数学知识点归纳之——加权平均数
人教版数学八年级下册20.1.1加权平均数(教案)
![人教版数学八年级下册20.1.1加权平均数(教案)](https://img.taocdn.com/s3/m/ec974b20a36925c52cc58bd63186bceb19e8edd7.png)
-加权平均数在实际问题中的应用:将理论知识应用到具体问题中,对于学生来说是一个挑战。
-突破方法:设计不同难度的实际问题,如商品销售统计、调查问卷分析等,引导学生逐步学会运用加权平均数。
-解决涉及加权平均数的综合问题:学生需要将多个知识点综合运用,对逻辑思维和问题解决能力要求较高。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“加权平均数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-突破方法:通过案例分析和分组讨论,帮助学生构建解决问题的思路框架,逐步培养他们分析问题和解决问题的能力。
在教学中,教师应围绕这些重点和难点内容,采用多种教学策略,如直观演示、案例分析、小组合作等,确保学生能够透彻理解加权平均数的概念、计算方法和应用场景。同时,教师应注重学生的个体差异,为不同水平的学生提供适宜的指导和帮助,使他们在掌握核心知识的同时,能够有效突破学习难点。
3.培养学生的逻辑思维能力和团队合作精神,在学习过程中形成良好的数学学习习惯。
-引导学生通过小组合作、讨论交流等方式探究加权平均数的性质和计算方法。
-培养学生在解决问题的过程中,形成严谨的逻辑思维和良好的学习习惯。
三、教学难点与重点
1.教学重点
-加权平均数的定义及其与算术平均数的关系:这是本节课的核心内容,需要让学生明确加权平均数的概念,理解权值对平均数的影响,以及加权平均数与算术平均数的区别与联系。
北师大版八年级上册数学[数据的分析——知识点整理及重点题型梳理]
![北师大版八年级上册数学[数据的分析——知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/66ebcf702e3f5727a4e9621f.png)
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习数据的分析——知识讲解【学习目标】1、了解加权平均数的意义和求法,会求一组数据的平均数,体会用样本平均数估计总体平均数的思想.2、了解中位数和众数的意义,掌握它们的求法.进一步理解平均数、中位数和众数所代表的不同的数据特征.3、了解极差、方差和标准差的意义及求法,体会它们在刻画数据波动时的不同特征.体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.4、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯. 【要点梳理】要点一、算术平均数和加权平均数一般地,对于n 个数123n x x x x 、、、…,我们把()1231n x x x x n⋅⋅⋅++++叫做这n 个数的算术平均数,简称平均数,记作x .计算公式为()1231n x x x x x n=⋅⋅⋅++++. 要点诠释:平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.(1)当一组数据较大时,并且这些数据都在某一常数a 附近上、下波动时,一般选用简化计算公式x x a '=+.其中x '为新数据的平均数,a 为取定的接近这组数据的平均数的较“整”的数.(2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动.所以平均数容易受到个别特殊值的影响.若n 个数12n x x x 、、…的权分别是12n w w w 、、…、,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数. 要点诠释:(1)相同数据i x 的个数i w 叫做权,i w 越大,表示i x 的个数越多,“权”就越重. 数据的权能够反映数据的相对“重要程度”.(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算. 要点二、中位数和众数 1.中位数一般地,n 个数据按照大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半. 2.众数一组数据中出现次数最多的那个数据叫做这组数据的众数. 要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个. (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数. 要点三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要. 区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述. 要点四、极差、方差和标准差 1.极差一组数据中最大数据与最小数据的差,称为极差,极差=最大数据-最小数据. 要点诠释:极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定. 2.方差方差是各个数据与平均数差的平方的平均数.方差2s 的计算公式是:()[]222212)(...)(1x x x x x x nS n -++-+-=,其中,x 是1x ,2x ,…n x 的平均数. 要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.3.标准差方差的算术平方根叫做这组数据的标准差,用符号s 表示,即:;标准差的数量单位与原数据一致.4.