有限元分析复习内容汇总

合集下载

有限元分析基础(推荐完整)

有限元分析基础(推荐完整)

图1-5 驾驶室受侧向力应力云图
图1-6 接触问题结构件应力云图
10
第一章 概述
图1-7 液压管路速度场分布云图
图1-8 磨片热应力云图
图1-9 支架自由振动云图
11
第二章 结构几何构造分析
2.1 结构几何构造的必要性 2.2 结构计算基本知识 2.3 结构几何构造分析的自由度与约束 2.4 自由度计算公式
(1)结点: ① 铰结点;② 刚结点;③ 混合结点。 (2)支座: ① 活动铰支座;② 固定铰支座 ;
③ 固定支座 ;④ 定向支座
15
第二章 结构几何构造分析
2.2.2 结构的分类与基本特征
(1) 按结构在空间的位置分 结构可分为平面结构和空间结构两大类
(2) 按结构元件的几何特征分 ① 杆系结构: 梁、拱、桁架、刚架、桁构结构等 。 ② 板壳结构 ③ 实体结构实体结构的长、宽、高三个尺寸都很 大,具有同一量级。 ④ 混合结构
d. 超静定结构中的多余约束破坏后,结构仍然保持 几何不变性,因而仍有一定的承载能力, 不致整个结构 遭受破坏。
e. 超静定结构由于具有多余的约束,因而比相应的 静定结构具有较大的刚度和稳定性, 在载荷作用下,内 力分布也较均匀,且内力峰值也较静定结构为小。
18
第二章 结构几何构造分析
2.2.3 结构对称性的利用
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。 (1) 具有奇数跨的刚架
① 正对称载荷作用
(a) 对称刚架
(b) 变形状态分析
(c) 对称性利用
图2-22对称性利用示意图
19

材料力学有限元分析知识点总结

材料力学有限元分析知识点总结

材料力学有限元分析知识点总结材料力学是研究物质力学性质和行为的学科,而有限元分析是一种利用计算机数值模拟方法对工程问题进行分析和计算的技术。

本文将从理论基础、有限元建模、求解方法和误差分析等方面总结材料力学有限元分析的关键知识点。

一、理论基础1. 材料力学基本原理:包括应力、应变、变形和弹性模量等基本概念,以及胡克定律和应力应变关系等基本理论。

2. 有限元法基本原理:包括将实际结构离散为有限个单元,建立节点和单元之间的关系,以及应用物理原理和数值方法求解得到数值解的基本思想。

3. 有限元离散方法:包括将连续问题离散化为有限个子问题,建立单元刚度矩阵和全局刚度矩阵,以及应用有限元法进行力学问题分析的基本步骤。

二、有限元建模1. 几何建模:将实际工程结构进行几何建模,通常使用CAD软件进行建模,包括建立节点和单元等。

2. 材料建模:根据实际材料的物理性质和力学行为,选择适当的材料模型,如线性弹性模型或非线性材料模型。

3. 网格划分:将结构离散为有限个单元,通常使用三角形单元或四边形单元进行网格划分,确保离散后的单元足够小且保证几何形状的准确性。

三、求解方法1. 单元应力应变计算:通过数值方法计算每个单元的应力和应变,可采用解析解、数值积分或有限元法求解。

2. 节点位移计算:根据应力应变关系和单元的几何形状,计算每个节点的位移,从而得到结构的变形情况。

3. 刚度矩阵的建立:根据单元的几何形状、材料性质和节点位移等信息,建立单元刚度矩阵和全局刚度矩阵,用于力学方程的求解。

4. 边界条件的施加:根据实际工程问题,施加适当的边界条件,如固支约束和荷载条件等,从而得到合理的求解结果。

四、误差分析1. 收敛性分析:通过逐步增加单元数目或减小网格大小,观察求解结果是否趋近于稳定值,从而判断数值解的收敛性。

2. 精度分析:通过与解析解或实验结果进行比较,评估数值解的精度,包括位移误差、应力误差和能量误差等指标。

3. 稳定性分析:判断数值解的稳定性和可靠性,防止数值发散或出现明显的计算错误。

有限元期末复习提纲及整理

有限元期末复习提纲及整理

有限元期末复习提纲1.弹性矩阵,应变矩阵,应力矩阵的定义微分体表面上的应力可分解为一个正应力和两个切应力。

垂直于表面的应力称为正应力;平行于表面的应力称为切应力。

应力矩阵弹性矩阵应变矩阵2.节点自由度定义,写出平面应力三角形单元,刚架单元与桁架单元(平面与空间),薄板弯曲单元,实体元的节点自由度节点自由度:节点所具有的位移分量的数量平面应力三角形单元:节点自由度2,单元自由度数=2*3=6平面刚架单元:节点自由度3(2个移动自由度,1个旋转自由度),单元自由度数=3*2=6空间刚架单元:节点自由度6,单元自由度数=6*2=12平面桁架单元:节点自由度2,单元自由度数=2*2=4空间桁架单元:节点自由度3,单元自由度数=3*2=6薄板弯曲单元:实体元:4节点四面体单元:节点自由度3,单元自由度数=3*4=123.平面应力问题的定义和特点1. 平面应力问题如果空间物体满足以下两个条件,则该问题可以按平面应力问题考虑。

