信号处理、图像处理等领域的应用越来越广泛。现代的逼近 方法不仅追求形式简单,还注重逼近的精度和计算效率。
数据拟合
在数据分析和机器学习中,利用数值逼近方法对数据进行拟合, 以提高预测精度。
图像处理
在图像处理中,利用数值逼近方法对图像进行平滑、去噪等处理, 以提高图像质量。
工程计算
在工程计算中,利用数值逼近方法对复杂函数进行近似计算,以简 化计算过程和提高计算效率。
05
结论与展望
总结与评价
总结
数值分析06函数逼近课程是一门重要的数学课程,它涉及到许多实际问题的求解,如插值、拟合、最小二乘法等。 通过学习这门课程,学生可以掌握如何使用数学工具来近似描述和分析函数,从而更好地理解和解决实际问题。
数。
稳定性分析
稳定性定义
稳定性是指在逼近过程中,对于小的扰动或误差,逼近结果的变 化程度。
不稳定性影响
不稳定的逼近可能导致结果出现较大的偏差,影响数值计算的精 度和可靠性。
稳定性判据
根据稳定性判据,判断逼近函数的稳定性以及如何提高稳定性。
04
数值实例与应用
一元函数逼近实例
01
线性逼近
通过多项式逼近方法,将一元函 数在某点附近展开成线性形式, 如泰勒级数展开。
评价
这门课程的内容非常实用,对于数学专业的学生来说是一门必修课程。它不仅有助于提高学生的数学素养,还可 以为学生提供解决实际问题的能力。然而,该课程难度较大,需要学生具备较高的数学基础和思维能力。
《数值分析教程》课件
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。
数值分析06-一致逼近
Y
在度量标准 max ri
i
(达到最小),这就是最佳一致逼近(不要产生最大误差, 均匀一些),通常仍 然取 (x)为多项式,即求多项式 (x) 使残差: r f (x ) (x )
i i i
绝对值的最大值 达到最小。或可写为:在H中求满足 (x) (f 的逼近函数 (x) ):
a xb
max
即在H中 (x)与f(x)之差的绝对值的最大值是最小的,H中 任一ψ (x)与f(x)之差的绝对值的最大值都比它大,这样的 6-3 阜师院数科院第六章 函数逼近 (x)为f(x)在H中的最佳一致逼近函数。
W Y
§5 最佳一致逼近多项式
下,求 (x) ,使
max ri max f ( x ) ( x ) min
例如:要求区间[0,1]上y=arctgx的一次近似式 可以有多种方法: (1)Talor公式:tg-1x x,误差R(x)= tg-1x- x,在 x=0附近很小,x=1时误差最大,R(x)|x=1=0.2146; (2)插值: x=0,1作节点=>L1(x)=πx/4,tg-1x πx/4, 4 其误差在 x 1 1 . 12 处,即在1附近较大为0.0711;
定理6.6 P (x)H 是f(x)C[a,b]的最佳一致逼近多项式的 n n 充要条件是Pn(x)在[a,b]上至少有n+2个不同的依次轮流为 正,负的偏差点(这些点称为切比雪夫交错点组)。 切比雪夫定理给出了最佳一致逼近多项式的特征,性质, 在最佳一致逼近理论中起着重要作用。 推论1 如果f(x)C[a,b],则在Hn中存在唯一的最佳一致 逼近多项式。 推论2
(3)最小二乘法(例10 §4中)
tg
阜师院数科院第六章 函数逼近
数值分析第六章函数逼近
5
3
2
求x, y的函数关系. Matlab解法: polyfit([1, 2, 3, 4, 6, 7, 8], [2, 3, 6, 7, 5, 3, 2], 2) ans= -0.3864 3.4318 -1.3182
21
例 测得一发射源的发射强度 I 与时间 t 的一组数据如下 ti 0.2 0.3 0.4 0.5 0.6 0.7 0.8
12
n n x i i 1 n xi2 i 1
xi i 1 x i 1 x i 1
n n 2 i 3 i
n
n 2 xi yi i 1 i 1 a 0 n n 3 x y x a i 1 i i i 1 i 1 n a2 n 4 2 xi x i yi i 1 i 1 n
y a0 a1 x a0 a1 xi
yi
4
衡量近似函数好坏的标准:残差向量的大小 (1) 使残差的绝对值之和最小, 即
min || ||1 min | i |
a0 ,a1 a0 ,a1 i 1 n
(2) 使残差的最大绝对值最小, 即
min || || min max | i |
xi yi
x1
y1
x2 y2
xn yn
求直线 y=a0+a1x 使得
yi (a0 a1 xi ) i 1
n
2
达到最小.
