4 核材料辐照效应

合集下载

第四代核反应堆性能特性及优缺点评价

第四代核反应堆性能特性及优缺点评价

第四代核反应堆性能特性及优缺点评价发布时间:2021-06-01T05:22:16.828Z 来源:《建筑学研究前沿》2020年28期作者:范黎钱怡洁李辉[导读] 第四代核反应堆系统(Gen-IV)指未来的核裂变反应堆系统,无论是从反应堆本身还是从燃料循环方面都将有重大革新和发展。

中国核电工程有限公司1 第四代核反应堆概念与提出背景第四代核反应堆系统(Gen-IV)指未来的核裂变反应堆系统,无论是从反应堆本身还是从燃料循环方面都将有重大革新和发展。

当前多国都在对第四代核能系统进行研发,预计这一代技术将在2030年前后投入实际应用,第四代核反应堆目标是更好地解决安全和废料问题,尤其是核不扩散的问题等。

1999年6月,美国能源部提出第四代核能系统(Gen IV)的概念。

2001年1月,美国、加拿大、法国、英国、阿根廷、巴西、日本、韩国和南非等9个国家联合成立“第四代国际核能论坛”(GIF),同时签署了GIF《宪章》,从而使成员国保持适当的水平积极参与GIF项目的合作。

目前签署GIF《宪章》的国家已达到13位成员。

同时,国际原子能机构(IAEA)、国际经济合作组织核能署(OECD/NEA)是GIF的观察员。

2 第四代核反应堆主流堆型与共性目标在经过对近100种第四代核能系统概念进行筛选后,2002年GIF和美国能源部联合发布了《第四代核能系统技术路线》,选出6种最有前景的堆型作为第四代核能系统技术,分别是:气冷快堆(GFR);铅冷快堆(LFR);熔盐堆(MSR);钠冷快堆(SFR);超临界水冷堆(SCWR);超高温气冷堆(VHTR)。

GIF《宪章》定义了Gen IV的4个目标:1) 持续性:持续性产生能源,保障核燃料的长期供应;废物最小化,减少废物长期管理的负担。

2) 安全性和可靠性:卓越的安全性和可靠性;堆芯损坏的概率极小;不需要场外应急。

3) 经济性:相比其他能源,良好的全寿期经济优势;相比其他能源,有更低的经济风险。

核电厂材料_2_第四章材料的辐照效应

核电厂材料_2_第四章材料的辐照效应

原子位移
• 快中子的能量是MeV 级的,所以一个快中子会造 成上千个离位原子。在一定的温度下,缺陷可以 通过扩散发生复合(annealing)而消失,也可以 聚集而形成较大尺寸的缺陷团(位错环, 空洞)。 一个快中子会造成在10nm的长度上几百个位移原 子
• 中子与材料产生的核反应(n,α),(n,p)生 成的氦气会迁移到缺陷里,促使形成空洞
材料的辐照效应
• 2)辐照肿胀 辐照导致材料中产生大量的缺陷,缺陷聚集后产生空
位位错环和间隙位错环。空位位错环不易坍塌,因为核反 应产生的氦气易聚集在空位位错环内,而使其形成三维的 空洞造成体积膨胀;间隙位错环坍塌后在原晶体中多了一 个原子面,使体积增加。因此辐照导致材料的肿胀。
• 辐照肿胀与温度有关。如不锈钢大约在0.3-0.5Tm下辐 照肿胀量最大(当中子通量达1027n/m2时,肿胀可达 15%)。 低于此温度,空位、间隙原子可动性不大,被 冻结在材料中,高于此温度,缺陷复合的机会增加,肿胀 量就会减少。
核电厂材料
第四章 材料的辐照效应
• 一般概念 • 中子与材料的反应 • 原子位移 • 材料的辐照效应
概述
• 反应堆内存在各种类型的强烈核辐射 • 辐射会使得材料的物理和机械特性发生显
著的、破坏性的变化 • 辐射分类
– α、β、γ、中子、裂变产物 – β和γ对金属材料不会有永久破坏性作用 – α和裂变产物的作用主要在燃料内 – 中子的效应最显著
5)辐照诱导放射性 材料对中子的吸收会导致产生放射性核
素。在辐照下产生的长寿命同位素,会增 加废物处理的负担并给设备维修带来困难。 如Co59,通过(n,)反应产生Co60,而 Co60是长寿命同位素,放射性很强,很难 处理。所以核级材料中要严格控制钴的含 量。

(优选)核材料的辐照效应

(优选)核材料的辐照效应

所致。
二铁合金的粒子辐照效应
1 辐照对12Cr-ODS钢氧化物稳定性影响 利用氢离子(H+)束和电子(e-)束,双束(H+/e-)同时 辐照用化学浸润法制备的新型12Cr-ODS铁素体钢,研究辐 照对12Cr-ODS钢氧化物稳定性的影响。对不同辐照剂量下 原位观察辐照区内氧化物形貌的变化过程发现:辐照前和 15dpa辐照后约10-20nm氧化物的尺寸并没有明显变化,而氧 化物周围出现微小高密度空洞并没有影响氧化物的稳定性。 当辐照温度升高至823K时,大尺寸的氧化物Y2O3与基体的 相界面变得不规则,但氧化物颗粒尺寸并不发生明显变化。 实 弥验散结强果化表相明Y2:O3弥与散铁强素化体相相Y界2O面3尺变寸得稳粗定糙,与无氢明的显存溶在解,现促象进。 铁素体内空位向Y2O3氧化物扩散有关。
离子辐照前后实验材料的显微组织
3.450 ℃高能电子辐照对CLAM 钢微观结构 的影响
为了研究低活化马氏体CLAM 钢的抗辐照肿胀性 能,在450 ℃下对CLAM 钢进行大剂量高能电子辐 照的原位动态实验. 利用超高压透射电子显微镜观 察发现,CLAM 钢中产生了大量的间隙原子型位错 环和多面体形状的辐照空洞. 分析了它们的形核和 长大规律以及相关机制. 计算表明,CLAM 钢在高 能电子辐照下的最大肿胀率为0.26 % ,具有较好 的抗辐照肿胀性能.
理论计算辐照环境下纳米晶材料的结构变化
A 传统晶态合金
B 纳米晶材料
1 Bai XM, etc., Science, 327, 1631 (2010);
2 Ackland G, Science, 327, 1587 (2010)
一 锆合金的辐照效应
❖ 1. 单位体量材料积中位移原子数与原子总数之比 定义为原子位移(dpa),通常以其值来衡的辐 照损伤程度,在典型轻水堆电站中锆合金包壳每 一次循环下所受到的辐照损伤为20(dpa),约相当 于10-7dpa/s,可见很严重。