极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示一组数据离散程度的特征数.区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差. 要点五、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差. 要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.【典型例题】类型一、平均数、中位数、众数1、(2015•福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【答案与解析】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选C.【总结升华】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数举一反三:【变式】若数据3.2,3.4,3.2,x,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.【答案】3.2;3.5;解:由题意3.43.5, 3.62xx+==,所以众数是3.2,平均数是3.5.2、(2016•广州)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表: 小组 研究报告 小组展示 答辩 甲 91 80 78 乙 81 74 85 丙798390计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?【思路点拨】(1)运用求平均数公式()1231n x x x x n⋅⋅⋅++++即可求出三人的平均成绩,比较得出结果;(2)将三人的成绩按比例求出测试成绩,比较得出结果. 【答案与解析】解:(1)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙; (2)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),由上可得,甲组的成绩最高. 答案:甲组的成绩最高【总结升华】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件. 举一反三:【变式】小王在八年级第一学期的数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?【答案】解:小王平时测试的平均成绩897885843x ++==(分).所以8410%9030%8760%87.610%30%60%⨯+⨯+⨯=++(分). 答:小王该学期的总评成绩应该为87.6分.3、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分. (1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为a ,中位数为b ,求a b +的值. 【答案与解析】解:(1)设该班得80分的有x 人,得90分的有y 人.根据题意和平均数的定义,得257330,763050260570780901003,x y x y +++++=⎧⎨⨯=⨯+⨯+⨯+++⨯⎩ 整理得13,89109,x y x y +=⎧⎨+=⎩ 解得8,5.x y =⎧⎨=⎩即该班得80分的有8人,得90分的有5人.(2)因为80分出现8次且出现次数最多.所以a =80,第15、16两个数均为80分,所以b =80,则a b +=80+80=160.【总结升华】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系. 举一反三:【变式】某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计图表如图所示的统计图.零花钱数额(元) 5 10 15 20 学生个数(个)a15205请根据图表中的信息,回答以下问题.(1)求a 的值;(2)求这50名学生每人一周内的零花钱额的众数和平均数. 【答案】解:(1) a =50-15-20-5=10.(2)众数是15.平均数为150(5×10+10×15+15×20+20×5)=12.类型二、极差、方差和标准差4、(2015•徐州)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【思路点拨】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【答案与解析】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)85 85 85九(2)85 80 100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),【总结升华】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式. 举一反三:【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)甲 95 82 88 81 93 79 84 78 乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩. 类型三、统计思想5、我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如图所示的条形统计图.(1)求这10个样本数据的平均数、众数和中位数;(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t 的约有多少户.