6
令 F (a0 , a1 ) yi (a0 a1 xi ) 2
i 1
n
则原问题等价于求a0, a1使F(a0, a1)达到最小. 利用多元函数取极值的必要条件得
数值分析第六章函数逼近
2 i 2
拟合 函数
st . ,∑ δ = ∑[ yi −ϕ(xi )] = ∑⎡ yi −∑j=1ajϕj (xi )⎤ →min = F(a0, a1,⋯, am) ⎣ ⎦ i=1 i=1 i=1
拟合条件
n
m
2
该方法称为拟合曲线方法
适当选取函数类
{ϕ0 ( x), ϕ1 ( x),⋯, ϕn ( x)}
(*)有最小二乘解
Φ Φ ⋅a = Φ ⋅ y
⎡ (ϕ0 , ϕ0 ) (ϕ0, ϕ1) ⎢ (ϕ , ϕ ) (ϕ , ϕ ) 1 1 ΦT Φa = ⎢ 1 0 ⎢ ⋯ ⎢ ⎣(ϕm , ϕ0 ) (ϕm , ϕ1) ⎡ ϕ0 ( x1 ) ϕ1 ( x1 ) ⎢ϕ ( x ) ϕ ( x ) 1 2 ΦT y = ⎢ 0 2 ⎢ ⋯ ⎢ ⎣ϕ0 ( xn ) ϕ1 (xn ) ⋯ (ϕ0, ϕm ) ⎤ ⎡a0 ⎤ ⎢a ⎥ ⋯ (ϕ1, ϕm ) ⎥ ⎥ ⎢ 1 ⎥, ⎥ ⎢⋮ ⎥ ⋯ ⎥⎢ ⎥ ⋯ (ϕm , ϕm ) ⎦ ⎣an ⎦
T
T
T
⋯ ϕ m xn )⎦
⎡ y1 ⎤ ⎢y ⎥ ⎢ 2 ⎥, ⎢⋮ ⎥ ⎢ ⎥ ⎣ yn ⎦
例:已知一组实验数据 求拟合曲线。
X Y
1 4
2 4.5
3 6
4 8
5 9
解:观察数据特征,各点的变化接近一条二次曲线。 选用 ϕ ( x) = a0ϕ 0 ( x) + a1ϕ1( x) + a2ϕ 2 ( x), ϕ ( x) = p2( x)
主要问题的提出和解决
�
一、给出函数表
x Y x1,x2,---,xn
f(x)
P(x) y1,y2,---,yn O x1, x2,--,xj,--, xn 求拟合函数 ϕ ( x) = a0ϕ0 ( x) + a1ϕ1 ( x ) + ⋯ + amϕ m ( x ), ϕ ( x ) = p ( x )
《曲线拟合》PPT课件
Curve fitting
医学研究中X和Y的数量关系常常不是线性的,如毒 物剂量与动物死亡率,人的生长曲线,药物动力学等, 都不是线性的。如果用线性描述将丢失大量信息,甚至 得出错误结论。
此时可以用曲线直线化估计(Curve estimation) 或非线性回归(Nonlinear regression) 方法分析。
散点图辨析
预后指数Y
60 50 40 30 20 10
0 0
对数曲线 指数曲线
10 20 30 40 50 60 70 病人住院天数X
如果条件允许最好采用非线性回 归(Nonlinear Regression)拟合幂 函数曲线与指数函数曲线
注意绘制散点图,并结合专业知 识解释
采用SAS进行曲线拟合
①幂函数: Yˆ ea X b 或 ln(Yˆ) a bln(X )
②对数:
Yˆ a bln(X )
③指数函数: Yˆ eabX
或 ln(Yˆ) a bX
④多项式: Yˆ a b1X b2 X 2 bn X n
⑤logistic:
Yˆ
1/(1
eabX
)
或
ln[
Yˆ
/(1
Yˆ)]
-8.0196 -4.0604 0.0000 3.9012 7.6049 11.1860 -12.8898
Yˆ
7.23 12.62 15.77 18.01 19.75 21.16 22.36
23.40
残差平方
0.1380 0.1017 0.0053 0.0361 1.0921 0.0563 0.0566 0.1597
(lnX)2 Y2
2.5902 57.76 0.8396 151.29 0.2609 246.49 0.0498 331.24 0.0000 349.69 0.0332 457.96 0.1132 510.76 0.2209 566.44 4.1078 2671.63
函数逼近与曲线拟合PPT课件
例 已知点集 {xi} i=0,1,…,4 ={0,0.25,0.5,0.75,1} 和 权数{ i}i=0,…4 ={1,1,1,1,1}.试用三项递推公式求关于
该点集的正交多项式 P0(x),P1(x),P2(x)
解 先令 P0(x)=1 ,由此得
4
(P0, P0 ) iP02 (xi ) 5 i0
)
k
(x)
k
k
(x), k 1, 2,
k 1
n 1
给出的多项式序列
n
Pk(x)
(n
k 0
m)
是正交多项式序列
,其中
(x , )
(,
P P P P
k k,
k
a b k ( , ) k ( ,
P P P P k k
k 1
) k.