核聚变反应堆中材料辐照效应的研究

核聚变反应堆中材料辐照效应的研究

核聚变反应堆中材料辐照效应的研究核聚变作为一种清洁、可持续的能源形式,备受科学家们的关注。

然而,核聚变反应堆中的材料辐照效应给其应用带来了一定的挑战。

本文将探讨核聚变反应堆中材料辐照效应的研究,以及相关的挑战和前景。

在核聚变反应堆中,高能中子在与材料相互作用时会引起辐射损伤。

这些损伤可能导致材料的物理和化学性质的变化,限制了反应堆的寿命和性能。

因此,研究材料的辐照效应对于设计和改进核聚变反应堆至关重要。

为了研究材料的辐照效应,科学家们采用了多种技术和方法。

其中一种常用的方法是利用离子束辐照实验。

通过将高能离子束轰击样品,科学家们可以模拟中子辐照对材料的影响。

这种方法可以用来评估材料的辐照损伤程度、研究辐照引起的晶格结构和组织的变化等。

除了离子束辐照实验外,还有其他一些研究方法被广泛应用于材料的辐照效应研究中。

例如,透射电子显微镜(TEM)和扫描电子显微镜(SEM)可以用来观察材料的微观结构和缺陷。

X射线衍射(XRD)和拉曼光谱等技术可以进一步揭示材料的结构变化和晶格畸变。

材料的辐照效应主要表现为晶格缺陷的形成和累积。

在辐照过程中,中子会与材料中的原子相互作用,撞击原子并将它们从原子晶格中击出。

这些撞击所产生的空位和间隙被称为位错。

位错的积累会导致材料的机械性能下降,使其容易变脆和脆裂。

此外,辐照还会引起材料的微观结构和宏观性质的变化。

例如,辐照会导致材料的晶格变形和畸变,使金属材料的电导率下降,导致半导体材料的导电性能发生改变。

辐照还会引起材料的气泡形成和膨胀,从而降低材料的密度和强度。

面对材料辐照效应带来的挑战,科学家们不断努力寻找新材料和改进材料性能,以提高核聚变反应堆的效率和可靠性。

一些研究重点是寻找抗辐照材料和开发辐照后自愈合能力的材料。

这些材料可以通过自愈合或结构重新排列来减轻或修复辐照引起的损伤。

此外,模拟辐照损伤并预测材料性能的数值模拟方法也取得了重要进展。

通过建立数学模型和计算方法,科学家们可以预测材料在不同辐照条件下的性能变化,并优化材料的设计和配方。

第四章核能材料.解析

第四章核能材料.解析

4.改进型水冷动力反应堆材料
4.1 压水堆堆芯新材料 压水堆堆芯部件的工作条件十分苛刻,因而 对其运行的可靠性、经济性和安全性要求越来越 高。为了满足这种要求,一方面堆芯设计不断更 新,另一方面制造部件所使用的材料也将随之改 进。目前没根据核能发展需要而开发的压水堆堆 芯新型材料最具有典型的锆合金包壳材料。水冷 动力堆堆芯的另一种改进型材料是可燃毒物材料 。研究表明,Gd2O3是一种良好的材料。
4.1.2 锆-2.5铌合金
锆-2.5铌合金主要成分是2.5%-2.8%(质量) Nb和1000×10-6-1300×10-6O.添加Nb可以使合 金得到强化并提高耐蚀性,少量的氧也可以强化 合金,在合金重要严格的控制有害杂质氢和碳、 氯和磷。前者容易造成合金氢化开裂;后者会降 低其断裂韧性。 锆-2.5铌合金主要性能: 微观组织和断裂韧性 晶粒结构由β-Zr薄膜围绕α晶粒组成。该薄膜 可以连续或轻度破损;α粒子基极基本上呈现平行 于周向的织构;位错密度等于10-14,断裂韧性大 于250MPa.m1/2。
核能就是指原子能,即原子核结构发生变化时释放出的 能量,包括重核裂变或轻核聚变释放的能量。1938年德国化 学家哈恩首次揭示了核裂变反应,他通过研究发现,铀235在中子的轰击下分裂成两个原子核,同时放出三个中 子,这一过程伴随着能量的放出,这个过程就是核裂变反 应,放出的能量就是核能。物质所具有的原子能比化学能 大几百万倍以至上千万倍。
238U和232Th资源丰富,为核能的利用提供 了广阔的材料来源。此外,由于铀238和钍232是 能够转换成易裂变核素的重要原料,且其本身在 一定条件下也可产生裂变,所以习惯上也称其为 核燃料。聚变燃料包含氢的同位素氘、氚,锂和 其它化合物等。核工程材料是指反应堆及核燃料 循环和核技术中用的各种特殊材料,如反应堆结 构材料、元件包壳材料、反应堆控制材料、慢化 剂、冷却剂、屏蔽材料等等。核材料必须置于设 有多重实体屏障的保护区内,并实行全面管制与 统计,防止损失与扩散。