(1)某方向尺寸较另外两方向的尺寸小得多,即近似为一等厚的薄板;(2)受到平行于板面的沿厚度方向均匀分布的面力;根据上述条件,在上图中,图(a)所示的结构属于平面应力问题。

而图(b)中结构的载荷与板平面不平行,图(c)中结构的厚度t与截面尺寸差不多,因此不是平面应力问题。

一般地,当结构厚度t≤L/15(L为截面特征尺寸)时,结构可作为平面应力问题。

如车辆的墙板顶板等受拉压的平板,内燃机的飞轮,链传动的链片以及宽度较小的直齿圆柱齿轮等。

4.杆件结构的分类及其特点杆件结构定义:当结构长度尺寸比两个截面方向的尺寸大得多时,这类结构称为杆件曲杆直杆等截面杆(1)桁杆,和其他结构采用铰相连接,如图(a)所示,其连接处可以自由转动,因此这类结构只承受拉压作用,内部应力为拉压应力。

影响应力的几何因素主要是截面面积。

由桁杆组成的杆系称为桁架,若杆系和作用力均位于同一平面内,则称为平面桁架,否则称为空间桁架。

有限元分析基础复习要点

有限元分析基础复习要点

复习要点复习要点1.弹性力学解的形式以及有限元解的性质。

2.历史上首次使用的单元形状。

3.有限元方法的应用场合及其发展。

4.有限元方法的研究人员有几类?5.有限元软件的架构。

6.等参元的构造方法和性质。

7.计算模态分析的数学本质。

8.梁理论的种类及特点?9.有限元解与网格密度的关系,与理论解的关系。

10.等参元的局部坐标系特点。

11.不同的梁理论适用范围。

11.剪切锁死,沙漏,减缩积分,零能模式的概念。

12.显示算法和隐式算法。

13.有限元软件的发展趋势。

14.板、壳、膜单元的定义。

15.接触算法的基本算法及其特点。

16.两种模态分析方法的特点。

17.圣维南原理。

18.常用的强度理论。

19.有限元刚度矩阵的特点。

20.应变矩阵的特点。

21.有限元对网格的要求。

22.压力容器的建模方法?油罐,储气罐,槽车,对称或不对称的建模方法23.机械联接面上接触网格的划分。

24.模态计算结果对机床结构优化的意义。

25.已知单元插值函数和结点位移,求给定点的位移。

26.已知单元插值函数和结点温度,求给定点的温度。

27.传热学的三个基本定律。

课后练习汇总(一)用软件进行有限元分析的几个步骤是什么?(二)基于位移的有限元法求出的是结点位移还是单元的位移?(三)机械工程中,有限元法有什么用处?(四)列举几个有限元法可以应用的工程学科。

(五)什么是插值函数?(六)什么是广义胡克定律?(七)有限元软件中常见的单元类型有几种?分别说明这几种单元的应用场合(八)传统的机械设计中,零件强度的校核方法与现代的机械设计有和不同?(九)有限元方法的实施主要是依靠手工计算还是商业软件?(十)有限元法能够用于固体结构的分析,是否可以用于流体、热、电磁场、声场的分析?(十一)传统的机械零件强度校核中,一般要求零件形状简单,可以简化成杆或者梁,有限元方法有这方面的要求么?(十二)CAD建模得到的模型与有限元的模型之间有什么联系?(十三)列举常用的5个常用有限元软件?(十四)工程中常用的模拟、仿真技术除了有限元方法以外,还有哪几种?(十五)主流的有限元软件架构一般是怎样的?(十六)CAD软件经常在有限元软件中经常扮演什么角色?(十七)有限元分析在机械设计中能起到什么作用?(十八)有限元方法与弹性力学的关系是什么?(十九)什么是材料的真应力-应变曲线,跟有限元分析有什么关系?(二十)什么是Tresca应力和Mises应力?分别说明其应用场合。

有限元复习提纲

有限元复习提纲

复习提纲1.弹性力学问题的基本假设;a.连续性假设根据这一假设,物体的所有物理量,例如位移、应变和应力等均成为物体所占空间的连续函数。

b.均匀性假设假设弹性物体是由同一类型的均匀材料组成的,物体各个部分的物理性质都是相同的,不随坐标位置的变化而改变。

在处理问题时,可以取出物体的任意一个小部分讨论。

c.各向同性假设假定物体在各个不同的方向上具有相同的物理性质,物体的弹性常数不随坐标方向变化。

像木材、竹子以及纤维增强材料等,属于各向异性材料,它们是复合材料力学研究的对象。

d.完全弹性假设应力和应变之间存在一一对应关系,与时间及变形历史无关。

满足胡克定理。

e.小变形假设在弹性体的平衡等问题讨论时,不考虑因变形所引起的几何尺寸变化,使用物体变形前的几何尺寸来替代变形后的尺寸。

采用这一假设,在基本方程中,略去位移、应变和应力分量的高阶小量,使基本方程成为线性的偏微分方程组。

2.有限元法的基本思想;有限元法的基本思想是:把连续的几何结构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量,并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题,求解得到节点值后就可以通过设定的插值函数确定单元上以至整个集合体上的场函数。