)
k 1
(5)
三项递推公式(4)是构造正交多项式的简单公 式,此外,还有其他的特殊的情形,这里,不进一 步讨论。
有了内积,就可以定义正交性。若函数 f (x) 和 g (x) 的内积 (f , g)=0,则称两者正交。
第12页/共81页
若多项式组{k(x)}k=0,…n 在离散意义下的内积满足
(i , j )
0,i j ai 0,i
j
(3)
则称多项式组{k(x)}k=0,…n为在离散点集 {xi} i=0,1,…,m 上的带权 { i}i=0,…m的正交多项式序列.
第8页/共81页
更一般函数逼近的概念:
可用一
组
在C
a,
b上线
性
无
关
的函数
集
合
i
x
n i0
函数逼近与曲线拟合
函数逼近与曲线拟合3.1函数逼近的基本概念3.1.1 函数逼近与函数空间在数值计算中常要计算函数值,如计算机中计算基本初等函数及其他特殊函数;当函数只在有限点集上给定函数值,要在包含该点集的区间上用公式给出函数的简单表达式,这些都涉及到在区间上用简单函数逼近已知复杂函数的问题,这就是函数逼近问题.上章讨论的插值法就是函数逼近问题的一种.本章讨论的函数逼近,是指“对函数类A中给定的函数,记作,要求在另一类简单的便于计算的函数类B中求函数,使与的误差在某种度量意义下最小”.函数类A通常是区间上的连续函数,记作,称为连续函数空间,而函数类B通常为n次多项式,有理函数或分段低次多项式等.函数逼近是数值分析的基础,为了在数学上描述更精确,先要介绍代数和分析中一些基本概念及预备知识.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将为样的集合称为空间.例如将所有实n维向量组成集合,按向量加法及向量与数的乘法构成实数域上的线性空间,记作,称为n维向量空间.类似地,对次数不超过n(n为正整数)的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域上的一个线性空间,用表示,称为多项式空间.所有定义在上的连续函数集合,按函数加法和数与函数乘法构成数域上的线性空间,记作.类似地,记为具有p阶的连续导数的函数空间.定义1设集合S是数域P上的线性空间,元素,如果存在不全为零的数,使得, (3.1.1)则称线性相关.否则,若等式(3.1.1)只对成立,则称线性无关.若线性空间S是由n个线性无关元素生成的,即对都有则称为空间S的一组基,记为,并称空间S为n维空间,系数称为x在基下的坐标,记作,如果S中有无限个线性无关元素,…,则称S为无限维线性空间.下面考察次数不超过n次的多项式集合,其元素表示为, (3.1.2)它由个系数唯一确定.线性无关,它是的一组基,故,且是的坐标向量,是维的.对连续函数,它不能用有限个线性无关的函数表示,故是无限维的,但它的任一元素均可用有限维的逼近,使误差(为任给的小正数),这就是著名的Weierstrass定理.定理1(Weierstrass)设,则对任何,总存在一个代数多项式,使在上一致成立.这个定理已在“数学分析”中证明过.这里需要说明的是在许多证明方法中,伯恩斯坦1912年给出的证明是一种构造性证明.他根据函数整体逼近的特性构造出伯恩斯坦多项式, (3.1.3)其中,其中,并证明了在上一致成立;若在上阶导数连续,则.这不但证明了定理1,而且由(3.1.3)给出了的一个逼近多项式.它与拉格朗日插值多项式很相似,对,当=1时也有关系式. (3.1.4)这只要在恒等式中令就可得到.但这里当时还有,于是是有界的,因而只要对任意成立,则有界,故是稳定的.至于拉格朗日多项式,由于无界,因而不能保证高阶插值的稳定性与收敛性.相比之下,多项式有良好的逼近性质,但它收敛太慢,比三次样条插值效果差得多,实际中很少被使用.更一般地,可用一组在上线性无关的函数集合来逼近,元素,表示为. (3.1.5) 函数逼近问题就是对任何,在子空间中找一个元素,使在某种意义下最小.3.1.2 范数与赋范线性空间为了对线性空间中元素大小进行衡量,需要引进范数定义,它是空间中向量长度概念的直接推广.定义2.1.2 设为线性空间,,若存在唯一实数,满足条件:(1)正定性:,(2)当且仅当时,(3);(4)齐次性:,(5);(6)三角不(7)等式:,(8).则称为线性空间上的范数,与一起称为赋范线性空间,记为.例如,在上的向量,三种常用范数为类似地对连续函数空间,若可定义三种常用范数如下:可以验证这样定义的范数均满足定义3.1.2中的三个条件.3.1.3 内积与内积空间在线性代数中,中两个向量及的内积定义为.