第七讲 核材料的辐照效应讲解

第七讲 核材料的辐照效应讲解
2. 要使锆原子位移就必须向其提供足够的能量, 这一位移能量阈值Ed为25~27ev.而对于1Mev的 入射中子,锆原子接受的反冲能量平均值为 20kev,其最大值可达40kev,显然都远高于锆原 子位移所需的能量,从而出现初级位移原子。
3. 在(2~3)×1019n/cm2的注量后观察到了 空位环和空位间隙,这时产生的空位环主要 是<a>型1/3<1120>环,空位环和间隙环大体 上均衡发展是锆合金的特点,其比例取决于 辐照温度和注量,注量达到 (3~8)×1021n/cm2后还产生<c>型1/6<2023> 环,这只是空位环。与不锈钢不同,中子辐 照下锆合金中未发现空洞的存在。
Zr-4合金的中子辐照生长
对由两厂分别生产的Zr-4包壳管样品在重水
堆内进行中子辐照试验, 辐照温度为610K, 快中
子注量为4.2×1020/cm2(E>1.0MeV)。试验结
果表明, Zr-4管的辐照生长应变随辐照中子注量
增加呈线性增加。两厂生产的Zr-4包壳管的生
长应变可用
表达式描述,
两者的差异可能是合金元素和杂质的综合影响
辐照对拉伸性能的影响
中子辐照铝的微观结构变化
铝的中子辐照实验是与硅的中子辐照同 时进行的。中子辐照时, 纯铝箔(纯度为99. 999% )包裹着硅。中子辐照实验在核反应 堆中进行, 辐照剂量为1015 —1016 neutron / cm2。辐照试样取出后, 放置一定时间, 等 到放射性降低后再对试样进行分析。利用 扫描电子显微镜( SEM) 、透射电子显微镜 ( TEM)和纳米显微力学硬度计对中子辐照 后的纯铝试样进行分析。
随着注量提高到4×1026n/m2,牌号1100技术纯铝不断 提高着强度极限和屈服极限,但相对延伸率仍然完全没变化。 甚至在高注量辐照下,也不会使铝明显脆化。加工变形铝的 特点是,辐照不但提高了强度性能,同时还保持了足够高的 塑性,所以铝的性能辐照后可能比辐照前要好

