数字信号处理 DSP 英文版课件4.0

合集下载

数字信号处理(第四版)第四章ppt

数字信号处理(第四版)第四章ppt

Digital Signal Processing
© 2013 Jimin Liang
Discrete-Time Systems Outline Discrete-time system examples Classification of DT systems Impulse and step responses Time-domain characteristics of LTI Simple interconnection schemes
Process a given sequence, called the input system, to generate another sequence, called the output sequence, with more desirable properties or to extract certain information about the input signal. DT system is usually also called the digital filter
12
Digital Signal Processing
© 2013 Jimin Liang
Discrete-Time Systems 4.2 Classification of DT systems Stable system
A system is stable if and only if for every bounded input, the output is also bounded, called BIBO stable.
Discrete-Time Systems 4.1 Discrete-time system examples (4) Linear Interpolator Linear factor-2 interpolator

最新版《数字信号处理(英)》精品课件Chap 4 Digital Processing of CT Signals

最新版《数字信号处理(英)》精品课件Chap 4   Digital Processing of CT Signals
4
Normalized digital angular frequency
Example :
CT signal:
xa (t ) A cos(2 f0t ) A cos(0t )
The sampled DT signal:
x[n] A cos(0nT ) 2 A cos(0 n ) A cos(0 n ) T Normalized digital angular frequency 0:
2
• DT signal processing algorithms are being used increasingly;
Simplified Block diagram of a CT signal processed by DT system
xa (t )
x[n] C/D Converter
Chap 4 Digital Processing of CT Signals
Discrete-Time Signal Processing of CTS; Sampling of CT Signals;
Analog Lowpass Filter Design;
1
4.1 Introduction
3
Other additional circuits
• To prevent aliasing, an analog anti-aliasing filter is employed before the S/H circuit; • To smooth the output signal of the D/A converter, which is a staircase-like waveform, an analog reconstruction filter is used.

数字信号处理(英文版)1-连续时间信号系统

数字信号处理(英文版)1-连续时间信号系统

Unit impulse function δ(t)
With a gate signal pτ(t), short the duration τ and keep the unit area
4/τ 2/τ 1/τ
1/τ
-τ/2
τ/2
-τ/4
τ/4
-τ/8 τ/8
When τ0, the amplitude tends to , which means it is impossible to define δ(t) by a regular function.
Typical signals and their representation
Gate signal
p (t ) 0
1
|t |

2
1 -τ/2 τ/2
|t |

2
The gate signal can be represented by unit step signals:

(t )dt (t )dt (t )dt u (t )
0
0

Properties of δ(t)
δ(t) is a even function, that is
δ(t) = δ(-t) We got δ(t) from a gate signal, and gate signal is an even function. It is also easy to give the math show of the even property.
Typical signals and their representation
Sinusoidal Asin(ωt+υ)

《数字信号处理原理》PPT课件

《数字信号处理原理》PPT课件

•Digital signal and image filtering
•Cochlear implants
•Seismic analysis
•Antilock brakes
•Text recognition
•Signal and image compression
•Speech recognition
•Encryption
•Satellite image analysis
•Motor control
•Digital mapping
•Remote medical monitoring
•Cellular telephones
•Smart appliances
•Digital cameras
•Home security
Upper Saddle River, New Jersey 07458
All rights reserved.
FIGURE 1-4 Four frames from high-speed video sequence. “ Vision Research, Inc., Wayne, NJ., USA.
Joyce Van de Vegte Fundamentals of Digital Signal Processing
ppt课件
11
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
Joyce Van de Vegte Fundamentals of Digital Signal Processing