若将它推广到一般的线性空间,则有下面的定义.定义3.1.3设是数域上的线性空间,对,有中一个数与之对应,记为,它满足以下条件:(1);(2);(3);(4),当且仅当时,.则称为上与的内积.定义了内积的线性空间称为内积空间.定义中(1)的右端称为的共轭,当为实数域时.如果=0,则称与正交,这是向量相互垂直的概念的推广.关于内积空间性质有以下重要定理.定理3.1.2设为一个内积空间,对,有(3.1.6) 称为Cauchy-Schwarz不等式.[证明]当时(3.1.6)式显然成立.现设,则,且对任何数有.取,代入上式右端,得,即得时.定理证毕定理3.1.2设为一个内积空间,,矩阵(3.1.7)称为Gram矩阵,则G非奇异的充分必要条件是线性无关.[证明]G非奇异等价于,其充分必要条件是齐次方程组(3.1.8) 只有零解.而(3.1.9) 从以上的等价关系可知,等价于从(3.1.8)推出.而后者等价于从(3.1.9)推出,即线性无关.定理证毕在内积空间上可以由内积导出一种范数,即对于,记(3.1.10) 容易验证它满足范数定义的三条性质,其中三角不等式(3.1.11)可由定理3.1.2直接得出,即两端开方即得(3.1.11).例1与的内积.设,,,则其内积定义为(3.1.12)由此导出的向量2-范数为.若给定实数,称为权系数,则在上可定义加权内积为(3.1.13)相应的范数为.不难验证(3.1.13)给出的满足内积定义的4条性质,当时,(3.1.13)就是(3.1.12).如果,带权内积定义为(3.1.14) 这里仍为正实数序列,为的共轭.在上也可以类似定义带权内积,为此先给出权函数的定义.定义3.1.4 设是有限或无限区间,在上的非负函数满足条件:(1)存在且为有限值;(2)对上的非负连续函数,如果,则.则称为上的一个权函数.例2上的内积.设,是上给定的权函数,则可定义内积. (3.1.15)容易验证它满足内积定义的4条性质,由此内积导出的范数为. (3.1.16)称(3.1.15)和(3.1.16)为带权的内积和范数.特别常用的是的情形,即若是中的线性无关函数族,记,它的Gram矩阵为(3.1.17)根据定理3.1.3可知线性无关的充分必要条件是.3.2 正交多项式正交多项式是函数逼近的重要工具,在数值积分中也有着重要的应用.3.2.1 正交函数族与正交多项式定义3.2.1 若,为上的权函数且满足, (3.2.1)则称与在上带权正交.若函数族满足关系(3.2.2)则称是上带权的正交函数族;若,则称之为标准正交函数族.例如,三角函数族就是在区间上的正交函数族.因为对有,而对,当时有定义3.2.2 设是上首项系数的次多项式,为上权函数,如果多项式序列满足关系式(3.2.2),则称多项式序列为在上带权正交,称为上带权的次正交多项式.只要给定区间及权函数,均可由一族线性无关的幂函数,利用逐个正交化手续构造出正交多项式序列;,(3.2.3) 这样得到的正交多项式序列有以下性质:(1)是具有最高次项系数为1的次多项式.(2)任何次多项式均可表示为的线性组合.(3)当时,,且与任一次数小于的多项式正交.(4)成立递推关系.其中这里.(5)设是在上带权的正交多项式序列,则的个根都是在区间内的单重实根.3.2.2 勒让德多项式当区间为[-1,1],权函数时,由正交化得到的多项式就称为勒让德(Legendre)多项式,并用表示.这是勒让德于1785年引进的,1814年罗德利克(Rodrigul)给出了简单的表达式由于是2次的多项式,求阶导数后得,于是得首项系数为,显然最高项系数为1的勒让德多项式为.(3.2.6) 勒让德多项式有下述几个性质:性质1正交性(3.2.7) [证明]令,则.设是在区间[-1,1]上的阶连续可微的函数,由分部积分知下面分两种情况讨论:(1)若是次数小于的多项式,则,故得(2)若,则,于是由于,故,于是(3.2.7)得证.性质2奇偶性(3.2.8)[证明]由于是偶次多项式,经过偶次求导仍为偶次多项式,经过奇次求导则为奇次多项式,故为偶数时为偶函数,为奇数时为奇函数,于是(3.2.8)成立.性质3递推关系(3.2.9) [证明]考虑+1次多项式,它可表示为两边乘以,并从-1到1积分,得.当时,的次数小于-1,上式左端积分为0,故得.当时.为奇函数,左端积分仍为0,故.于是.其中,代入上式整理可得(3.2.9).例1由利用性质3可得性质4在区间[-1,1]内有个不同的实零点.3.2.3 切比雪夫多项式当权函数,区间为[-1,1]时,由序列正交化得到的多项式就称为切比雪夫(Chebyshev)多项式,它可表示为(3.2.10)若令,则.