3.有限元分析的基本步骤;一般完整的有限元程序包含前置处理、解题程序和后置处理。

前置处理:(1)建立有限元素模型;(2)材料特性;(3)元素切割的产生;(4)边界条件;(5)负载条件。

解题程序:(1)元素刚度矩阵计算;(2)系统外力向量的组合;(3)线性代数方程的求解;(4)通过资料反算法求应力、应变、反作用等。

后置处理:将解题部分所得的解答如变位、应力、反力等资料,通过图形接口以各种不同表示方式把等位移图、等应力图等显示出来。

有限元复习资料分析

有限元复习资料分析

弹性力学与材料力学课程的区别(1)研究对象材料力学:研究杆、梁、柱、轴等杆状构件(长度远大于厚度和宽度的构件) ,一维数学问题求解的基本方程是常微分方程。

弹性力学:一般弹性实体结构,三维弹性固体、板状结构、杆件等。

“完全弹性”是对弹性体变形的抽象。

完全弹性使得物体变形成为一种理想模型。

完全弹性是指在一定温度条件下,材料的应力和应变之间一一对应的关系。

这种关系与时间无关,也与变形历史无关。

材料的应力和应变关系通常称为本构关系(物理关系或者物理方程)弹性体分为线性弹性体和非线性弹性体弹性力学基本假设1.连续性假设2.均匀性假设3.各向同性假设4.完全弹性假设5.小变形假设6.无初始应力假设2. 均匀性假设假设弹性物体是由同一类型的均匀材料组成的。

因此物体各个部分的物理性质都是相同的,不随坐标位置的变化而改变。

即物体的弹性性质处处都是相同的。

工程材料,例如混凝土颗粒远远小于物体的几何形状,并且在物体内部均匀分布,从宏观意义上讲,也可以视为均匀材料。

对于环氧树脂基碳纤维复合材料,不能处理为均匀材料。

3. 各向同性假设假定物体在各个不同的方向上具有相同的物理性质,这就是说物体的弹性常数将不随坐标方向的改变而变化。

宏观假设,材料性能是显示各向同性。

当然,像木材,竹子以及纤维增强材料等,属于各向异性材料。

这些材料的研究属于复合材料力学研究的对象。

4. 完全弹性假设对应一定的温度,如果应力和应变之间存在一一对应关系,而且这个关系和时间无关,也和变形历史无关,称为完全弹性材料。

完全弹性分为线性和非线性弹性,弹性力学研究限于线性的应力与应变关系。

研究对象的材料弹性常数不随应力或应变的变化而改变。

——服从胡克定律5. 小变形假设假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。

在弹性体的平衡等问题讨论时,可以不考虑因变形所引起的尺寸变化。

忽略位移、应变和应力等分量的高阶小量,使基本方程成为线性的偏微分方程组。

有限元复习提纲

有限元复习提纲

有限元复习提纲第一章1、有限元法是分析连续体的一种近似计算方法,简言之就是将连续体分割为有限个单元的离体的数值方法。

有限元分析方法是广泛应用于工程实体建模、结构分析与计算的有效方法。

有限元法是一种适用于大型或者复杂物体结构的力学分析与计算的有效方法。

2、有限元法的实现过程:对象离散化----单元分析----构造总体方程----求解方程----输出结果3、建立有限元方程的方法:(1)直接方法:指直接从结构力学引申得到。

直接方法具有过程简单、物理意义明确、易于理解等特点。

(2)变分方法:常用方法之一,主要用于线性问题的模型建立。

(3)加权残值法:对于线性自共轭形式方程,加权残值法可得到和变分法相同的结果,如对称的刚度矩阵。

4、有限元法的基本变量:有限元分析过程中的常用变量包括体力、面力、应力、位移和应变等体力:指分布在物体体积内部各个质点上的力,如重力、惯性力等。

面力:指分布在物体表面上的力。

如风力、接触力、流体力、阻力等。

应力:指在外力作用下其物体产生的内力。

位移:指节点的移动。

在约束条件下的节点位移称作虚位移,是指可能发生的位移。

应变:指在外力作用下其物体发生的相对变形量。

是无量纲的变量。

线段单位长度的伸缩,称为正应变。

在直角坐标中所取单元体为正六面体时,单元体的两条相互垂直的棱边,在变形后直角改为变量定义为剪应变、角应变或切应变。

切应变以直角减少为正,反之为负。

5、正应力和剪应力的概念第二章1、ANSYS软件的使用主要包括4方面:初初始设置、前处理、求解计算和后处理。

2、前处理主要包括:①单元类型选择; ②定义材料参数;③建立几何模型;④划分单元网格;⑤设置约束条件和施加外载荷等3、单元实常数的定义。

实常数是有限元分析过程中需要用到单元类型的补充几何特性如杆单元的横截面积、梁单元的横截面积和惯性矩、板壳单元的厚度等等,是计算求解的重要参数。

4、弹性模量和泊松比弹性模量:E=σ/ε材料在单向受拉或受压时,纵向正应力σ=F/A与线应变ε=?l/l 的比值,其单位与应力的单位相同泊松比:μ=|ε′/ε|,材料在单向受拉或受压时,横向正应变ε′=?b/b 与纵向正应变ε=?l/l 之比的绝对值。

有限元基本知识归纳

有限元基本知识归纳

有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。

在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。

2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处N i=1,其它节点N i=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。