【思路点拨】(1)根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;(2)首先计算样本中家庭月均用水量不超过7t 的用户所占的百分比,再进一步估计总体. 【答案与解析】解:(1)观察条形图,可知这组样本数据的平均数是62 6.54717.52816.810x ⨯+⨯+⨯+⨯+⨯==.∴这组样本数据的平均数为6.8.∴在这组样本数据中,6.5出现了4次,出现的次数最多. ∴这组数据的众数是6.5.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 6.5,有6.5 6.56.52+=. ∴这组数据的中位数是6.5.(2)∵10户中月均用水量不超过7t 的有7户,有7503510⨯=. ∴根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7t 的约有35户.【总结升华】本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.掌握平均数、中位数和众数的计算方法.。
20.1.3 加权平均数 初中数学华东师大版八年级下册同步课时练习(含答案)
![20.1.3 加权平均数 初中数学华东师大版八年级下册同步课时练习(含答案)](https://img.taocdn.com/s3/m/e4b34e0366ec102de2bd960590c69ec3d4bbdb74.png)
20.1.3 加权平均数知识点1 加权平均数1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3∶5∶2.小王经过考核后所得的分数依次为90分、88分、83分,那么小王的最后得分是( )A.87分B.87.5分C.87.6分D.88分2.为了满足顾客的需求,某商场将5 kg奶糖、3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖的售价为每千克20元,水果糖的售价为每千克15元,混合后什锦糖的售价应为每千克( )A.25元B.28.5元C.29元D.34.5元3.学校进行广播体操比赛,图是20位评委给某班的评分情况统计图,则该班的平均得分是 分.4.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这(m+n)个数据的平均数等于 .5.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表:用水量(吨)4568户数3845则这20户家庭这个月的平均用水量是多少吨?6.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示,求小丽和小明的总平均分.学生作业测验期中考试期末考试小丽80757188小明76806890知识点2 应用平均数解决实际问题7.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12108合计/kg小菲购买的数量/kg2226小琳购买的数量/kg1236从平均价格看,谁买得比较划算( )A.一样划算B.小菲买得比较划算C.小琳买得比较划算D.无法比较8.一次演讲比赛中,评委从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果甲859595乙958595(1)如果认为这三方面的成绩同等重要,那么从他们的成绩看,谁能胜出?(2)如果按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例计算甲、乙的平均成绩,那么谁将胜出?9.八(1)班一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男生、女生人数之比为( )A.1∶2B.2∶1C.2∶3D.3∶210.小军的期末总评成绩由平时、期中、期末成绩按权重比为2∶3∶5组成,现小军平时考试成绩为90分,期中考试成绩为75分,要使他的总评成绩不低于85分,那么小军的期末考试成绩应不低于 分.11.某班40名学生的某次数学测验成绩统计表如下:成绩(分)5060708090100人数(名)2x10y42若这个班的数学平均成绩是69分,则x= ,y= .12.某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校八年级(1)班40人参加跳绳比赛的情况,若标准数量为每人每分钟跳100个.跳绳个数与标准数量的差值-2-10456人数61216105(1)求八年级(1)班40人一分钟内平均每人跳绳多少个;(2)规定跳绳超过标准数量,每多跳1个加3分,规定跳绳未达到标准数量,每少跳1个扣1分.若班级跳绳总分超过250分,便可得到学校的奖励,通过计算说明八年级(1)班能否得到学校奖励.13.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序如下:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试.两个程序的结果统计如下:测试项测试成绩/分目甲乙丙笔试929095面试859580请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.14.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如下表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价;(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,则其中最多可加入丙种糖果多少千克?