切比雪夫多项式有很多重要性质:性质1递推关系(3.2.11) 这只要由三角不等式.令即得.由(3.2.11)就可推出由递推关系(3.2.11)还可得到的最高次项系数是.性质6切比雪夫多项式在区间[-1,1]上带权正交,且(3.2.12) 事实上,令,则,于是性质7只含的偶次幂,只含有的奇次幂.这性质由递推关系直接得到.性质8在区间[-1,1]上的个零点此外,实际计算中时常要求用的线性组合,其公式为. (3.2.13) 例如:结果如下:3.2.4 其他常用的正交多项式一般说,如果区间及权函数不同,则得到的正交多项式也不同.除上述两种最重要的正交多项式外,下面再给出三种较常用的正交多项式.第二类切比雪夫多项式在区间[-1,1]上带权的正交多项式称为第二类切比雪夫多项式,其表达式为. (3.2.14)令,可得即是[-1,1]上带权的正交多项式族.还可得到递推关系式.拉盖尔多项式在区间上带权的正交多项式称为拉盖尔(Laguerre)多项式,其表达式为. (3.2.15)其正交性为和递推关系.3. 埃尔米特多项式在区间上带权的正交多项式称为埃尔米特多项式.其表达式为, (3.2.16)其正交性为递推关系为.3.3 最佳一致逼近多项式3.3.1 基本概念及其理论本节讨论,在中求多项式,使其误差.这就是通常所谓最佳一致逼近或切比雪夫逼近问题.为了说明这一概念,先给出以下定义.定义3.3.1 设,,称. (3.3.1) 为与在上的偏差.显然,的全体组成一个集合,记为{},它有下界0.若记集合的下确界为(3.3.2)则称之为在上的最小偏差.定义3.3.2 假定,若存在,使得, (3.3.3)则称是在上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式.注意,定义并未说明最佳逼近多项式是否存在,但可证明下面的存在定理.定理4若,则总存在,使.为了研究最佳逼近多项式的特性,先引进偏差点的定义.定义3.3.3设,,若在上有,就称是的偏差点.若,称为“正”偏差点.若,称为“负”偏差点.由于函数在上连续,因此,至少存在一个点,使,也就是说的偏差点总是存在的.下面给出反映最佳逼近多项式特征的切比雪夫定理.定理3.3.2是的最佳逼近多项式的充分必要条件是在上至少有个轮流为“正”、“负”的偏差点,即有个点,使. (3.3.4) 这样的点组称为切比雪夫交错点组.[证明]只证充分性.假定在上有个点使(3.3.4)成立,要证明是在上的最佳逼近多项式.用反证法,若存在,使.由于在点上的符号与一致,故也在个点上轮流取“+”、“-”号.由连续性质,它在内有个零点,但因是不超过次的多项式,它的零点不超过.这矛盾说明假设不对,故就是所求最佳逼近多项式.充分性得证,必要性证明略,可参看[5].定理5说明用逼近的误差曲线是均匀分布的.由这定理还可得以下重要推论.推论1若,则在中存在唯一的最佳逼近多项式.证明略.利用定理5可直接得到切比雪夫多项式的一个重要性质,即定理3.3.3 在区间[-1,1]上所有最高次项系数为1的次多项式中与零的偏差最小,其偏差为.[证明]由于,且点是的切比雪夫交错点组,由定理5可知,区间[-1,1]上在中最佳逼近多项式为,即是与零的偏差最小的多项式.定理证毕例3求在[-1,1]上的最佳2次逼近多项式.解由题意,所求最佳逼近多项式应满足由定理3.3.3可知,当时,多项式与零偏差最小,故就是在[-1,1]上的最佳2次逼近多项式.3.3.2 最佳一次逼近多项式定理3.3.2给出了最佳逼近多项式的特性,但要求出却相当困难.下面讨论的情形.假定,且在内不变号,我们要求最佳一次逼近多项式.根据定理3.3.2可知至少有3个点,使由于在内不变号,故单调,在内只有一个零点,记为,于是,即.另外两个偏差点必是区间端点,即,且满足由此得到(3.3.5) 解出, (3.3.6) 代入(3.3.5)得. (3.3.7)这就得到了最佳一次逼近多项式,其几何意义如图3-3所示.直线与弦MN平行,且通过MQ的中点D,其方程为.图3-3一次最佳一致逼近多项式几何意义例4 求在上的最佳一次逼近多项式。
数值分析函数逼近与曲线拟合
数值分析函数逼近与曲线拟合第三章函数逼近和曲线拟合 1 函数的逼近和基本概念1.1问题的提出多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有分析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设()f x 是[1,1]-上的光滑函数,它的Taylor 级数0()kk k f x a x ∞==∑,()(0)!k k f a k =在[1,1]-上收敛。