数字信号处理英文影印版课件4-1

数字信号处理英文影印版课件4-1

数字信号处理Digital Signal Processing 电子信息工程系韩建峰KeywordsSections⏹Sampling sinusoids⏹Sampling theorem⏹Discrete-to-Continuous Conversion SummaryLECTURE 1Reading assignments This lecture •Chapter 4•Section 4-1KeywordsPart AContinuous-to-Discrete Conversion Sampling & ReconstructionAliasing & FoldingLECTURE OBJECTIVES•SAMPLING can cause ALIASING •Spectrum for digital signals,x [n]•Normalized Frequencyππωω22ˆ+==ss f f T ALIASINGReviewSignalsSampling Reconstruction•Continuous-time Signal•But the key point is that any computer represent ation is discrete.•So, do sampling!•And, how?()cos()x t A tωϕ=+•Sample a continuous-time signal at equally spaced time instants.Take a “snapshot” every Ts.Speech, audio andso on.•Or, compute the values of a discrete-time signal directly from a formula.2=-+[]53x n n nSAMPLING x(t)•SAMPLING PROCESS•Convert x(t) to numbers x[n]•“n” is an integer; x[n] is a sequence ofvalues•Think of “n” as the storage address inmemory•UNIFORM SAMPLING at t = nTs•IDEAL: x[n] = x(nT)sSAMPLING RATE, f s •SAMPLING RATE (f)s–f=1/T ss•NUMBER of SAMPLES PER SECOND –T= 125 microsec f s= 8000 samples/secs–UNITS ARE HERTZ: 8000 Hz •UNIFORM SAMPLING at t = nT= n/f ss–IDEAL: x[n] = x(nT)=x(n/f s)s•Examples of continuous-time signals exist in the “real-world” outside the computer.•Simple mathematical formula.•More general continuous-time signals can be represented as sum of sinusoids.•So, we will use sinusoidal signal as the basis for our study of sampling.sf s T n A n x ωωωϕω==+=ˆ)ˆcos(][)cos()(][)cos()(ϕωϕω+==+=s s nT A nT x n x t A t x •Change x(t) into x[n] DERIV ATION))cos((][ϕω+=n T A n x s DEFINE DIGITAL FREQUENCYDigital Frequency ωˆ•V ARIES from 0to 2π, as f varies from 0 to the sampling frequency•UNITS are radians, not rad/sec–DIGITAL FREQUENCY is NORMALIZEDss f f T πωω2ˆ==Sample RateHow to select theT sSample TheoremA interesting phenomenon•Exercise 4.1•Is this the only possible answer?Hz 1000at sampled )2400cos()(2==s f t t x π21000[]cos(2400)cos(2.4)cos(0.42)cos(0.4)nx n n n n n πππππ===+=()cos(400)x t t π⇒=Aliasing[]cos(0.4)x n n π=Illustration of aliasingDifferent frequency, but same values at n=0,1,2,3…•2.4πis an alias of 0.4π•Exercise 4.2Aliasing•How does aliasing arise in a mathematical treat ment of discrete-time signal?•The last example:12[]cos(0.4)[]cos(2.4)x n n x n n ππ==2[]cos(0.42)cos(0.4)x n n n n πππ=+=Periodic function with period 2πAliasing Derivation-1and we substitute: t ←n f sIf x (t )=A cos(2π(f + f s )t +ϕ)then: x [n ]=A cos(2π(f + f s )n f s +ϕ)or, x [n ]=A cos(2πf f s n +2π n +ϕ)Aliasing Derivation-22ˆs sfT f πωω==+2π 2()22ˆthen: s s s s sf f f f f f f πππω+==+ˆand we want: []cos()x n A n ωϕ=+If x (t )=A cos(2π(f + f s )t +ϕ)t ←nf sFolded Aliasx (t )=A cos(2π(-f + f s )t -ϕ)SAME DIGITAL SIGNALˆ[]cos()x n A n ωϕ=+x [n ]=A cos((2πf T s )n -2π n +ϕ) x [n ]=A cos((-2πfT s )n +(2π f s T s )n -ϕ)x [n ]=x (nT s )=A cos(2π(-f + f s )nT s -ϕ)Aliasing2ˆs sfT f πωω==+2π 2ˆ2s sfT f πωωπ==-+Folded AliasAlisingPrincipal Aliasingˆˆˆ, 2, 2 integer l l l ωωππω+-=General FormulaSpectrum of a Discrete-Time Signal•PLOT versus NORMALIZED FREQUENCY •INCLUDE ALL SPECTRUM LINES –ALIASES•ADD MULTIPLES of 2π•SUBTRACT MULTIPLES of 2π–FOLDED ALIASES•ALIASES of NEGATIVE FREQS12X*–0.5π12X–1.5π12X0.5π2.5π–2.5πˆω12X12X*12X*1.5π))80/)(100(2cos(][ϕπ+=n A n x 80s f Hz=sf fπω2ˆ=ˆ2sff ωπ=f s =125Hz12X*0.4π12X–0.4π1.6π–1.6πˆω12X12X*))125/)(100(2cos(][ϕπ+=n A n x•DEMO: Strobe Movies 12•What is the meaning of this DEMO?•Can you give us more examples in the real world?f Camera: 30 Frames/s Human Eyessf'fSummary2ˆs sfT f πωω==+2π 2ˆ2s sfT f πωωπ==-+Folded AliasAlisingPrincipal Aliasingˆˆˆ, 2, 2 integer l l l ωωππω+-=General FormulaHomeworkP-4.1Review: Chapter 4, Section 4-1 Preview:Chapter 4, Section 4-2,4-4。