参考答案1.C [解析] 小王的最后得分=90×+88×+83×=27+44+16.6=87.6(分).故选C.2.C [解析] 根据题意,得(40×5+20×3+15×2)÷(5+3+2)=29(元),所以混合后什锦糖的售价应为每千克29元.故选C.3.9.1 [解析] 根据加权平均数公式,有=×(8×5+9×8+10×7)=×(40+72+70)=×182=9.1.故答案为9.1.4. 5.5.8吨6.解:小丽:80×10%+75×30%+71×25%+88×35%=79.05(分),小明:76×10%+80×30%+68×25%+90×35%=80.1(分).答:小丽的总平均分是79.05分,小明的总平均分是80.1分.7.C [解析] ∵小菲购买的平均价格是(12×2+10×2+8×2)÷6=10(元/kg),小琳购买的平均价格是(12×1+10×2+8×3)÷6=(元/kg),∴小琳买得比较划算.故选C.8.解:(1)==91(分),==91(分).∵=,∴甲、乙势均力敌.(2)=85×50%+95×40%+95×10%=90(分),=95×50%+85×40%+95×10%=91(分).∵<,∴乙将胜出.9.D [解析] 设男生有x人,女生有y人,根据题意,得=80,则82x+77y=80x+80y,即2x=3y,则x∶y=3∶2.故选D.10.8911.18 4 [解析] 依题意得50×2+60x+70×10+80y+90×4+100×2=69×40,即3x+4y=70,①x+y+2+10+4+2=40,即x+y=22,②将①-②×3,得y=4,故x=18.12.解:(1)八年级(1)班40人中平均每人跳绳的个数为100+=102(个).答:八年级(1)班40人一分钟内平均每人跳绳102个.(2)依题意,得(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288(分)>250分.所以八年级(1)班能得到学校奖励.13.解:(1)甲的得票数是200×34%=68(票),乙的得票数是200×30%=60(票),丙的得票数是200×28%=56(票).(2)甲的总成绩为=85.1(分);乙的总成绩为=85.5(分);丙的总成绩为=82.7(分).∵乙的总成绩最高,∴乙将被推荐.14.[解析] (1)根据加权平均数的计算公式和三种糖果的单价和千克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果(100-x)千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和什锦糖的单价每千克至少降低2元,列出不等式进行求解即可.解:(1)根据题意,得=22(元/千克).答:该什锦糖的单价是22元/千克.(2)设加入丙种糖果x千克,则加入甲种糖果(100-x)千克.根据题意,得≤22-2,解得x≤20.答:最多可加入丙种糖果20千克.。
初二数学加权平均数
![初二数学加权平均数](https://img.taocdn.com/s3/m/28cc0464492fb4daa58da0116c175f0e7cd1198f.png)
加权平均数可以用来评估投资组合的风险,通过计算投资组合中各种资产的价格和权重,得到加权平均价格。
评估投资组合风险
市盈率是股票价格与加权平均收益的比率,用于评估股票的估值和投资价值。
计算股票的市盈率
银行在确定贷款利率时,会考虑借款人的信用评级和加权平均利率。
确定贷款利率
在金融学中的应用
在计算一组人的平均工资时,可以使用加权平均数来确定平均工资水平。
加权平均数与权重的关系
加权平均数的几何意义是表示一组数据在数轴上的中心位置。
总结词
设$x_1, x_2, ..., x_n$是一组数据,$w_1, w_2, ..., w_n$是对应的权重,则加权平均数为$frac{x_1 times w_1 + x_2 times w_2 + ... + x_n times w_n}{w_1 + w_2 + ... + w_n}$,在数轴上表示这组数据的中心位置。
详细描述
加权平均数的几何意义
04
CHAPTER
加权平均数在数学中的应用
在统计学中的应用
描述数据的集中趋势
加权平均数可以用来描述一组数据的集中趋势,特别是当数据中有异常值或需要强调某些重要数据时。
数据分析
在统计学中,加权平均数常用于数据分析,以了解数据的分布、离散程度和相关性。
预测和决策
通过分析加权平均数,可以预测未来的趋势和做出决策,例如预测销售量、市场份额等。
详细描述
复杂加权平均数的计算
加权平均数的数学公式是用来计算加权平均数的通用公式。
总结词
加权平均数的数学公式是 (Σx_i * w_i) / Σw_i,其中 x_i 表示每个数值,w_i 表示每个数值的权重,Σ 表示求和符号。这个公式可以用来计算简单加权平均数和复杂加权平均数。
七年级数学加权平均数、加权平均数的实际意义与应用、极差、偏差湘教版知识精讲
![七年级数学加权平均数、加权平均数的实际意义与应用、极差、偏差湘教版知识精讲](https://img.taocdn.com/s3/m/53fd899358fafab068dc02e5.png)
初一数学加权平均数、加权平均数的实际意义与应用、极差、偏差湘教版【本讲教育信息】一. 教学内容:加权平均数、加权平均数的实际意义与应用、极差、偏差[教学目标]1. 了解权数的意义,明确权数是一组非负数,且权数之和为1。
2. 会计算一组数据的加权平均数,在具体问题中能说明其权数的含义,明确平均数与加权平均数的关系。
3. 通过计算一组数据的平均数或加权平均数,感受到它们之间的关系,体验到在实际生产生活中的重要性,感受到数学来源于生活,又服务于生活。
4. 了解并掌握极差、偏差的意义。
5. 会求一组数据的极差、偏差,体会它们在具体问题中的含义。