当此级数收敛比较快时,11()()()n n n n e x f x s x a x ++=-≈。
这个误差分布是不均匀的。
当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。
为了使[1,1]-的所有x 满足()()nf x s x ε-<,必须选取足够大的n ,这显然是不经济的。
插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。
更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。
如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。
由于实验数据的误差太大,不能用过任意两点的直线逼近函数。
如果用过5个点的4次多项式逼近线性函数,显然误差会很大。
1.2范数和逼近一、线性空间及赋范线性空间要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间。
最常用的给集合赋予一种“加法”和“数乘”运算,使其构成线性空间.例如将所有实n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线性空间,记作nR ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式和多项式加法及数和多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间。
数值分析函数逼近与曲线拟合
f (x)
P1 ( x)
E1
a
x2
bx
最佳一次逼近多项式例题1(继续)
最佳一次逼近多项式例题2(返回)
切比雪夫定理图示(定理)
E2
P2 (x) f (x)
E3
E4
P4 (x) f (x)
P3 (x) f (x)
最佳平方逼近问题(返回)
法方程的建立(特例)
C[0,1]上的最佳平方逼近(例题)
C[0,1]上的最佳平方逼近例题(返回)
用正交函数做最佳平方逼近(返回)
最佳平方逼近多项式(例题)
最佳平方逼近多项式例题(返回)
线性模型例题(返回)
线性模型图例(返回)
指数模型例题(返回)
指数模型图例(返回)
双曲模型图例(返回)
S-曲线模型图例(返回)
§3.6最佳平方三角逼近与FFT(返回)
§3.2 正交多项式(返回)
正交函数族与正交多项式 正交多项式的性质 勒让德(Legendre)多项式 切比雪夫(Chebyshev)多项式 其他正交多项式
§3.3 最佳一致逼近多项式(返回)
偏差与偏差点 最佳一致逼近多项式 切比雪夫定理 最佳一致逼近多项式的构造 最佳一次逼近多项式
T0
T0
T3
T2 T3
TT11
T2
偏差与偏差点(返回)
最佳一致逼近多项式(返回)
切比雪夫定理(返回)
最佳一致逼近 多项式的构造(例题)
切比雪夫多项式 与零的偏差(定理)
最佳一致逼近例题(继续)
最佳一致逼近例题(返回)
最佳一次逼近多项式(例题)
最佳一次逼近多项式图示(返回)
哈尔(Haar)条件(法方程)
函数逼近与曲线拟合(演示)精编
第三章 函数逼近与曲线拟合1 函数的逼近与基本概念1.1问题的提出多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设()f x 是[1,1]-上的光滑函数,它的Taylor 级数0()kk k f x a x∞==∑,()(0)!k k f a k =在[1,1]-上收敛。
当此级数收敛比较快时,11()()()n n n n e x f x s x a x ++=-≈。
这个误差分布是不均匀的。
当0x =时,(0)0ne=,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。
为了使[1,1]-的所有x 满足()()nf x s x ε-<,必须选取足够大的n ,这显然是不经济的。
插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。
更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。
如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。
由于实验数据的误差太大,不能用过任意两点的直线逼近函数。