数字信号处理基于计算机的方法英文改编版第四版课程设计

数字信号处理基于计算机的方法英文改编版第四版课程设计

Digital Signal Processing Using Computer-Based Methods -Course Design for the 4th EditionIntroductionDigital Signal Processing (DSP) is an area of study that has witnessed significant growth and advancement in recent times. Technological advancements have made it possible to work with signals and signals processing methods more effectively and efficiently. The use of computers has also contributed significantly to the development of DSP methods. In this course design, we will provide an overview of the Digital Signal Processing course designed for the 4th edition of the book titled Digital Signal Processing Using Computer-Based Methods.Overview of the CourseThis course is designed to provide students with a fundamental understanding of digital signal processing concepts, their applications, and techniques for analyzing signals. The course is divided into eight modules, covering the following topics:1.Introduction to Digital Signal Processing2.Discrete-Time Signals and Systems3.Discrete Fourier Transform4.Z-Transform and Analysis of LTI Systems5.FIR Filter Design6.IIR Filter Design7.Multirate Signal Processing8.DSP Applications in Speech and Image ProcessingThe course will cover both theoretical and practical aspects of DSP, including hands-on experience with MATLAB software. The course involves lectures, discussions, and assignments, which will enable students to develop an in-depth understanding of DSP concepts and their applications.Course ObjectivesThe primary objectives of this course are to: - Develop an in-depth understanding of digital signal processing concepts and techniques - Familiarize students with the use of MATLAB for signal analysis and processing - Develop skills for designing digital filters and analyzing signals using the Fourier and Z-transforms - Provide practical experience with signal processing applications in speech and image processingCourse OutlineModule 1: Introduction to Digital Signal Processing •Basic concepts of digital signal processing•Analog-to-digital conversion•Sampling theorem•Signal quantizationModule 2: Discrete-Time Signals and Systems•Discrete-time signals and their characteristics•Discrete-time systems and their properties•Convolution and correlation of discrete-time signalsModule 3: Discrete Fourier Transform•Fourier series and Fourier Transform•Discrete Fourier Transform (DFT) and its properties •Fast Fourier Transform (FFT) algorithmsModule 4: Z-Transform and Analysis of LTI Systems •Z-Transform and its properties•Transfer function and Frequency Response of LTI systems•Analysis of LTI systems using Z-TransformModule 5: FIR Filter Design•Design of Finite Impulse Response (FIR) filters•Windowing techniques and their effects•Filter design using Fourier SeriesModule 6: IIR Filter Design•Design of Infinite Impulse Response (IIR) filters•Pole-zero locations and their effects•Butterworth and Chebyshev filter designs Module 7: Multirate Signal Processing•Sampling rate conversion using decimation and interpolation•Polyphase decomposition and filter banks•Multistage decimation and interpolation Module 8: DSP Applications in Speech and Image Processing •Speech analysis and synthesis•Speech coding and compression•Image enhancement and restoration•Image compressionEvaluationThe grading for this course will be based on your performance in the following components: - Regularassignments and quizzes: 20% - Mid-term examination: 30% - Final examination: 50%ConclusionThis course in Digital Signal Processing will provide students with a comprehensive understanding of digital signal processing concepts and their applications. The course will focus on fundamental principles, practical applications, and hands-on experience with digital signal processing using MATLAB. Upon successful completion of this course, students will have the skills and knowledge to analyze and design digital signal processing systems.。

数字信号处理 DSP 英文版课件1.4

数字信号处理 DSP 英文版课件1.4

2( A E ) cos(10 t ) 2( B C ) cos(30 t ) 2D cos(20 t ) 2 Fcos(35 t )
(b)理想预滤波,不混迭。y(t)中仅包含 x(t)中 [-20kHz, 20kHz] 内的 频率分量,各自的幅度不变。 之后同例 1.4.4 法求 y a (t ) 。
其中 f A~ F =5, 15, 25, 30, 45, 62.5 kHz,audible frequencies: f A , f B , audible part:
x1 (t ) 2 Acos(10 t ) 2B cos(30 t)
(a) 无预滤波,必混迭。y(t)= x(t)。同例 1.4.4 法求 y a (t ) 。
T 2f / f s (radians/sample)
频闪间隔T内轮子转过的周数:
(1.4.10)
fT f / f s (cycles/sample)
f: physical frequency, , fT :digital frequency 数字频率是模拟角频率和模拟频率相对采样率 f s 归一 化(nomalize)的结果。

x(t )
Example 1.4.1:
A sinusoid: frequency f=10Hz, sampling rate f s =12Hz,
f a =?
Solution: Sampled signal has replicated frequencies: ….10-2*12, 10-12, 10, 10+12, 10+2*12,….. Nyquiste interval: [-6, 6] Reconstructed sinusoid has frequency:

最新版《数字信号处理(英)》精品课件ch8 Digital Filter Structures

最新版《数字信号处理(英)》精品课件ch8 Digital Filter Structures
Note That: In either case , the signal variables and the filter coefficients cannot be represented with infinite precision.
3
Introduction
So, a direct implementation of a digital filter based on either the difference equation or the finite convolution sum may not provide satisfactory performance due to the finite precision arithmetic
18
8.1.3 The Delay-free Loop ProbIem
Analysis of this structure yields
u[n] = w[n] + y[n] y[n] = B(v[n] + Au[n])
which when combined results in
llR system can’t be implemented using the convolution sum, because the impulse response is of infinite length
y[n] k h[k ]x[n k ]

2
Introduction
9
8.1.1 Basic Building Blocks
The computational algorithm of an LTI digital filter can be conveniently represented in block diagram form using the basic building blocks shown below

《数字信号处理教学课件》dsp

《数字信号处理教学课件》dsp
数字滤波器设计
介绍了数字滤波器的基本原理、设计 方法和实现过程,包括IIR和FIR滤波
器的设计。
采样定理
讲解了采样定理的基本概念、原理和 应用,以及采样定理在信号处理中的 重要性。
傅里叶变换
讲解了傅里叶变换的基本概念、性质 和应用,以及傅里叶变换在信号处理 中的重要性。
数字信号处理的发展趋势
深度学习在信号处理中的应用
FFT的实现方式有多种,如递归、迭代 和混合方法等。其中,递归和迭代方 法是最常见的实现方式。
IIR和FIR滤波器设计
IIR滤波器设计
IIR滤波器是一种递归滤波器,其设计方法主要有冲激响应不变法和双线性变换 法。IIR滤波器的优点是相位特性好,但稳定性较差。
FIR滤波器设计
FIR滤波器是一种非递归滤波器,其设计方法主要有窗函数法、频率采样法和优 化方法等。FIR滤波器的优点是稳定性好,但相位特性较差。
在音频、视频、通信等领域,采样定理被广泛应用 ,以将连续的模拟信号转换为离散的数字信号。
量化误差
80%
量化误差定义
由于将连续的模拟信号转换为离 散的数字信号时,每个样本只能 取有限的离散值,导致与实际值 之间的误差。
100%
量化误差的性质
量化误差具有随机性,其大小取 决于输入信号的性质和量化位数 。
对未来学习的建议
深入学习数字信号处理理 论
建议学习者深入学习数字信号处理的基本理 论,包括离散傅里叶变换、小波变换等。
学习先进的信号处理算法
建议学习者关注最新的信号处理算法和技术,如深 度学习在信号处理中的应用等。
实践与应用
建议学习者多进行实践和应用,通过实际项 目来加深对数字信号处理的理解和掌握。
介绍了深度学习在信号处理中的最新进展,包括自编码 器、生成对抗网络等。