二. 重点、难点:1. 重点:平均数的计算方法,求一组数据的极差、偏差。
2. 难点:加权平均数的计算。
三. 知识要点:1. 平均数是一个数值,是这组数据的数值大小的集中代表,体现了数据的整体性质。
3. 加权平均数是平均数的推广,当一组数据中不同的数重复出现的次数不同时,我们用权数的大小来反映重复次数的多少。
4. 权数:各个数据在一组数据中所占的比例。
注意:对于普通平均数,数据组中各数据同等看待,而对于加权平均数,数据组中的数据存在差异,这种差异用不同的权数来表示。
这种差异可以表现为出现的频数或所占的比例的不同,加权平均数=不同数据与权数的积的和。
5. 权数的基本性质:(1)非负性:每个权数为非负数。
(2)归一性:一组权数之和为1。
7. 极差:一组数据的最大值与最小值的差称为这组数据的极差,极差的大小反映了数据的波动与分散的程度。
8. 偏差:一组数据中的数与这组数据的平均数的偏离程度,是数据的一个重要特征,它反映了一组数据的分散程度。
9. 某数据与平均数的偏差为:偏差=某数据-平均数【典型例题】例1. 用两种方法计算下列数据中的平均数20,30,40,50,60,60,60,70,70,80分析:一种方法用普通平均数的方法去求。
一种方法就用求加权平均数的方法去求,关键是确定这组数据中各个不同数据的权数,权数等于各个不同的数在这一组数据中所占的比例。
人教八年级数学平均数加权平均数中位数众数极差和方差归纳与复习
![人教八年级数学平均数加权平均数中位数众数极差和方差归纳与复习](https://img.taocdn.com/s3/m/30091e2ccc1755270622081a.png)
平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。
平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。
反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。
平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。
平均数易受极端数据的影响,从而使人对平均数产生怀疑。
中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。
中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。
简单明了,很少受一组数据的极端值的影响。
中位数的缺点。
中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。
当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。
众数:一组数据中出现次数最多的那个数据。
集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。
众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。
初三数学-加权平均数
![初三数学-加权平均数](https://img.taocdn.com/s3/m/d63c5568aef8941ea76e05ce.png)
初三数学加权平均数一、教学目标通过实例了解加权平均数的意义,会计算加权平均数并对计算结果进行简单分析. 二、教学重点:了解加权平均数的意义,会计算加权平均数教学难点:会计算加权平均数并对计算结果进行简单分析 三、教学过程: (一)讲授新课 平均数和加权平均数 1、权的概念(1). 一组数据88,72,86,90,75的平均数是 ;(2)一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是 ; (3)一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 ; 归纳:其中50有 个,其中个数8就叫做数据50的权。
如数据20的权是 ,数据的权表示数据的相对“重要程度”;平均数用符号“x ”读作:“x 拔” 总结:n 个数的加权平均数:一般说来,如果在n 个数中, 出现 ,出现 次,…, 出现 次, 则 kkk f f f f x f x f x x ..................212211+++++=其中 、 … …、 叫做权。
2、加权平均数的求法:例1:某市三个郊县的人数及人均耕地面积如下表:(分析:人均耕地面积=总耕地面积总人口)解:∵总耕地面积=总人口=∴人均耕地面积=例题2:一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:1x 1f 2x 2f k x k f1f 2f k f(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?(分析:将所占比例看作它们各自的权,即听占有3份,说占份,读占份,写占份,合计份。
)解:x甲 = = ,x= = ,乙∴应该录取(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?例题3:一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(二)课堂练习:1、某中学举行“红五月”歌咏比赛,六位评委对某位选手的打分为77,82,78,95,83,75去掉一个最高分和一个最低分后的平均分是分。
二年级数学平均分常用知识点
![二年级数学平均分常用知识点](https://img.taocdn.com/s3/m/024d46aa50e79b89680203d8ce2f0066f533643f.png)