如果用过5个点的4次多项式逼近线性函数,显然误差会很大。
1.2范数与逼近实验数据 真函数 插值多项式逼近 精确的线性逼近图1一、线性空间及赋范线性空间要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间。
最常用的给集合赋予一种“加法”和“数乘”运算,使其构成线性空间.例如将所有实n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线性空间,记作n R ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域R 上一个线性空间,用nH 表示,称为多项式空间。
Chapter6曲线拟合_数值分析
6.1.2 曲线拟合问题
仍然是已知 x1 … xm ; y1 … ym, 求一个简单易 算的近似函数 f(x) 来拟合这些数据。
但是① m 很大;
②
yi 本身是测量值,不准确,即 yi f (xi)
这时没必要取 f(xi) = yi , 而要使 i=f(xi) yi 总体上
定理6.3.3 设A是n×k阶矩阵,x∈Rn, 那么下列三种情况是 等价的: ①x⊥R(A); ②ATx=0; ③x∈N(AT). 这里,N(AT)={ATx=0, x∈Rn}称为AT的核子空间. 证:由N(AT)的定义, ②与③显然等价. 下面证明①与②等价. 记A=(α1,α2,…,αk), 那么,αi∈R(A) (i=1,2,…,k). 假设x⊥R(A), 即αiTx=0 (i=1,2,…,k). 从而ATx=0. 另一方面,如果ATx=0, 那么有z∈Rk, 使Az=y∈R(A). 这时,yTx=zTATx=0,即x⊥y. 由z的任意性, 得Az是任意的, 因此x⊥R(A).
• 设U是Rn中的子空间, x∈Rn. 如果x与U中 任意向量正交, 称向量x与子空间U正交, 记为x⊥U. • 设U,V是Rn中两个子空间, 如果任意x∈U 和任意y∈V是正交的, 称子空间U与子空 间V正交, 记为U⊥V. • 设U,V是Rn中互补的子空间. 如果U⊥V, 那么称U,V互为正交补子空间, 记U=V⊥ 或V=U⊥. 可以证明, 一个子空间的正交补 子空间是惟一的.
法方程组(或正规方程组)
例1
数据 ti 0 20 40 60 80 100 fi 81.4 77.7 74.2 72.4 70.3 68.8
6.3 线性最小二乘问题
设A是m×n阶矩阵(m>n), 称线性方程组 Ax=b (1) 为超定方程组; 这里x∈Rn,b∈Rm. 如果A的秩r(A)=n, 称A为列满秩矩阵. 记残向量r=b-Ax,考虑确定一个向量x, 使‖r‖2 2=‖b-Ax‖2 2, 达到最小的问题称 为线性最小二乘问题, 这样的x称为方程组(1) 的最小二乘解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1
i 1
m
m
[F(xi ) P(xi ) P(xi ) yi ]2 [P(xi ) yi ]2
i 1
i 1
0 m
m
[F(xi ) P(xi )]2 2 [F(xi ) P(xi )][P(xi ) yi ]
i 1
i 1
注: L-S method 首先要求设定 P(x) 的形式。若设
第六章 曲线拟合与函数逼近
/* Approximation Theory */
仍然是已知 x1 … xm ; y1 … ym, 求一个简单易 算的近似函数 P(x) f(x)。
但是 ① m 很大; ② yi 本身是测量值,不准确,即 yi f (xi)
这时没必要取 P(xi) = yi , 而要使 P(xi) yi 总体上尽可能小。
x
方案一:设
y
P(x)
x ax b
求
a
和
b
使得
(a,b)
m i 1
(axixi
b
yi )2
最小。
线性化
/*
leiBqnuuetaaThthriaaieozkvyna,eesttiifhtoooeernlaisany*se/ysa:at!nerdmiW令zebeoiiftjsYu…st
1 y
,
X
2
ak
0
ak
m
2 [P(xi )
i 1
yi
]
P( xi ak
)
mn
2
[
a
j
x
j i
yi ]
x
k i
i1 j0
n
m
m
2
aj
x jk i
yi xik
j0
i 1
i 1
m
m
记 bk xik , ck yi xik
i1
i1
b00
...
bn0
... b0n a0 c0
...