核材料的辐照损伤机制研究

核材料的辐照损伤机制研究

核材料的辐照损伤机制研究在当今的能源领域,核能作为一种高效、清洁的能源形式,具有巨大的潜力和重要性。

然而,核材料在长期的辐照环境下会发生损伤,这严重影响了核反应堆的安全性和可靠性。

因此,深入研究核材料的辐照损伤机制对于核能的可持续发展至关重要。

首先,我们需要了解什么是辐照。

辐照是指高能粒子(如中子、质子、电子等)与物质相互作用,将其能量传递给物质中的原子和分子,从而导致物质的结构和性能发生变化的过程。

在核反应堆中,核燃料(如铀、钚等)和结构材料(如不锈钢、锆合金等)会受到强烈的辐照。

核材料在辐照下会产生多种损伤形式。

其中,最常见的是原子位移。

当高能粒子与原子核发生碰撞时,会将原子核撞离其原来的位置,形成空位和间隙原子。

这些缺陷会破坏晶体的晶格结构,导致材料的力学性能下降,如硬度增加、延展性降低等。

除了原子位移,辐照还会导致材料中的杂质原子聚集和沉淀。

杂质原子在辐照下会获得能量,从而更容易扩散和聚集。

这些杂质的聚集和沉淀会进一步影响材料的性能,例如降低材料的热导率和耐腐蚀性。

此外,辐照还会引发相变。

在高温和辐照的共同作用下,核材料的晶体结构可能会发生转变,从而改变材料的物理和化学性质。

例如,某些金属在辐照下可能会从面心立方结构转变为体心立方结构,导致材料的脆性增加。

那么,辐照损伤是如何影响核材料的性能的呢?首先,辐照损伤会导致核材料的肿胀和变形。

由于空位和间隙原子的产生和聚集,材料的体积会增大,从而引起肿胀。

同时,材料内部的应力分布不均匀,会导致变形和开裂。

其次,辐照损伤会降低核材料的热导率。

材料中的缺陷会阻碍热传递,从而影响反应堆的冷却效果,增加反应堆运行的风险。

再者,辐照损伤会削弱核材料的耐腐蚀性能。

材料表面的缺陷会成为腐蚀介质的侵入通道,加速腐蚀过程,缩短核材料的使用寿命。

为了研究核材料的辐照损伤机制,科学家们采用了多种实验方法和技术。

其中,离子辐照实验是一种常用的手段。

通过向材料表面注入高能离子,可以模拟核反应堆中的辐照环境,从而研究材料的损伤行为。

核材料辐照损伤研究及其预测

核材料辐照损伤研究及其预测

核材料辐照损伤研究及其预测第一章绪论核材料辐照损伤是指在核能环境下受到辐照后发生的物理、化学和结构损伤。

由于核能技术的广泛应用,能量密度较大的核辐照在材料中产生了大量的宏观和微观缺陷,对材料的力学和物理性质产生了深远影响。

本文将讨论核材料辐照损伤研究的现状和未来方向,以及辐照损伤的预测方法。

第二章核材料辐照损伤研究现状核材料辐照损伤的研究涉及到材料科学、物理学和化学等多个学科领域。

在材料科学研究中,通常采用中子、离子或电子等辐照源对材料进行辐照实验,研究材料的微观结构和性质变化。

在物理学研究中,研究材料的电子、磁性、热等性质的变化。

在化学研究中,研究材料在辐射环境下发生的化学反应和动力学过程。

现有研究表明,辐照会造成材料晶格中原子和空位的增加,导致材料的强度、脆性、塑性和导电性等性质的变化。

此外,辐照还会引起材料的晶界、夹杂和缺陷等宏观结构变化,对材料的断裂韧性、疲劳寿命和应变析出等方面造成影响。

这些实验结果为核材料辐照损伤的研究提供了基础。

第三章核材料辐照损伤预测方法尽管实验方法可以揭示材料的辐照损伤的变化,但这些方法往往具有局限性,因为它们对数据的采集和分析需要大量的时间和资源。

因此,需要开发新的通过计算模拟获得材料辐照效应的方法。

在过去的二十年中,计算机模拟方法已成为研究核能材料辐照损伤的重要工具。

利用计算机模拟,可以对材料在辐照环境下的结构和性质进行深入分析和预测。

这些模拟方法可以基于微观尺度、宏观尺度和剪切尺度上分析材料的响应。

一些常用的计算机模拟方法包括:分子动力学模拟、相场模拟、晶格动力学模拟、有限元方法等。

除了计算机模拟方法外,还可以利用机器学习方法来预测材料的辐照损伤。

机器学习是指人工智能领域的一种方法,通过学习数据模式,让计算机自行发现规律。

机器学习已经被应用于多个领域,包括材料科学。

通过建立材料数据库和模型,可以预测材料的性质和响应。

这对于开发新的高性能、辐照性能良好的材料具有重要意义。

核材料的辐照效应PPT

核材料的辐照效应PPT

CLAM 钢在45ห้องสมุดไป่ตู้ ℃电子辐照时辐照空洞得变化、 (a) 0 dpa ; (b) 1、4 dpa ; (c) 3、6 dpa ; (d) 10 dpa ; (e) 11、5 dpa ; (f) 13、2 dpa ; (g) 13、8 dpa ; (h) 15、6 dpa
从图中可以瞧到,随着辐照损伤量得增加,产 生得空洞越来越多,并且尺寸也越来越大、 辐照损伤量达到1、4 dpa 时,开始观察到空 洞得存在,这时空洞得尺寸很小、数量有限; 当辐照损伤量达到3、6 dpa 时,空洞得尺寸 明显长大,数量也在增加; 在图 c 中还可以瞧 到有新得空洞产生;继续增加辐照剂量,空洞 得数量与直径都继续增加,当辐照损伤量达 到10 dpa 时,可以瞧到空洞得数量较多、
❖ 2、 要使锆原子位移就必须向其提供足够得能量, 这一位移能量阈值Ed为25~27ev、而对于1Mev得 入射中子,锆原子接受得反冲能量平均值为20kev, 其最大值可达40kev,显然都远高于锆原子位移所 需得能量,从而出现初级位移原子。
❖ 3、 在(2~3)×1019n/cm2得注量后观察到了空 位环与空位间隙,这时产生得空位环主要就是 <a>型1/3<1120>环,空位环与间隙环大体上 均衡发展就是锆合金得特点,其比例取决于辐 照温度与注量,注量达到(3~8)×1021n/cm2后 还产生<c>型1/6<2023>环,这只就是空位环。 与不锈钢不同,中子辐照下锆合金中未发现空 洞得存在。
辐照对拉伸性能得影响
辐照前12Cr-ODS钢组织形貌
723K双束辐照后氧化物形貌变化
823K双束辐照后氧化物形貌变化
2低活化铁素体/ 马氏体钢离子辐照后得微观 结构变化

第五章 辐照效应。

第五章  辐照效应。

第五章辐照效应辐照损伤是指材料受载能粒子轰击后产生的点缺陷和缺陷团及其演化的离位峰、层错、位错环、贫原子区和微空洞以及析出的新相等。

这些缺陷引起材料性能的宏观变化,称为辐照效应。

辐照效应因危及反应堆安全,深受反应堆设计、制造和运行人员的关注,并是反应堆材料研究的重要内容。

辐照效应包含了冶金与辐照的双重影响,即在原有的成分、组织和工艺对材料性能影响的基础上又增加了辐照产生的缺陷影响,所以是一个涉及面比较广的多学科问题。

其理论比较复杂、模型和假设也比较多。

其中有的已得到证实,有的尚处于假设、推论和研究阶段。

虽然试验表明,辐照对材料性能的影响至今还没有确切的定量规律,但辐照效应与辐照损伤间存在的定性趋势对实践仍有较大的指导意义。

5.1 辐照损伤1. 反应堆结构材料的辐照损伤类型反应堆中射线的种类很多,也很强,但对金属材料而言,主要影响来自快中子,而α,β,和γ的影响则较小。

结构材料在反应堆内受中子辐照后主要产生以下几种效应:1) 电离效应:这是指反应堆内产生的带电粒子和快中子撞出的高能离位原子与靶原子轨道上的电子发生碰撞,而使其跳离轨道的电离现象。

从金属键特征可知,电离时原子外层轨道上丢失的电子,很快被金属中共有的电子所补充,所以电离效应对金属性能影响不大。

但对高分子材料,电离破坏了它的分子键,故对其性能变化的影响较大。

2) 嬗变:受撞原子核吸收一个中子变成异质原子的核反应。

即中子被靶核吸收后,生成一个新核并放出质子或α带电粒子。

例如:嬗变反应对含硼控制材料有影响,其它材料因热中子或在低注量下引起的嬗变反应较少,对性能影响不大。

高注量(如:>1023 n/m 2)的快中子对不锈钢影响明显,其组成元素大多都通过(n,α)和(n,p)反应产生He 和H ,产生辐照脆性。

HeLi n B 427310105+→+H N n O 11167168+→+3) 离位效应:碰撞时,若中子传递给原子的能量足够大,原子将脱离点阵节点而留下一个空位。

第IV代核能系统钠冷快堆燃料和结构材料研发体系

第IV代核能系统钠冷快堆燃料和结构材料研发体系
通用性能 力学性能 与钠相关的性能
抗拉强度 蠕变强度 低周疲劳和高周疲劳 蠕变-疲劳交互作用 塑性 时效老化
在高温高压水中的腐蚀 在正常和非正常水化学 条件下的腐蚀
抗拉强度 蠕变强度 低周疲劳和高周疲劳 蠕变-疲劳交互作用 塑性
在正常钠化学条件下的腐蚀 在有钠水反应条件下的腐蚀 材料对脱碳的敏感性
上轴向 转换区 包壳
外套管
燃料区
下轴向 转换区 堆芯支撑 金属绕丝
下端塞
钠入口
燃料组件
5
CEFR中的燃料和结构材料
CEFR 堆芯燃料组件及控制棒组件材料
材 料 包 壳 燃料组件 安全棒 ЧC-68 ЧC-68 ЧC-68 ЧC-68 ЧC-68 316Ti 316Ti 外套管 ЧC-68 08X16H11M3 08X16H11M3 08X16H11M3 08X16H11M3 316Ti 316Ti 温 度 (oC) 360-560 360-550 360-548 360-554 360-530 中子通量 (n/cm2s) 6.6x1015 ≤3.2x1015 ≤3.2x1015 ≤3.2x1015 3.2x1015
Main steam temperature and pressure
Feed water temperature Plant efficiency Fuel type
497 degree C 19.2 MPa
240 degree C Approx. 42% TRU-MOX
Integrated pump-IHX Reactor Vessel Reactor Core
数值
~1500 600 ~41% 80% 60 MOX (工业钚+贫铀) 100 1.2 2/2 1/1 2 <10-6 <10-8