二年级数学平均分常用知识点1. 什么是平均数2. 如何计算一组数据的平均数3. 什么是加权平均数4. 如何计算加权平均数5. 如何求多组数据的平均数6. 平均数的应用场景7. 对称性平均数的概念及计算方法8. 加权平均数的应用场景9. 如何在数据集中找出异常值10. 统计学中的其它平均数的概念及用途1. 什么是平均数:平均数是一组数据的总和除以数据的个数,是衡量数据集中趋势的一种方法。
2. 如何计算一组数据的平均数:将所有数据加起来,再除以数据的个数,即可得到平均数。
举例:如果有一组数据:1, 2, 3, 4, 5。
将它们加起来得到15,再除以5,即可得到平均数3。
3. 什么是加权平均数:加权平均数是指每个数据值乘上一个对应的权重再求平均数。
4. 如何计算加权平均数:对于每个数据值,乘上对应的权重后相加,再除以总权重。
举例:如果有一组数据:25, 30, 40, 50,对应的权重分别是2,3, 4, 1。
则加权平均数为:(25x2 + 30x3 + 40x4 + 50x1) /(2+3+4+1) = 34.33。
5. 如何求多组数据的平均数:将所有数据加起来,再除以总的数据个数。
举例:如果有两组数据:4, 5, 6和7, 8, 9。
将它们合并起来为4, 5, 6, 7, 8, 9,然后将它们加起来得到39,再除以6,即可得到平均数6.5。
6. 平均数的应用场景:平均数在统计学中被广泛应用,例如在对比不同公司的收入、测量班级的平均成绩等。
7. 对称性平均数的概念及计算方法:对称性平均数是将数据集中的最大值和最小值取出,并将其除以2的结果。
它和普通平均数的不同之处在于,它会根据数据的两端进行调整,更加准确的反映出数据的整体特征。
8. 加权平均数的应用场景:加权平均数在计算GPA,计算财务报表时都有不同的应用场景。
9. 如何在数据集中找出异常值:通过计算各个数据值与平均数的差别,可以找出离群值。
一般情况下,距离平均数三个标准差以外的数据点就可以被认为是异常值。
初中数学《加权平均数》
![初中数学《加权平均数》](https://img.taocdn.com/s3/m/38c427d781c758f5f61f674b.png)
据的加权平均数.数据的权能反映数据的相对“重要程度”。
思考: 加权平均数计算公式与算术平均数计算公式有什 么关系?
五、课堂练习(课本P121):1、据气象台预报,2012 年某日我国34个主要城市的最高气温情况如图所示:
问这34个城市这一天最高气温的平均值是多少?
(24+25+26+27+28 33 36 37 38) 1
9.2
2
9.4
2
9.5
9.6)
9.16(分)
这时,甲的成绩比乙高。
按方案二计算甲、乙的最后得分为:
y甲=
1 6
(9.0
2
9.2
3
9.5)
9.18(分)
y乙=
1 6
(9.0
9.2
2
9.4
2
9.5)
9.28(分)
这时,乙的成绩比甲高。
用平均数来表示一组数据的集中趋势时,会受 到两个极端(最高值、最低值)数据的影响,去掉 最高值、最低值后,才能加强平均数刻画“集中趋 势的作用”,否则会消弱平均数代表作用。
知识回顾二:(1)平均数
问题1 某校“环保宣传”小组定期对学校的空气含
尘量进行检测,下面是某天每隔2h测得的数据:
0.03,0.04,0.03,0.02,0.04,0.01 0.03,0.03,0.04,0.05,0.01,0.03
根据上面数据,怎样说明这一 天的空气含尘量?
例1 在一次校园网页设计比赛中,8位评委对甲、乙两名选 手的评分情况如下:
人教版数学八年级下册20.1.1《加权平均数》教案
![人教版数学八年级下册20.1.1《加权平均数》教案](https://img.taocdn.com/s3/m/d4600d9a59f5f61fb7360b4c2e3f5727a5e924b9.png)
-实际应用:结合生活实例,让学生掌握加权平均数在实际问题中的应用。
举例:在计算班级学生的平均成绩时,不同科目的学分(权重)不同,需要使用加权平均数来得到更公平的结果。
2.教学难点
-理解权重概念:学生可能难以理解权重在加权平均数中的作用,以及如何确定权重。
五、教学反思
在今天的《加权平均数》教学中,我发现学生们对加权平均数的概念和计算方法掌握得还不错,但在实际应用中,部分学生对于如何合理分配权重仍然存在一定的困惑。这让我意识到,在今后的教学中,需要更加注重培养学生的实际应用能力。
在导入新课环节,通过提出与日常生活相关的问题,成功吸引了学生的注意力,使他们能够积极参与到课堂讨论中来。但在讲授过程中,我发现有些学生对权重的理解不够深入,导致在后续的计算过程中出现错误。因此,我决定在接下来的教学中,加强对权重概念的讲解,用更多实例来说明权重在加权平均数中的重要性。
本节课将结合教材内容,注重培养学生的实际应用能力,提高他们解决实际问题的综合素质。
二、核心素养目标
1.理解与运用:使学生理解加权平均数的概念,掌握加权平均数的计算方法,并能将其应用于解决实际问题,提高数学运算与数据分析能力。
2.思维与发展:通过探索加权平均数的计算方法,培养学生逻辑推理、抽象概括的数学思维能力,激发学生的创新意识。
人教版数学八年级下册20.1.1《加权平均数》教案
一、教学内容
本节课选自人教版数学八年级下册第20章第1节《加权平均数》。教学内容主要包括以下两个方面:
1.加权平均数的定义:引导学生理解加权平均数的概念,掌握加权平均数的计算方法。
2.加权平均数的应用:通过例题和练习,让学生学会在实际问题中运用加权平均数,解决相关问题。
20.1.1数据的分析---加权平均数
![20.1.1数据的分析---加权平均数](https://img.taocdn.com/s3/m/e7c781a064ce0508763231126edb6f1aff007184.png)
比、分析、交流等探索活 动,初步了解“权”的意 义,解释计算加权平均数 的理论依据,为概念的引 入作铺垫.