可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。

4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。

即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。

称前者为母单元,后者为子单元。

还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。

如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。

5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。

每个部分称为一个单元,连接点称为结点。

对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。

这种单元称为常应变三角形单元。

常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。

有限元法基础重点归纳(精)

有限元法基础重点归纳(精)
29、常应变三角形单元:当单元确定后。矩阵B是常量,单元中任一点的应变分量也是常量的单元。
30、有限元法的任务:建立和求解整个弹性体的节点位移和节点力之间的关系的平衡方程。31、单元刚度矩阵:表达了单元节点位移与节点力之间的转换关系。
32、单元刚度矩阵的性质:①单元刚度矩阵中每个元素有明确的物理意义②K e是对称矩阵③K e的每一行或每一列元素之和为零,因此K e为奇异矩阵④K e不随单元的平行移动或作n π角度的转动而改变。33、刚度集成法集成规律:①先对每个单元求出其单元刚度矩阵K e ,而且以分块形式按节点编号顺序排列②将单元刚度矩阵扩大阶数为2n*2n ,并将单元刚度矩阵中的子块按局部码与总码的对应关系,搬到扩大后的矩阵中,形成单元贡献矩阵K e。③将所有单元贡献矩阵同一位置上的分块矩阵简单叠加成总体刚度矩阵中的一个子矩阵,各行各列都按以上步骤即形成总体刚度矩阵K。34、整体刚度矩阵的性质:①整体刚度矩阵是对称矩阵②整体刚度矩阵中每一元素的物理意义:整体刚度矩阵的第一列元素代表使第一个节点在x方向有一单元位移,而其余节点位移皆为零时必须在节点上施加的里。对于K的其余各列也有类似意义③整体刚度矩阵K的主对角线上的元素总是正的④整体刚度矩阵K是一个稀疏阵⑤整体刚度矩阵K是一个奇异阵。35、带形矩阵:整体刚度矩阵K的非零元素分布在以主对角线为中心的斜带形区域内的矩阵。
γxy
=E 1−μ
2∗
1−μ2
γxy
42、制造位移函数:{u (x,y =α1+α2x +α3y
v (x,y =α4+α5x +α6y
43、等参单元精度比四边形单元高,四边形精度比三角形精度高。
44、轴对称问题:很多工程物件,它们的几何形状承受的载荷以及约束条件都对称于其一固定轴,这即为对称轴,此时载荷作用下的位移、应变和应力也对称于该对称轴的问题。45、等参数单元:优点:①形状方位任意,适应性好,精度高,容易构造高阶单元②具有统一形式,规律性强,采用数值积分算,程序处理方便③高阶等参单元精度高,描述复杂边界,形状能力强,所需单元少。缺点:①单元各方向尺寸要尽量接近②单元边界不能过于曲折,不能有拐点折点,尽量接近直线或抛物线③边之间夹角要尽量接近直角④单元形状不能过度畸变,边中节点不能过于偏离中间。46、有限元法基础理论:弹性力学,材料力学

有限元考试复习资料(华东交通大学)

有限元考试复习资料(华东交通大学)

有限元考试复习资料(含习题答案)1试说明用有限元法解题的主要步骤。

(1)离散化:将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上互相联系,即只有结点才能传递力。

(2)单元分析:根据弹性力学的基本方程和变分原理建立单元结点力和结点位移之间的关系。

(3)整体分析:根据结点力的平衡条件建立有限元方程,引入边界条件,解线性方程组以及计算单元应力。

(4)求解方程,得出结点位移(5)结果分析,计算单元的应变和应力。

2.单元分析中,假设的位移模式应满足哪些条件,为什么?要使有限元解收敛于真解,关键在于位移模式的选择,选择位移模式需满足准则:(1)完备性准则:(2)连续性要求。

P210面简单地说,当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于0时,有限元解趋于真正解,称此单元为协调单元;当单元选取的位移模式满足完备性准则但不完全满足单元之间的位移及其导数连续条件时,称为非协调单元。

3.什么样的问题可以用轴对称单元求解?在工程问题中经常会遇到一些实际结构,它们的几何形状、约束条件和外载荷均对称某一固定轴,我们把该固定轴称为对称轴。

则在载荷作用下产生的应力、应变和位移也都对称此轴。

这种问题就称为轴对称问题。

可以用轴对称单元求解。

4.什么是比例阻尼?它有什么特点?其本质反映了阻尼与什么有关?答:比例阻尼:由于多自由度体系主振型关于质量矩阵与刚度矩阵具有正交性关系,若主振型关于阻尼矩阵亦具有正交性,这样可对多自由度地震响应方程进行解耦分析。

比例阻尼的特点为具有正交性。

其本质上反应了阻尼与结构物理特性的关系。

5.何谓等参单元?等参单元具有哪些优越性?①等参数单元(简称等参元)就是对坐标变换和单元内的参变量函数(通常是位移函数)采用相同数目的节点参数和相同的插值函数进行变换而设计出的一种单元。

①优点:可以很方便地用来离散具有复杂形体的结构。

由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。

有限元知识点总结

有限元知识点总结

有限元分析及其应用-2010;思考题:1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的?答:基本思想:几何离散和分片插值。

基本步骤:结构离散、单元分析和整体分析。

离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。

当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。

2、有限元法与经典的差分法、里兹法有何区别?区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低;里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解;有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。