反式-1,4-聚异戊二烯的辐射效应研究

反式-1,4-聚异戊二烯的辐射效应研究

反式-1,4-聚异戊二烯的辐射效应研究反式-1,4-聚异戊二烯(trans-1,4-polyisoprene)是一种重要的高分子材料,具有良好的弹性和抗撕裂性能,广泛应用于橡胶制品、胶粘剂、涂料和塑料等领域。

然而,在长期使用和储存过程中,反式-1,4-聚异戊二烯可能会受到辐射的影响。

辐射效应是指材料在辐射作用下发生的物理、化学和结构性变化。

对于反式-1,4-聚异戊二烯而言,辐射效应主要包括辐射引起的链断裂、交联和氧化等反应。

首先,辐射会导致反式-1,4-聚异戊二烯链的断裂。

辐射能量能够激发聚合物链中的电子,使其脱离原子核而形成自由基。

这些自由基会引发链传递反应,导致链的断裂。

较低剂量的辐射会导致链的局部断裂,而高剂量的辐射则会导致大范围的链断裂。

其次,辐射还会引起反式-1,4-聚异戊二烯的交联反应。

当聚合物链上的自由基与其他聚合物链或外部交联剂相互作用时,会形成交联结构。

交联可以提高聚合物的强度和耐热性,但过多的交联会导致材料变得脆硬。

此外,辐射还会引发反式-1,4-聚异戊二烯的氧化反应。

氧化会导致聚合物链上的C=C键断裂,形成氧化产物如羧酸和醛。

氧化反应会降低聚合物的强度和耐候性。

针对辐射效应对反式-1,4-聚异戊二烯的影响,可以采取一些措施进行防护。

首先,可以通过添加抗氧化剂来减缓聚合物的氧化反应。

其次,可以选择合适的辐射剂量和辐射源,避免过高的辐射强度和时间。

此外,适当的储存条件也可以减少辐射效应,如避免阳光直射和高温环境。

综上所述,反式-1,4-聚异戊二烯在长期使用和储存过程中可能会受到辐射的影响。

辐射效应包括链断裂、交联和氧化等反应,对材料的性能产生不同程度的影响。

因此,在使用和储存反式-1,4-聚异戊二烯时,需要注意辐射的控制和防护,以保证材料的性能和稳定性。

第七讲-核材料的辐照效应

第七讲-核材料的辐照效应

CLAM 钢在450 ℃电子辐照时的微观结构变化. (a) 0 dpa ; (b) 3.6 dpa ; (c) 10 dpa ; (d) 11.5 dpa ; (e) 13.2 dpa ; (f) 13.8 dpa
图 (a) 是刚刚开始辐照时的微观结构. 从中可以看 出,钢中存在一定数量的均匀分布的位错环,位错环 的平均直径为13 nm. 伴随着辐照损伤量的增加,位 错环不断长大,位错环的密度也在增加,当辐照损伤 量达到11.5 dpa 时(图4.1 ( d) ) ,位错环最大,继续 增加辐照损伤量,最大位错环的大小基本保持不变; 但位错环的数密度增加,比较小的位错环继续长大. 从图4.1 中可以看到,当辐照损伤量达到10 dpa (图 4.1 (c) ) 之前,位错环的数密度增加较慢,当辐照损 伤量达到10 dpa (图4.1 (c) ) 以后,位错环的数密度 迅速增加,以至于辐照损伤量达到13.2dpa (图4.1 (e) ) 以后,看到的位错环的分布密度很大;由于在辐 照过程中的每一时刻产生的间隙原子的数量是一 定的,这将产生“位错环直径增长较快时其数密度 增长较慢、位错环直径增长较慢时其数密度增长 较快”的结果.
核材料的辐照效应本质
粒子辐照,特别是中子辐照时,粒子与原子的各种 碰撞效应导致受激发原子的自由迁移,再通过撞击 其他原子导致级联效应的产生。在此过程中,缺陷 萌生、长大,并集中于晶界,甚至于材料表面。微 观的空位、空穴等缺陷长大、集中,发展为介观到 宏观尺度的空洞,最终导致材料的结构变化和损伤, 性能失效。因此,被激发原子的随机迁移性与晶体 内部结构的有序性之间的矛盾是制约晶态合金耐辐 照性的最根本原因。
辐照前12Cr-ODS钢组织形貌
723K双束辐照后氧化物形貌变化
823K双束辐照后氧化物形貌变化

第四代核反应堆简介

第四代核反应堆简介

第四代核反应堆简介摘要:清洁、可持续能源技术的发展是现代国家发展强大的标志之一。

而核能发电实现以上要求的方向之一。

目前国际上将核反应堆按照历史沿革和技术特点分为四代。

其中第四代反应堆的技术发展是21世纪中叶的核能制高点。

本人围绕近20年来国际上提出的各种概念以及实践的技术经验。

对第四代反应堆可行的技术特点、发展趋势进行了总结剖析。

并结合实际得出钍基熔盐反应堆是未来发展的较好的方向之一。

关键词:第四代反应堆;熔盐堆;钍基燃料21世纪初,一些国际核能行业的领军单位共同讨论并建立了第四代核反应堆国际论坛(Generation Ⅳ International Forum,简称GIF),并总结提出了多种第四代反应堆的设计方案。

该论坛筛选出了6种当时科技水平下最可行的第四代反应堆堆型的设想,其分别为:液体钠冷却快中子反应堆,液体铅冷却快中子反应堆,超高温中子反应堆,超临界压力水冷堆,气体冷却快中子堆与熔盐液体反应堆。