...
1 x
,则
Y a bX n就on是lin个ear线! 性问题
将( xi , yi ) 化为( X i ,Yi ) 后易解 a 和b。
例 用 p( x) x 来拟合 x 1 2 3 4 。
ax b
y 4 10 18 26
§1 L-S Approximating Polynomials
方案二:设 y P( x) a eb/ x ( a > 0, b > 0 )
常见做法:
不可导,求解困难 太复杂
➢
使
max |
1 i m
P( xi
)
yi
|
最小
/*
minimax
problem
*/
m
➢ 使 | P( xi ) yi | 最小
i 1
m
➢ 使 | P( xi ) yi |2 最小 /* Least-Squares method */ i 1
§1 最小二乘拟合多项式 /* L-S approximating polynomials */
... ...
x1n ...
... xmn
则 uT B u uTΦTΦ u || Φ u ||22 0
B为正定阵,若则不非然奇,异则,所以法方程组存在唯一解。 存在一个 u 0 Rn1 使得 Φ u 0 …
n
即
j0
x
j k
uYj ou0on,Wlyakgitavae1s,emc..eo. n,admc!ritical
y 4 10 18 26
§2 正交多项式与最小二乘拟合
/* Orthogonal Polynomials & Least-Squares Approximation */
已知 x1 … xm ; y1 … ym, 求一个简单易算的近
似函数
P(x)
f(x)
使得
m
|
P(xi )
yi
|2
最小。
i 1
已知 [a, b]上定义的 f(x),求一个简单易算的
确定多项式 P( x) a0 a1 x ... an xn,对于一组数 m
据(xi, yi) (i = 1, 2, …, n) 使得 [P( xi ) yi ]2 达到极小, i 1
这里 n << m。
实际上是 a0, a1, …, an 的多元函数,即
[ ] (a0
在
,的a1 极, ...值, a点n )应 法有i/m*1/方r*enag程o0rre组msa0sa回(1,il或oxe归nkiq正cu系o0.a规.,e.t数.if.o方.f,inacnsn程iex*n/in组ts)*y/ i
近似函数
P(x)
使得
b
a[P(x)
f ( x)]2dx
最小。
定义 线 性 无 关 /* linearly independent */ 函 数 族 { 0(x),
n
意 b = (b0 b1 … bn )T 对应的多项式 F(x) bj x j 必有
j0
m
m
(a ) [P( xi ) yi ]2 [F ( xi ) yi ]2 (b)
i 1
i 1
m
m
证明:(b) (a) [F ( xi ) yi ]2 [P( xi ) yi ]2
n=m1,则可取 P(x) 为过 m 个点的m1阶插值多
项式,这时 = 0。
P(x) 不一定是多项式,通常根据经验确定。
例
用p( x) a0 a1 x a2 x2 来拟合
x y
1234 4 10 18 26
。
例: y
§1 L-S Approximating Polynomials
(xi , yi) , i = 1, 2, …, m
point,
x1, ... , xm 是butnit’阶s n多ot 项nec式essarily a
P( x) u0 u1 x ..m. inuinmxnu的m p根oint !
§1 L-S Approximating Polynomials
定理 Ba = c 的解确是 的极小点。即:设 a 为解,则任
...
...
...
bn n
an
cn
§1 L-S Approximating Polynomials
定理 L-S 拟合多项式存在唯一 (n < m)。
证明:记法方程组为 Ba = c .
则有
B ΦTΦ c ΦT y
其中
Φ 1...
x1 ...
x12 ...
1 xm xm2
对任意 u 0 Rn1 ,必有 Φ u 0。
线性化:由
ln
y
ln
a
b x
可做变换
Y ln y ,
X
1 x
,
A ln a ,
B b
Y yi ) 化为( X i ,Yi ) 后易解 A 和B
a eA , b B , P(x) a eb/x
HW: p.233 #7,#9, #10,#11
例 用 p( x) aeb/ x 来拟合 x 1 2 3 4 。