引导学生对比、分析、讨论,初步理解权的意义.
1 班 40 名学生的数学成绩 “取长 补短 ”均 衡的结 果,反映该班 40 名学生 数学成绩的一般“平均水 平 ”,设 计 的目 的是 引 导 并体会 平均 数的 统计意 义.问题(2)中,以“任务 布置─ ─发 现问 题──
(2)你能 求出该 校初二年 级在这 次数学考试中的平均成绩吗?
1、第一种平均数,我们称之为算数平均数,简称 平 均 数 , 它 所 反 映 的是 数 据 的 平 均水 平 ,
生成问 题─ ─研 究问题 ──解决问题”为教学程 序,经历操作、观察、对
这两种平均数在计算方法上 有什么不一样?
;2、 第二 种我 们叫做 加权 平均
数, “权”反映了数据的相对“重要程度”;3、
会利用加权平均数解决实际问题.
情感态度
通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性, 激发学生学好数学的热情.
重点 加权平均数的概念以及运用加权平均数解决实际问题.
难点 对数据的权及其作用的理解.
活动流程图
教学流程安排
活动内容和目的
活动 1 创设情景,建立模型,揭 示概念
趣.
问题 2:教材 P138 例 2
教师出示问题 2 并指导学生阅读分析,学生在阅读
一次演讲比赛中,评委将从演 过程中明确下列问题:
北师大版八年级数学上册6.加权平均数的计算课件
![北师大版八年级数学上册6.加权平均数的计算课件](https://img.taocdn.com/s3/m/a2ca4c72443610661ed9ad51f01dc281e43a5615.png)
课堂练习
4.面试时,某人的基本知识、表达能力、工作态度的得分分别是80分,70 分,85分,若依次按30%,30%,40%的比例确定成绩,则这个人的面试 成绩是多少?
解:面试成绩=80×30%+70×30%+85×40%=79 (答分:)这个人的面试成绩是79分.
课堂练习
5.某学校欲招一名语文教师,对甲、乙、
知识回顾
若x1, x2 , xn的权分别是 m1, m2 mn
叫做这n个数的加权平均数.
x
x1m1 x2m2 xnmn m1 m2 mn
练一练2. 在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分, 交际能力83分已知个人形象、工作能力和交际能力的权重为2:4:4, 则李明的最终成绩是 88.2分 .
难点 体会算术平均数和加权平均数的联系与区分.
知识回顾
上一节课,我们学会求算术平均数和加权平均数。
一般地,对于n个数x1,x2,...,xn,我们把1n x1 x2 xn 叫做这n个数
的算术平均数,简称平均数,记作x .
练一练1. 在一次数学测试中,小明所在小组的8个同学的成绩(单位:分)分别是 95,88,92,90,87,89,94,93,则这组数据的平均分是 91分 .
丙三名候选人进行了三项素养测试,她
们的各项测试成绩如表所示:
测试项目
课堂教学 普通话 粉笔字
测试成绩
甲
乙
丙
74
87
69
58
74
70
87
43
65
则学校将课堂教学、普通话和粉笔字三项测试得分按50%∶30%∶20%的比例确
定各人的测试成绩,此时谁将被录用?