但随着时代的发展,只有超临界压力水冷堆(SCWR)、气冷快中子堆(GFR)与熔盐液体反应堆(MSR)三个概念脱颖而出。

本文对这三种堆型进行简要介绍。

一、超临界压力水冷堆超临界压力水冷堆(以下简称超临界堆)的冷却剂使用的是超临界水。

超临界水不同于普通水,其更像是一种汽水混合物。

指的是高温高压下的致密水蒸气,密度与普通水相同。

因此该种堆型常被认为是对沸水堆的威力加强版。

其与第三代的沸水中子反应堆的主要差别在于:超临界堆的净电效率更高(比沸水堆高约10%),相比其他反应堆,由于超临界水运行时的流量较低,所以超临界压力水冷堆系统可以采用更细的管道,更节省材料和空间,因此具有更高的安全性和经济性。

作为冷却剂的超临界水是单相气体,可以采用更为简易的循环布局。

且不需要干燥器。

正是由于以上的优势,超临界堆的实际建设、运营以及维护成本理论上可以比现有轻水堆低。

但超临界堆也存在一个目前难以克服的问题,即如何抵抗高温高压下超临界水导致的腐蚀性。

核反应堆结构与材料材料

核反应堆结构与材料材料

2021/3/28
9
第9页/共37页
核燃料的一般性要求
良好的热物性,例如热导率高 抗辐照能力强,燃耗深 燃料的化学稳定性好,燃料与包壳、冷却剂的相
容性好
熔点高,且在低于熔点时不发生有害相变 机械性能好,易于加工
2021/3/28
10
第10页/共37页
核燃料的存在形态
• 液态 • 固态
• 金属,陶瓷,弥散体型
2021/3/28
12
第12页/共37页
金属型燃料(2)
③ 金属铀的工作条件限制 由于相变限制,只能低于665℃ 辐照长大,定向长大限制低温工作环境 辐照肿胀现象,较高温度条件下的金属燃料变形
适宜用于生产堆(堆芯温度较低,中子注量率不太高)
2021/3/28
13
第13页/共37页
金属型燃料(4)
1226℃ t 2800℃
单位J/(kg℃)
2021/3/28
21
第21页/共37页
二氧化铀的制备
• 制备流程:
• 气象UF6
水解
与稀氨水溶
液反应
重铀
酸铵沉淀 煅

UO3
还原
UO2
生坯
2021/3/28
烧结芯块
第22页/共37页
22
其他陶瓷型燃料性质
• 二氧化铀是目前水冷反应堆广泛使用的燃料 • 陶瓷混合物是常用的快堆燃料
2021/3/28
3
第3页/共37页
• 辐照效应之γ射线 • γ射线特点: • 射程较长(相较γ射线) • 作用形式复杂:光电效应;康普顿-吴有训散射效应和电子对效应 • 与物质相互作用机理:共价键化合物,离子键化合物及金属键

第四章--核反应堆材料..

第四章--核反应堆材料..

4. 冷却剂材料
冷却剂材料要求
中子吸收和感生放射性小; 高的沸点和低的熔点; 高的比热,唧送功率低; 热导率大; 有良好的热和辐照稳定性; 和系统其他材料相容性好; 价格便宜。
常用冷却剂

重 水
水作为冷却剂和慢化剂 沸点低、存在沸腾临界、在 主要应用于轻水堆 高温下有腐蚀作用
和浓度(富集度),除控制材料外,堆芯所有结构材料的
中子吸收截面都应该尽可能地小;
为减少放射性危害,制造反应堆的材料活化截面也应该
尽可能小,含长半衰期元素少,如Co。
3 反应堆材料的性能要求-2
(2) 机械性能 强度、塑韧性和热强性高,缺口敏感性和晶体长 大倾向性小。 (3)化学性能 抗腐蚀、抗高温氧化能力强;点腐蚀、晶间腐蚀 和应力腐蚀倾向性小。 (4)辐照性能 辐照期间组织、结构应稳定,脆化、肿胀等辐照 效应和PCI(芯块与包壳的相互作用)小; 杂质和气体合量少,纯洁度高,尤其Cu、P、S 含量应尽量少,成分偏析小; 晶粒和沉淀强化相要细小稳定。
2. 核燃料
核燃料:在反应堆内能使核裂变反应自持的易裂变物质。可 作为核燃料的易裂变物质是铀-233、铀-235和钚-239。其中铀235是天然存在的,而铀-233和钚-239分别由钍-232和铀-238用 人工方法转换而得。
核燃料要求
(1)热导率高; (2)抗辐照能力强,以达到高的燃耗; (3)燃料的化学稳定性好。燃料对冷却剂具有抗腐蚀能力; (4)熔点高,且在低熔点时不发生有害的相变; (5)机械性能好,易于加工。
对于能量为1MeV的中子,可以在铁中发生一次弹性碰撞将评价使几百个原子 产生位移。其中某些位移原子有可能移动到另一个空位而不造成材料缺陷。 快中子穿过物质产生大量位移原子,这些位移原子都在一次碰撞原子附件很小 的体积内产生,主要导致大量的能量传递给这样的小体积的物质,从而使这块 小体积物质在短时间内温度升高甚至熔化。

材料辐照效应

材料辐照效应

材料辐照效应嘿,朋友!您知道啥是材料辐照效应不?不知道?那我跟您好好唠唠。

咱就说这材料啊,就像一个个“小战士”,平日里坚守着自己的岗位。

可一旦遇到辐照,那可就像是遇到了厉害的“敌军”,整个状况就变得复杂起来啦。

比如说金属材料,那可是我们生活中常见的“大力士”。

像钢铁啥的,建造大楼、制造汽车都离不开它们。

可一旦被辐照,就好像大力士被施了魔法,它的内部结构会发生变化,原子被打得“晕头转向”,性能也跟着变了。

原本坚固无比的钢铁,可能会变得脆弱,容易断裂。

这就好比一个原本强壮的运动员,突然变得病恹恹的,跑两步就喘,还容易受伤,您说这得多让人头疼啊!再说说高分子材料,就像我们穿的衣服、用的塑料制品。

辐照一来,它们就像被调皮的孩子捣乱了一样,分子链可能会断裂,也可能会交联。

这一折腾,材料的性能也就不稳定啦。

原本柔软有弹性的塑料,可能变得硬邦邦,容易破裂;原本漂亮的衣服,可能会掉色、变形。

这是不是很糟糕?还有半导体材料,这可是现代科技的“小精灵”。

辐照对它们的影响,就像是给小精灵们来了一场“恶作剧”。

它们的电学性能会改变,原本灵敏的“小脑袋”可能会变得迷糊,导致电子设备出问题。

您想想,要是手机因为这个信号不好,那得多闹心!那为啥要研究这材料辐照效应呢?这您就不懂了吧!就像医生要了解病毒才能治病一样,我们了解了材料辐照效应,才能更好地利用材料,避免出问题呀。