3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试1)建立其受拉伸的微分方程及边界条件;2)构造其泛函形式;3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。

4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。

5、什么是节点力和节点载荷?两者有何区别?答:节点力:单元与单元之间通过节点相互作用节点载荷:作用于节点上的外载6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)?答:单元刚度矩阵:对称性、奇异性、主对角线恒为正整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。

Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。

7、单元的形函数具有什么特点?有哪些性质?答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。

形函数Ni在i节点的值为1,而在其他节点上的值为0;单元内任一点的形函数之和恒等于1;形函数的值在0~1间变化。

有限元ANSYS复习要点

有限元ANSYS复习要点

有限元ANSYS复习要点形函数的物理意义:单元节点位移对单元内任⼀点位移的贡献程度。

⼆、收敛性分析: 1、当⽹格⽆限⼩时,有限元解收敛于⼒学模型的精确解。

2、位移元解是下限解三、位移元收敛准则1、完备性准则(位移函数必须能反映单元的刚体位移和常应变状态。

)2、协调性准则(位移函数必须保证在相邻单元的接触⾯上位移连续或位移以及⼀阶导数连续。

)杆、平⾯和空间应⼒问题——C0连续(位移连续)梁、板壳问题——C1连续(位移及其⼀阶导数连续)平⾯和空间问题——位移连续保证相邻单元既不会开裂,也不会重叠。

1、平⾯空间结构问题:位移函数只要含有线性项和常数项就是完备的。

2、平⾯结构问题:3个刚体位移;3个常应变。

3.空间结构问题:6个刚体位移;6个常应变。

2、协调性:(1、矩形单元在边界上的位移是线性函数。

2、在边界上有两个公共节点,且有相同位移。

3、保证了相邻单元在其公共边界上位移的连续性.)⼦块Kij的物理意义:当节点j处发⽣单位位移,⽽其他节点固定时,在节点i上所施加的⼒(4)若两个三⾓形相似,且编号顺序采⽤⼀致的标记⽅法,两三⾓形单元的单元刚度矩阵⼀致。

(5)单元刚阵所有奇数⾏(列)的对应元素之和为零,所有偶数⾏(列)的对应元素之和也为零。

提⾼单元的精度:(1、增加节点2、增加旋转⾃由度3、增加插值项数(不协调模式)Q8 Q9 LST单元可以避免剪切锁定,可以⽐较好的模拟弯曲。

2.平⾯应⼒:结构形状特点:沿Z⽅向尺⼨远⼩于x,y⽅向尺⼨受⼒特点:载荷平⾏板中⾯并沿厚度⽅向均匀分布。

板前后表⾯上没有外⼒作⽤应⼒特点:由于板很薄,整个平板的所有各点沿Z轴的正应⼒分量和垂直于Z轴的⾯上的剪应⼒均为0;应⼒分量,应变分量,位移分量都认为不沿厚度变化。

平⾯应变:1)结构形状特点:沿Z⽅向尺⼨远⼤于x,y⽅向尺⼨3)变形特征:任⼀截⾯都是对称⾯2)受⼒特点:物体柱⾯上承受平⾏横截⾯并沿长度⽅向均匀分布的⾯⼒,体⼒也平⾏横截⾯并沿长度⽅向均匀分布。

有限元分析复习内容汇总

有限元分析复习内容汇总

1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩 .5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。

7、在弹性和小变形下,节点力和节点位移关系是线性关系。

8、弹性力学问题的方程个数有15个,未知量个数有15个。

9、弹性力学平面问题方程个数有8,未知数8个。

10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态16、在进行节点编号时,同一单元的相邻节点的号码差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为__双线性位移模式_19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系21、矩形单元边界上位移是连续变化的1. 诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2. 有限元法的基本思想是什么答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。

其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。

3. 有限元法的分类和基本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。

有限元分析复习资料打印版

有限元分析复习资料打印版

有限元分析复习资料打印版有限元复习资料1.简述有限单元法的应⽤范围答:①⼯程地质现象机制的研究;②⼯程区岩体应⼒边界条件或区域构造⼒的反馈;③⼯程岩⼟体位移场和应⼒场的模拟;④岩⼟体稳定性模拟2.简述有限元单元法的基本原理答:有限元单元法是随着电⼦计算机的发展⽽迅速发展起来的⼀种现代计算⽅法。

它是50年代⾸先在连续体⼒学领域----飞机结构静,动态特性分析中应⽤的⼀种由此奥的数分析⽅法,随后很快⼴泛的应⽤于求解热传导。

电磁场、流体⼒学等连续性问题。

有限元分析计算的思路和做法可归纳如下:①物体离散化将整个⼯程结构离散为由各个单元组成的计算模型,这⼀步称作单元剖分。

离散散后单元与单元之间利⽤单元的节点相互连接起来;单元节点的设置、性质、树⽊等应是问题的性质,描述变形形态的需要和计算进度⽽定(⼀般情况但愿划分⽉息则描述变形情况⽉精确,及⽉接近实际变形,但计算两越⼤)。

所以有限元中分析的结构已不是原有的物体或结构物,⽽是同新材料的由众多单元以⼀定⽅式连接成的离散物体。

这样,⽤有限元分析计算所获得的结果只是近似的。

如果划分单元数⽬⾮常多⽽⼜合理,则所获得的结果就与实际情况相符合。

②单元特性分析A.选择位移模式在有限单元法中,选择节点位移为基本未知量称为位移法;选择节点⼒作为基本未知量时称为⼒法;取⼀部分节点⼒和⼀部分节点位移作为基本未知量时称为混合法。