《数字信号处理》课件

《数字信号处理》课件

05
数字信号处理中的窗函 数
窗函数概述
窗函数定义
窗函数是一种在一定时间 范围内取值的函数,其取 值范围通常在0到1之间。
窗函数作用
在数字信号处理中,窗函 数常被用于截取信号的某 一部分,以便于分析信号 的局部特性。
窗函数特点
窗函数具有紧支撑性,即 其取值范围有限,且在时 间轴上覆盖整个分析区间 。
离散信号与系统
离散信号的定义与表示
离散信号是时间或空间上取值离散的信号,通常用序列表示。
离散系统的定义与分类
离散系统是指系统中的状态变量或输出变量在离散时间点上变化的 系统,分类包括线性时不变系统和线性时变系统等。
离散系统的描述方法
离散系统可以用差分方程、状态方程、传递函数等数学模型进行描 述。
Z变换与离散时间傅里叶变换(DTFT)
1 2 3
Z变换的定义与性质
Z变换是离散信号的一种数学处理方法,通过对 序列进行数学变换,可以分析信号的频域特性。
DTFT的定义与性质
DTFT是离散时间信号的频域表示,通过DTFT可 以分析信号的频域特性,了解信号在不同频率下 的表现。
Z变换与DTFT的关系
Z变换和DTFT在某些情况下可以相互转换,它们 在分析离散信号的频域特性方面具有重要作用。
窗函数的类型与性质
矩形窗
矩形窗在时间轴上均匀取值,频域表现为 sinc函数。
汉宁窗
汉宁窗在时间轴上呈锯齿波形状,频域表现 为双曲线函数。
高斯窗
高斯窗在时间轴上呈高斯分布,频域表现为 高斯函数。
海明窗
海明窗在时间轴上呈三角波形状,频域表现 为三角函数。
窗函数在数字信号处理中的应用
信号截断
通过使用窗函数对信号进行截 断,可以分析信号的局部特性

DSP第五章 数字信号处理课件

DSP第五章 数字信号处理课件
(2) 当
,为N阶FIR系统的横向结构
, 时,为全极点IIR格型结构
(3) 上半部分对应全极点系统
下半部分对应全零点系统 按全极点系统的方法求出 而上半部分对下半部分有影响,故需求

为由

之间的系统函数
整个系统的系统函数

两边同次幂系数相等,得
解法一:
解法二 :
全极点IIR滤波器的系统函数
其中
表示M 阶全极点系统的第 i 个系数, 的关系
讨论与格型结构
全极点格型结构基本单元:
M=1
M=2
格型同全零点系数与
的递推关系完全一样。
3、零极点系统(IIR系统)的格型结构
在有限 z 平面 的IIR系统 上既有极点又有零点
(1) 当
差分方程:
需N+M个 延时单元
2、直接Ⅱ型(典范型)
只需实现N阶滤波器所需的最少的N个延时单元, 故称典范型。( )
直接型的共同缺点:
系数
, 对滤波器的性能控制作用不明显
极点对系数的变化过于灵敏,易出现不稳定或
较大误差
运算的累积误差较大
3、级联型
将系统函数按零极点因式分解:
将共轭成对的复数组合成二阶多项式,系数即为实数。 为采用相同结构的子网络,也将两个实零点/极点组合成二 阶多项式
导致系统不稳定
系数多为复数,增加了复数乘法和存储量
修正频率抽样结构
将零极点移至半径为r的圆上:
为使系数为实数,将共轭根合并
由对称性:
又h(n)为实数,则
将第k个和第(N-k)个谐振器合并成一个实系数的二阶网络:
当N为偶数时,还有一对实数根
k=0, N / 2处:

数字信号处理ppt课件

数字信号处理ppt课件
a digital clock.数字式钟
4
Signal-----
• An indicator, such as a gesture or colored light, that serves as a means of communication.See Synonyms at gesture
• 信号:一种用作通讯交流手段的指示,比如一种手势或有色 的光参见 gesture
• the center is too bright, while the border is too dark
13
•a great example of how DSP can improve the
understandability of data.
• Digital filtering was able to convert the raw image (on the left) into a processed image (on the right).
• Suppose we attach an analog-to-digital converter to a computer, and then use it to acquire a chunk of real world data. DSP answers the question: What next?
• A message communicated by such means. • 信号:用这种手段传达的信息 • Electronics An impulse or a fluctuating electric quantity, such as
voltage, current, or electric field strength, whose variations represent coded information. • 【电子学】 电波:电脉冲或变化的电量,比如电压、电流或 电场强度,它们的变化表示着编码后的信息 • The sound, image, or message transmitted or received in telegraphy, telephony, radio, television, or radar. • 信号:由电报、电话、收音机、电视机或雷达传播或收到的 声音、影像或信息
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