比如说在核电站,那些材料天天被辐照,要是不搞清楚这效应,万一出了事故,那可不得了!而且,了解了这效应,还能开发出新的材料呢!就像在黑暗中找到了一把神奇的钥匙,打开了新的宝库。

说不定就能造出更厉害、更耐用的材料,让我们的生活变得更美好。

所以啊,材料辐照效应可不是个小问题,它关系到我们生活的方方面面。

咱们可得重视起来,好好研究,让材料为我们更好地服务,而不是给我们添麻烦。

您说是不是这个理儿?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电离效应对金属性能影响不大
嬗变(永久效应)
材料被撞原子发生核反应。
离位(可逆效应)
原子将脱离点阵节点而留下空位,离位原子而不能跳回原位时, 停留在品格间隙之中形成间隙原子。间隙原子和留下的空位合称 为Frenkel对缺陷,这种损伤类型成为离位。
晶体材料结构
原子堆积图
晶格
晶胞
晶体材料的辐照损伤
单晶在辐照下的缺陷形成过程(MD模拟)
第四章
核材料辐照效应
主讲:黄群英 FDS 团队
中国科学技术大学 核科学技术学院 中国科学院 等离子体物理研究所
E-mail: qyhuang@
裂变堆结构与材料
堆芯 堆内构件 控制棒 反射层 压力容器
裂变堆原理图
压水堆结构图
聚变堆结构与材料
严酷 服役环境
800
UTS
UTS, YS (MPa)
750
700
650
YS
Irradiated Unirradiated
600
Irradiated
DPA = N d / n0
中子通量密度 辐照时间 材料单位体积原子数 靶核散射截面 损伤函数
模拟和定量计算材料中的级联碰撞和离位原子在材料中的分布形态。
右图为约500个原子的铜单晶点 阵原子的受撞模拟: 图a:级联碰撞过程 图b:缺陷(离位原子和空位) 的分布
注意,本章中离位损伤的计算均未考虑缺陷的回复(如间隙原子与邻近空位的复合)
离位阈能和入射粒子阈能
离位阈能(Ed)
离位阈能是被撞原子离开其平衡位置所需的最低临界能量。 除贵金属外,常用金属的离位阈能约为25eV 。 如果T < Ed ,则被撞原子受周围原子的约束而不能离开所处的晶格点阵位 置,只能以热振动方式消失所吸收的能量; 如果T > Ed ,则被撞原子有可能克服周围原子的阻碍作用,离开自己所处的 点阵平衡位,留下一个空位,并有可能在离空位一定距离(与晶 体方向有关)的原子间隙处停留下来,成为间隙原子,并与原空 位共同形成Frenkel对缺陷。
辐照产生的缺陷团会阻碍位错的运动形成硬化,性能上表现为辐 照后强度升高,尤其是屈服强度增加更快。
辐照损伤
辐照脆化(Irradiation Induced Embrittlement)
随着温度下降,材料会在某一特定温度附近发生由韧性断裂向脆 性断裂的突然变化,这个转变温度通常称为韧脆转变温度 DBTT,辐照后将向高温方向移动。
正碰
根据弹性碰撞中能量和动量的守恒方程,可 求出中子传给靶原子的最大能量(二体迎头 正碰撞时) 为
(μ:中子能量损失系数)
随机碰撞
将直角坐标换成质心系(二体质心同速运动)坐标参数后,代入能量、动量守 恒方程,即可解出随机碰撞时的能量传递为
(θ:质心散射角)
靶核质量M2愈小,μ愈大,即传递给靶原子的能量就越多; 靶核质量M2愈大,μ愈小,即传递给靶原子的能量就愈少。
位错对点缺陷的择优吸收
位错通过应力场与点缺陷的应力场交互作用,吸引点缺陷向位错聚集,位错 对间隙原子的引力较强,或称之为俘获半径大。 因此空位浓度比间隙原子高,过剩空位聚集形成三维空洞,引起体积肿胀。
过剩点缺陷的演化
过剩空位成双空位。 过剩间隙原子成哑铃型间隙原子。
体心立方晶体中的哑铃型间隙原子
辐照缺陷
回复过程有五个阶段(退火温度不同) 一间隙模型
在辐照损伤研究领域,但“一间隙模型”已经得到了绝大多数研究者的承认。 第I阶段:填隙原子迁移与空位结合,
点缺陷的湮没引起缺陷浓度的迅速减少。
第II阶段:残留的填隙原子相互聚集,
形成填隙原子团。
第III阶段:空位开始迁移并与填隙原 子团结和,从而使填隙原子团消失。 第IV阶段:空位相互聚集形成空位团。 第V阶段:空位团分解成单个空位,分
金兴-皮斯(Kinchin-Pease, K-P)模型
应用最广的模型,从撞出能量与撞出概率的关系中建立的。 K-P模型有如下许多简化假定: (1) 所有串级碰撞都是同类原子刚性球的二体碰撞; (2) 只计两原子间的作用势,不考虑晶格影响; (3) PKA撞出晶格原子的离位概率Pd(T)与被击原子接受的能量T的关系用单值 阈能的阶跃函数表示; (4) PKA能量大于电子激发能量Ec(Ei)时,主要产生非弹性碰撞的电子激发; PKA能量小于电子激发能量Ec(Ei)时,主要产生弹性碰撞的离位效应。
金兴-皮斯模型的损伤函数结果
将PKA的能量E分区域来解此积分式,可得如下损伤函数结果