位移法易于实现计算机⾃动化,所以,在有限单元法中位移法应⽤范围最⼴。

当采⽤位移法时,物体或结构离散化之后,就可把单元总的⼀些物理量如位移,应变和应⼒等由节点位移来表⽰。

这时可以对单元中位移的分布采⽤⼀些能逼近原原函数的近似函数予以描述。

通常,有限元法我们就将位移作为坐标变量的简单函数。

这种函数称为位移模式或位移函数,如y=a其中a 是待定系数,y是与坐标有关的某种函数。

B.分析但愿的⼒学性质根据单元的材料性质、形状、尺⼨、节点数⽬、位置及其含义等,找出单元节点⼒和节点位移的关系式,折中单元分析中的关键⼀部。

有限元考点复习总结

有限元考点复习总结

填空与选择题 1并行计算是一种提高效率的计算。

2.材料的主要特性:弹性模量、泊松比、硬化指数、屈服强度。

3.有限元方法有3类分为位移法(以结点位移为未知量),力法,混合法。

3.数值模拟技术:以电子计算机为手段,通过数值计算和图像显示的方法解决工程问题。

5.垂直对称面上的结点位移为零。

6单元划分常见单元类型:六面体单元和四面体单元,Deform 常用四面体单元。

7.四面体单元:每个结点上有两个位移,整个单元有六个结点位移,i u i v 表示结点y x i ,处方向的位移,单元结点位移列阵:{}[]T m m j j i i e v u v u v u q =。

单元应变公式:{}[]{}e q B =ε;单元应力公式:{}[]{}εσD =;[]B 指应变与结点位移的关系矩阵;[]D 指应力应变关系矩阵8.常用商业有限元软件:LS —DYSA 、eta/DYNAFORM 、ABAQUS 、ANSYS9.Deform3D能导入的几何模型数据格式:STL、UNV、GEO、IGS、NAS、PDA。

10.Deform3D 的单位包括:公制SI 和英制EI11.后处理常用的显示方式:云图显示、结点追踪和切片。

12.摩擦模型分为:库伦摩擦、剪切摩擦、混合摩擦213.增量步长的定义可以用位移增量和时间增量两种方式定义。

14. 实际塑性成形问题涉及的三大力学非线性问题:几何非线性、材料非线性和边界非线性15.每个增量步的计算需要迭代两次。

16.自适应单元技术包括自适应重划分和自适应加密。

原因:有限元模拟数值解的精度依赖于单元结构。

17.四边形单元常见的畸形:自交叉、内凹、长宽比太大18.单元自适应加密的规则:单元的每条边不能多于两个单元与之相邻(注:适用于三角形和四边形单元) 19.库伦摩擦模型的摩擦系数取值区间(0,0.5);剪切模型的摩擦因子取值区间(0,1)20.大部分塑性成形工艺具有非稳态变形的特点。

有限元基础理论复习资料--郎以墨

有限元基础理论复习资料--郎以墨

有限元基础理论考试复习资料1.有限元分析的步骤是怎样的?答:(1)力学模型的确定,建立积分方程。

(2)将结构进行离散化,包括单元划分、结点编号、单元编号、结点坐标计算、位移约束条件确定。

(3)单元函数确定,等效结点力的计算。

(4)单元分析,刚度矩阵的计算,先逐个计算单元刚度,再组装成整体刚度矩阵。

(5)总体分析,建立整体平衡方程,引入约束条件,求解结点位移。

(6)由结点位移计算单元应变及应力。

2.有限元(FEM)离散化体现在哪几个方面?答:1.物体本身离散化2.边界条件离散化3.载荷离散化3.有限单元法的基本思想是什么?答:有限单元法的基本思想是将物体(即连续的求解域)离散成有限个且按一定方式相互联结在一起的单元的组合,来模拟或逼近原来的物体,从而将一个连续的无限自由度问题简化为离散的有限自由度问题求解的一种数值分析法。

4.什么是单元离散化?答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。

每个部分称为一个单元,连接点称为结点。

5.连续体结构分析有哪几种基本假定?答:(1)连续性假设;(2)完全弹性假设;(3)均匀性假设;(4)各向同性假设;(5)小变形假设。

6.形函数是什么?有什么性质?答:反映单元内位移分布状态,称为位移的形态函数,简称形函数。

其有如下性质:1)形函数在各单元节点上的值,具有“本点是1、他点我零”的性质。

2)在单元内任意一点上,三个形函数之和等于1。

3)三角形单元任意一条边上的形函数,仅与该边的两端点坐标有关。

7.什么是单元,节点,节点力,节点位移,节点载荷,体力,载荷,面力,集中力,位移,应力,应变?答:单元:即原始结构离散后,满足一定几何特性和物理特性的最小结构域。