w1(n), w2(n): contents of the two registers
At time n:
Example 4.1.5: An IIR filter h(n) 0.75 u (n) . Using convolution, derive
n
closed-form expressions(闭合形式表示) for the output signal y(n) when the input is: (a)A unit step(单位阶跃) x(n)=u(n) (b)An alternating step x(n) (1) u (n) (正负交替的阶跃)
Algorithmic form:
for each input sample x,do:
y:= w1
w1:=x
The delay register is typically initialized (初始化) to zero: w1(0)=0.
double delay:
I/O equation: y(n)=x(n-2)
State-space representation:
y(n)=w1(n) (output equation) w1 (n+1)=x (n) (state updating equation) w1(n): content of the register or internal state at time n
4.1.6 Flip-and-Slide Form
Flip-and-Slide Form of convolution:
h(n) is flipped(反转) around and slid (slide平移) over the input sequence x(n). y(n) is obtained by computing the dot product(点积) of flipped h with the input samples aligned(对准) below it.
ydc h(m)
m
(4.1.24)
Example 4.1.7:An integrator(积分器)-like FIR filter:
y(n) G[ x(n) x(n 1) ... x(n 14)] ,
G, or h(n) 0, 0 n 14 otherwise
Direct form
y ( n)
min( n , M )
m max( 0,n L 1)
h( m) x ( n m)
n
(4.1.16)
可分阶段写为: (p.136)

0 n M ( input-on) y (n)
m 0
h ( m) x ( n m )
M

n
(c)A square pulse of duration L=25, x(n)=u(n)-u(n-25) (持续时 长 25 点的方脉冲) In each case, determine the steady-state response of the filter.
Solution: (a) x(n) u (n)
M n L 1 (steady state)
y ( n ) h ( m) x ( n m )
m 0
(4.1.23)

L 1 n L 1 M (input-off) y (n)
m n L 1
h ( m) x ( n m )
M
(4.1.23) can be considered as the generic I/O equation for FIR filters. But, for programming purposes, one must work with (4.1.16) which does not let the indices exceed the array bounds. (p.137) 稳态阶段的 y (n) h(m) x(n m) (4.1.23)可作为通用式子,
y(n) 4
(b) x(n) (1) u (n)
n
做法与(a)类似 (c) x(n) u(n) u(n 25) 响应中只有 input-on 和 input-off 暂态阶段。 当 n=0~24, y (n)
m 0 n
x(n m)h(m) (0.75) m
steady-state (稳态):
yn h0 xn h1 xn 1 ... hM xn M
M+1 items
input-off transients:
The last M outputs after the input has been turned off
4.1.7 Transient and Steady State Behavior
Three subranges of y(n):
0 n M ( input-on transients)
M n L 1 (steady state) L 1 n L 1 M (input-off transients)
If Lx<Lh, the steady-state range does not exist- the input is too short to exhibit steady behavior .
Basic building blocks: adder, multiplier, delay
4.2.1 Pure Delays singlt each time instant n, two steps are carried out:
(a) the current content w1(n) = x(n-1) is clocked out to the output,y(n)=w1(n); (b) the current input x(n) gets stored in the register, where it will be held for one sampling instant and become the output at the next time (n+1): w1 (n+1)=x (n).
m 0 M
但编程时应用 y ( n)
min( n , M )
m max( 0 ,n L 1)
h( m) x ( n m)
(4.1.16)避免下标出错。
4.1.8 Convolution of Infinite Sequences x 和 h 中有一个或均为无限长时,无限长 y(n) (0 n ) 的 暂稳态情况: M= , L< , input-on transients and input-off transients (Lx<Lh, the input is too short to exhibit steady behavior) M< , L= , input-on transients and steady state M= , L= , input-on transients. The steady state response is the limit of y(n) for n―>
input-on transients(暂态)of y(n): The first M output samples when the input is turned on. Less than M+1 input samples are used for obtaining y(n), or the input sequence is assumed to be padding zeros (补零) to compute (M+1)-dimensional dot product.
G=0.1时,稳态输出值=DC gain
ydc h(m) G 1.5
m 0 m 0
14
14
Example 4.1.8:x(n) 同上例
ban a) h( n) 0
14
for
0 n 14
,
M=14
otherwise
ydc h(m) 1 a M 1 0.987
h(n) 0.75 n u (n)
x is flipped
y(n) h(m) x(n m) 0.75m u(m)u(n m)
m
n
m
1 0.75 n 1 0.75 m 4 3(0.75) n 1 0.75 m 0
(n 0)
因 h(n)和 x(n)无限长,y(n)的稳态阶段出现在 n ,即
m 0
b) differentiator (微分器) h=[0.2, -1, 2, -2, 1, -0.2], M=5
ydc
m0
h ( m) 0
5
Example 4.1.8 (a):
Example 4.1.8 (b):
4.1.10 Overlap-Add Block Convolution Method
m 0
n
n
当 n 25 y (n)
m n 24
(0.75) m
4.1.9 Programming Considerations
DC gain: The steady-state value of the output of a filter when the input remains constant for a long period of time. For a unity input, the DC gain is:
相关文档
最新文档