⎧0 < E < Ed v(E) = 0 ⎪ v( E) =1 ⎪ Ed < E < 2 Ed ⎨ v ( E ) = E 2 Ed ⎪2 Ed < E < Ei ⎪E > E v ( E ) = Ei 2 Ed i ⎩
Brinkman离位峰
热峰周围的温度变化
沟道效应
沟道效应与聚焦碰撞
离位原子沿材料中点阵密排晶向围成的间隙腔入 射时,碰撞距离比较长的现象。 沟道效应易出现在级联碰撞的高能阶段。 特点是不产生大量点缺陷。
聚焦碰撞
指级联碰撞时每级离位原子的散射角逐级减 小,并按某一晶向以准直线方式传递能量和输 送原子的碰撞过程。 聚焦碰撞易发生在级联碰撞的低能阶段。 (1)能量损失大,缺陷生成少。 (2)PKA能量沿聚焦轴可传输到较远的地方, 并使空位和间隙原子相隔较远,二者复合 消失概率最小 (3)在密排原子列上产生动力挤塞子。
解出来的空位继续和填隙原子团结结 和,使晶体中缺陷数量继续减少。 面心立方金属经过(1)电子辐照 (2)中子 辐照(3)范性形变(4)淬火之后电阻率Δρ 和临界切应力τ0的恢复曲线示意图
位错环的回复
欧洲低活化钢Optimax-A在辐照后位错环的退火回复(600℃/2小时) a b c d 退 火 前
几种材料在中子辐照下的ν值(对不同能量的PKA所求出的ν(E)的平均值) ¯
离位损伤剂量(Dose)
离位原子数(Nd)、原子位移概率(Displacement Per Atom, DPA)
单位体积材料被中子辐照后产生的离位原子总数为
N d = Φ ∗ t ∗ n0 ∗ σ d ∗ν
离位损伤的计算机模拟
离位峰和热峰
离位峰
Brinkman提出描绘级联碰撞结束时的Frenkel缺 陷分布模型:PKA的高密度碰撞会驱使沿途碰撞 链上的原子向外运动,因此在级联碰撞区域中心 附近的缺陷主要是空位,而间隙原子则分布在中 心空位区的周边外围。这种空位和间隙原子相互 分离的现象称为离位峰。
热峰
热峰与离位峰相伴而生,即局部微区温度急升骤 降的现象:在间隙原子密集处就会使该区能量偏 高,导致该微区的温度骤然升到很高温度、甚至 达到熔点,但因它的体积很小,很快又被周围未 受扰动的原子冷却下来,从而形成热峰。 因间隙原子分布的随机性。相应而生的热峰温度 高低也不同,其特点是:热峰温度越高,存在的 时间和热峰区域就越短和越小
□空位 ●间隙原子 ——中子路径 ----PKA路径
第二节 材料辐照损伤
1 2 3 4 点缺陷的演化 辐照缺陷及回复 辐照产生氦泡 辐照损伤
辐照点缺陷的演化
辐照产生的点缺陷,与淬火和塑性变形等其他方式产生的点缺陷在本质上是产生点缺陷过程非常短(~10-11s),大量空位和等量的间隙原子,因此 晶体内能突然升高,点阵混乱度也迅速增加。为趋向平衡,过饱和点缺陷 将通过扩散迁移,聚集成稳定的缺陷团或流入闾间而消失。
辐照产生的贫原子区、微空洞、层错四面体和位错环等称为辐照缺陷。它们 是过饱和辐照点缺陷的聚集演化产物,本质上也是晶体缺陷。
位错环(Dislocation Loop)
过饱和点缺陷,通过聚集、崩塌产生层错,然后位错反应使层错消失,演 化成全位错环。
0.1 dpa 0.6 dpa
高压电镜辐照下的位错环(中国低活化马氏体CLAM钢)
入射粒子阈能
入射粒子阈能指使晶格原子离位的入射粒子所具有的最低能量。
级联与损伤函数
级联碰撞 (Cascade Process)
最初被撞离位原子(PKA)的能量远大于离位阈能,可连续地和点阵中其他原 子发生碰撞,构成二次、三次以至更多次生离位原子,称为级联碰撞。
损伤函数ν(E)
一个PKA 最终撞出的离位原子数目(Frenkel对缺陷数),称为损伤函数。
内 容
第一节 辐照原理 第二节 材料辐照损伤
第一节 辐照原理
1 碰撞与离位
碰撞与能量传递 离位阈能和入射粒子阈能
2 级联与损伤函数 3 离位损伤剂量
离位原子数 计算机模拟
4 微观结构
离位峰与热峰 沟道效应和聚焦碰撞 Seeger对离位峰的修正
碰撞与能量传递
先不考虑晶体效应和原子间的作用势,仅从经 典力学计算。设质量为M1 和能量为E0 的中子 与质量为M2的靶原子发生碰撞。
氦效应 - 氦脆
辐照损伤
中子辐照的嬗变反应会产生氦,氦在晶体材料中的溶解度极小,很 容易在晶界、位错出析出,形成氦泡,因此会引起材料的DBTT上 升等脆性现象,称为氦脆。
RAFM钢在JMTR堆内辐照后的冲击吸收功曲线
氦效应 - 氦硬化
辐照损伤
氦泡对位错的钉扎作用增加了位错移动的阻力,使得材料的强度上 升而产生氦硬化。
核材料性能要求
核燃料 结构材料 堆内构件材料 压力容器材料 回路材料 蒸汽发生器材料 控制材料与冷却剂材料 慢化材料和反射材料 屏蔽材料与安全壳材料 常规性能
物理性能 力学性能 化学性能 工艺性能 经济性能
核性能
中子吸收与慢化性能 中子活化性能
辐照性能
辐照效应
中子等辐射粒子会撞击材料原子产生缺陷,其核反应会产 生嬗变元素,这些晶格缺陷和嬗变元素所引起的材料宏观 性能变化称之为辐照效应,其性能下降,称为辐照损伤。 电离(过渡效应)
相关文档
最新文档