小学数学技巧快速计算算术平均数和加权平均数
![小学数学技巧快速计算算术平均数和加权平均数](https://img.taocdn.com/s3/m/90899e4003020740be1e650e52ea551810a6c9bc.png)
小学数学技巧快速计算算术平均数和加权平均数在小学数学学习中,计算平均数是一个常见的任务。
平均数可以帮助我们得到一组数据的中心值,使得数据更加易于理解和比较。
本文将介绍一些小学数学技巧,帮助学生们快速计算算术平均数和加权平均数。
算术平均数是最常用的平均数类型之一,它是一组数据值的总和除以数据的个数。
假设我们有一组数据:3,4,5,6,7。
我们可以按照以下步骤计算出它们的算术平均数:1. 将所有数据值相加:3 + 4 + 5 + 6 + 7 = 252. 计算数据的个数:我们有5个数据值3. 将总和除以数据个数:25 ÷ 5 = 5因此,这组数据的算术平均数为5。
为了更快地计算算术平均数,我们可以使用一些技巧。
首先,我们可以尝试将数据分成两组,每组包含一个或多个数,使得每组的和尽量接近总和的一半。
然后,我们可以计算每组的平均数,最后将两个平均数相加并除以2,得到整个数据集的算术平均数。
举个例子,假设我们有一组数据:2,3,4,7,9。
我们可以将它们分成两组:2,7和3,4,9。
然后,我们计算每组的平均数:(2 + 7) ÷ 2 = 4.5 和 (3 + 4 + 9) ÷ 3 = 5.333。
最后,我们将两个平均数相加并除以2:(4.5 + 5.333) ÷ 2 ≈ 4.916。
因此,这组数据的算术平均数约为4.916。
除了算术平均数,加权平均数在一些情况下也很有用。
加权平均数是一组数据值乘以对应的权重后的总和除以权重的总和。
假设我们有一组数据:4,5,6,7,8,并且每个数据值对应的权重为2,3,4,1,2。
我们可以按照以下步骤计算加权平均数:1. 将每个数据值乘以对应的权重:4 × 2,5 × 3,6 × 4,7 × 1,8 × 22. 将乘积相加:(4 × 2) + (5 × 3) + (6 × 4) + (7 × 1) + (8 × 2) = 703. 计算权重的总和:2 + 3 + 4 + 1 + 2 = 124. 将乘积总和除以权重总和:70 ÷ 12 ≈5.833因此,这组数据的加权平均数约为5.833。
人教版八年级下册数学知识点归纳
![人教版八年级下册数学知识点归纳](https://img.taocdn.com/s3/m/2af092f2763231126fdb113d.png)
人教版八年级下册数学知识点归纳1. 反比例函数:一般地,函数y =xk(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数值的范围也是一切非零实数。
2. 反比例函数图象及其性质:反比例函数的图像是双曲线。
双曲线既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x 和 y=-x 。
对称中心是:原点反比例函数 )0(≠=k xky k 的符号K > 0K < 0图像yOxyOx性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,双曲线在第一、三象限。
在每个象限内,y 随x 的增大而减小。
①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k<0时,双曲线在第二、四象限。
在每个象限内,y 随x 的增大而增大。
3. |k|的几何意义:表示反比例函数图像上的某一点,向两条坐标轴所作的垂线与x 轴、y 轴围成的矩形的面积。
如图:S 四边形OAPB = |k|4、反比例函数解析式的确定----待定系数法。
由于在反比例函数xky =中,只有一个待定系数k ,因此只需要一对x 、y 的对应值或图像上的一个点的坐标,即可求出k 的值,从而确定函数解析式。
xy 01 2y = — k xy=xy=-x第十八章 勾股定理18.1 勾股定理1.勾股定理:直角三角形的两条直角边长的平方和等于斜边长的平方。
( 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2 ) 2. 定理:经过证明被确认正确的命题。
3. 勾股定理的证明方法:方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
4.利用勾股定理,可以作出2、3、5、7、13、17 ……18.2 勾股定理的逆定理1. 勾股定理逆定理:如果三角形三边长a 、b 、c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学知识点归纳之——加权平均数
数学知识点归纳之——加权平均数
加权平均数:
加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
初中数学知识点总结:平面直角坐标系
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的'讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。
反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。
因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。