节点:定义于单元上的特殊点,或单元之间的联系点。

节点力:单元与单元间通过节点的相互作用力。

节点位移:在节点处度量的结构位移。

节点载荷:作用于节点上的外载(等效)。

体力:分布于整个弹性体体积内的外力。

有限元分析理论基础-大全-超详细

有限元分析理论基础-大全-超详细

应力的单元平均或节点平均处理方法
最简单的处理应力结果的方法是取相邻单元或围绕节点各单元应力的平均值。
• 1.取相邻单元应力的平均值 这种方法最常用于 3 节点三角形单元中。这种最简单而又相当实用的单元得
到的应力解在单元内是常数。可以将其看作是单元内应力的平均值,或是单元 形心处的应力。由于应力近似解总是在精确解上下振荡,可以取相邻单元应力
们的平均值作为该节点的最后应力值 ,即 i
i
1
m
m

e i
e 1
其中,1~m 是围绕在 i 节点周围的全部单元。取平均值时也可进行面积加权。
有限元法求解问题的基本步骤
1.结构离散化
对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相连;
2.求出各单元的刚度矩阵[K](e)
虚应力原理的力学意义:如果位移是协调的,则虚应力和虚边界约束反力在他们 上面所作的功的总和为零。反之,如果上述虚力系在他们上面所作的功的和为零,则 它们一定是满足协调的。所以,虚应力原理表述了位移协调的必要而充分条件。
虚应力原理可以应用于线弹性以及非线性弹性等不同的力学问题。但是必须指 出,无论是虚位移原理还是虚应力原理,他们所依赖的几何方程和平衡方程都是基于 小变形理论的,他们不能直接应用于基于大变形理论的力学问题。
虚位移原理是平衡方程和力的边界条件的等效积分的“弱”形式; 虚应力原理是几何方程和位移边界条件的等效积分“弱”形式。 虚位移原理的力学意义:如果力系是平衡的,则它们在虚位移和虚应变上所作的 功的总和为零。反之,如果力系在虚位移(及虚应变)上所作的功的和等于零,则它 们一定满足平衡方程。所以,虚位移原理表述了力系平衡的必要而充分条件。一般而 言,虚位移原理不仅可以适用于线弹性问题,而且可以用于非线性弹性及弹塑性等非 线性问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩 .5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。

7、在弹性和小变形下,节点力和节点位移关系是线性关系。

8、弹性力学问题的方程个数有15个,未知量个数有15个。

9、弹性力学平面问题方程个数有8,未知数8个。

10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态16、在进行节点编号时,同一单元的相邻节点的号码差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为__双线性位移模式_19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系21、矩形单元边界上位移是连续变化的1. 诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2. 有限元法的基本思想是什么答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。

其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。

3. 有限元法的分类和基本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。

4. 有限元法有哪些优缺点答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。

缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。

对无限求解域问题没有较好的处理办法。

尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。

5. 梁单元和平面钢架结构单元的自由度由什么确定答:由每个节点位移分量的总和确定6. 简述单元刚度矩阵的性质和矩阵元素的物理意义答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。

7. 有限元法基本方程中的每一项的意义是什么P14答:Q——整个结构的节点载荷列阵(外载荷、约束力);整个结构的节点位移列阵;结构的整体刚度矩阵,又称总刚度矩阵。

8. 位移边界条件和载荷边界条件的意义是什么答:由于刚度矩阵的线性相关性不能得到解,引入边界条件,使整体刚度矩阵求的唯一解。

9. 简述整体刚度矩阵的性质和特点P14答:对称性;奇异性;稀疏性;对角线上的元素恒为正。

10 简述整体坐标的概念P25答:在整体结构上建立的坐标系叫做整体坐标,又叫做统一坐标系。

11. 简述平面钢架问题有限元法的基本过程答:1)力学模型的确定,2)结构的离散化,3)计算载荷的等效节点力,4)计算各单元的刚度矩阵,5)组集整体刚度矩阵,6)施加边界约束条件,7)求解降价的有限元基本方程,8)求解单元应力,9)计算结果的输出。

12. 弹性力学的基本假设是什么。

答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。

13.弹性力学和材料力学相比,其研究方法和对象有什么不同。

答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。

弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。

因此,弹性力学的研究对象要广泛得多。

研究方法:弹性力学和材料力学既有相似之外,又有一定区别。

弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答。

而材料力学虽然也考虑这几方面的条件,但不是十分严格的,材料力学只研究和适用于杆件问题。

14. 简述圣维南原理。

答;把物体一小部分上的面力变换为分布不同但静力等效的面力,但影响近处的应力分量,而不影响远处的应力。

“局部影响原理”15.平面应力问题和平面应变问题的特点和区别各是什么?试各举出一个典型平面应力和平面应变的问题的实例。

答:平面应力问题的特点:长、宽尺寸远大于厚度,沿板面受有平行板的面力,且沿厚度均匀分布,体力平行于板面且不沿厚度变化,在平板的前后表面上无外力作用平面应变问题的特点:Z向尺寸远大于x、y向尺寸,且与z轴垂直的各个横截面尺寸都相同,受有平行于横截面且不沿z向变化的外载荷,约束条件沿z向也不变,即所有内在因素的外来作用都不沿长度变化。

区别:平面应力问题中z方向上应力为零,平面应变问题中z方向上应变为零、应力不为零。

举例:平面应力问题等厚度薄板状弹性体,受力方向沿板面方向,荷载不沿板的厚度方向变化,且板的表面无荷载作用。

平面应变问题——水坝用于很长的等截面四柱体,其上作用的载荷均平行于横截面,且沿柱长方向不变法。

16. 三角形常应变单元的特点是什么?矩形单元的特点是什么?写出它们的位移模式。

答:三角形单元具有适应性强的优点,较容易进行网络划分和逼近边界形状,应用比较灵活。

其缺点是它的位移模式是线性函数,单元应力和应变都是常数,精度不够理想。

矩形单元的位移模式是双线性函数,单元的应力、应变式线性变化的,具有精度较高,形状规整,便于实现计算机自动划分等优点,缺点是单元不能适应曲线边界和斜边界,也不能随意改变大小,适用性非常有限。

17. 写出单元刚度矩阵表达式、并说明单元刚度与哪些因素有关。

答:单元刚度矩阵与节点力坐标变换矩阵,局部坐标系下的单元刚度矩阵,节点位移有关的坐标变换矩阵。

18. 如何由单元刚度矩阵组建整体刚度矩阵(叠加法)?答:(1)把单元刚度矩阵扩展成单元贡献矩阵,把单元刚度矩阵中的子块按其在整体刚度矩阵中的位置排列,空白处用零子块填充。

(2)把单元的贡献矩阵的对应列的子块相叠加,即可得出整体刚度矩阵。

19. 整体刚度矩阵的性质。

答:(1)整体刚度矩阵中每一列元素的物理意义为:欲使弹性体的某一节点沿坐标方形发生单位为移,而其他节点都保持为零的变形状态,在各节点上所需要施加的节点力;(2)整体刚度矩阵中的主对角元素总是正的;(3)整体刚度矩阵是一个对称阵;(4)整体刚度矩阵式一个呈带状分布的稀疏性矩阵。

(5)整体刚度矩阵式一个奇异阵,在排除刚体位移后,他是正定阵。

20. 简述形函数的概念和性质。

答:形函数的性质有:(1)形函数单元节点上的值,具有“本点为一、他点为零”的性质;(2)在单元的任一节点上,三角函数之和等于1;(3)三角形单元任一一条边上的形函数,仅与该端点节点坐标有关,而与另外一个节点坐标无关;(4)型函数的值在0~1之间变换。

21. 结构的网格划分应注意哪些问题.如何对其进行节点编号。

才能使半带宽最小。

P50,P8相邻节点的号码差最小答:一般首选三角形单元或等参元。

对平直边界可选用矩形单元,也可以同时选用两种或两种以上的单元。

一般来说,集中力,集中力偶,分布在和强度的突变点,分布载荷与自由边界的分界点,支撑点都应该取为节点,相邻节点的号码差尽可能最小才能使半带宽最小22. 为了保证解答的收敛性,单元位数模式必须满足什么条件?答:(1)位移模式必须包含单元刚体位移;(2)位移模式必须包含单元的常应变;(3)位移模式在单元内要连续,且唯一在相邻单元之间要协调。

在有限单元法中,把能够满足条件1和条件2的单元称为完备单元,把满足条件3的单元叫做协调单元或保续单元。

23 有限元分析求得的位移解收敛于真实解得下界的条件。

答:1.位移模式必须包含单元的刚体位移,2.位移模式必须包含单元的常应变,3.位移模式在单元内要连续,且位移在相邻单元之间要协调。

24. 简述等参数单元的概念。

答:坐标变换中采用节点参数的个数等于位移模式中节点参数的个数,这种单元称为等参单元。

25. 有限元法中等参数单元的主要优点是什么?答:1)应用范围广。

在平面或空间连续体,杆系结构和板壳问题中都可应用。

2)将不规则的单元变化为规则的单元后,易于构造位移模式。

3)在原结构中可以采用不规则单元,易于适用边界的形状和改变单元的大小。

4)可以灵活的增减节点,容易构造各种过度单元。

5)推导过程具有通用性。

一维,二维三维的推导过程基本相同。

26. 简述四节点四边形等参数单元的平面问题分析过程。

答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵(4)用虚功原理球的单元刚度矩阵,,最后用高斯积分法计算完成。

27. 为什么等参数单元要采用自然坐标来表示形函数?为什么要引入雅可比矩阵?答:简化计算得到形函数的偏导关系。

28.ANSYS软件主要包括哪些部分?各部分的作用是什么?答:1.前处理模块:提供了一个强大的实体建模及网络划分工具,用户可以方便地构造有限元模型。

2.分析计算模块:包括结构分析、流体力学分析、磁场分析、声场分析、压电分析以及多种物理场的耦合分析,可以模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。

3.后处理模块:可将计算后果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示等图形方式显示出来,也可将计算结果以图表、曲线形式显示出来或输出。

29.ANSYS软件提供的分析类型有哪些?答:结构静力分析、机构动力分析、结构非线性分析、动力学分析、热分析、流体力学分析、电磁场分析、声场分析、压电分析。

30.简述ANSYS软件分析静力学问题的基本流程。

答:1.前处理器:1)定义单元类型,2)定义实常数,3)定义材料属性,4)创建实体几何模型,5)划分网络;2.求解器:1)定义分析类型,2)施加载荷和位移约束条件,3)求解;三角形三节点单元的位移是连续的,应变和应力在单元内是常数,因而其相邻单元将具有不同的应力和应变,即在单元的公共边界上和应变的值将会有突变。

相关文档
最新文档