阻抗匹配示例

合集下载

实验二 阻抗测量和匹配

实验二   阻抗测量和匹配

实验二 阻抗测量和匹配一.实验目的与意义微波元器件或天线系统的输入阻抗是微波工程中的重要参数,因此阻抗测量也是重要内容之一。

微波元件的特性,有时是通过对该元件一系列的阻抗测量来达到的。

例如微波双口网络散射参量的测量,阻抗法测量谐振腔的品质因数、传输线与天线的匹配技术,以及研究传输线的不均匀性等等,都用到阻抗测量技术。

二.实验原理和方法1、阻抗测量的基本原理:阻抗测量方法有多种,最常用的是驻波法和阻抗电桥法,本实验介绍驻波法。

根据传输线基本理论,归一化负载阻抗的电阻和电抗分量如下式所示: 222112cos 2sin 12cos RL ZC XL ZC φφφ-Γ=+Γ-ΓΓ=+Γ-Γ (1)式中ZC 为传输线的特性阻抗,Γ为传输线终端负载的反射系数Γ的模数,Φ为它的相角,Γ 与驻波比 ρ的关系由(2)式给出。

Φ与由负载算起的最近一个驻波电压节点的距离dmin 之间关系由(3)式给出: 11ρρ-Γ=+ (2) 4min 1d g πλ⎛⎫Φ=- ⎪⎝⎭(3)因此,用驻波法测阻抗归结为传输线中驻波比的测量和距负载最近一个电压驻波节点的测量。

关于驻波比的测量在实验一中已学习过,这里介绍一下d min 的测量。

dmin 是待测负载到最近的一个驻波电压节点之间的距离,由于测量线结构的限制,直接测量dmin 比较困难,因此,实际测量中常用“等效参考面法”。

如图一所示,待测负载接于测量线输出端 A ,测量线的槽开到B 处为止,该待测件的第一个驻波节点在C 点,探针不可能直接移到C 处,此时dmin = A C ,所以不可能直接测量。

而要采取等效负载参考面的方法,根据传输线原理,在传输线中相隔λg/2的整数倍的各点的阻抗是相同的。

因此,我们可以将负载虚拟移动若干个半波导波长,直移到槽线中的某一适当位置,这个位置即为所取的等效负载参考面。

在实验时它可以待测件C图 一这样得到,在测量线输出端以短路片代替待测负载,这时传输线内形成全反射的纯驻波(如图二a )。

阻抗匹配及应用设计实战

阻抗匹配及应用设计实战

阻抗匹配及应用设计实战阻抗匹配是指在电路中通过调整电路元件的参数,使得电路的输入阻抗与输出阻抗相等或接近相等的一种技术。

阻抗匹配的目的是为了最大限度地传输信号能量,减小信号的反射和损耗,提高电路的性能。

阻抗匹配的应用非常广泛,下面将介绍几个常见的应用场景和设计实战。

1. 信号传输线阻抗匹配在高频信号传输中,信号传输线的阻抗匹配非常重要。

如果信号源的输出阻抗与传输线的特性阻抗不匹配,会导致信号的反射和损耗,影响信号的传输质量。

因此,在设计高频信号传输线时,需要根据传输线的特性阻抗选择合适的信号源输出阻抗,或者通过添加匹配电路来实现阻抗匹配。

2. 射频功率放大器的输入输出阻抗匹配在射频功率放大器设计中,输入输出阻抗匹配是非常重要的。

输入阻抗匹配可以提高信号源的能量传输效率,输出阻抗匹配可以提高功率放大器的输出功率和效率。

通常使用匹配网络来实现阻抗匹配,如L型匹配网络、π型匹配网络等。

3. 天线阻抗匹配天线是无线通信系统中非常重要的组成部分,天线的阻抗匹配直接影响无线信号的传输效果。

在设计天线时,需要根据天线的特性阻抗选择合适的驱动电路输出阻抗,并通过调整天线的结构参数来实现阻抗匹配。

阻抗匹配可以提高天线的辐射效率,减小信号的反射和损耗。

4. 音频放大器的输入输出阻抗匹配在音频放大器设计中,输入输出阻抗匹配对于提高音频信号的传输质量非常重要。

输入阻抗匹配可以提高音频信号源的能量传输效率,输出阻抗匹配可以提高音频放大器的输出功率和效率。

通常使用匹配网络来实现阻抗匹配,如L型匹配网络、π型匹配网络等。

5. 传感器与信号处理电路的阻抗匹配在传感器与信号处理电路之间的连接中,阻抗匹配可以提高信号的传输质量和减小信号的损耗。

传感器的输出阻抗与信号处理电路的输入阻抗匹配可以提高信号的传输效率,减小信号的失真和噪声。

通常使用阻抗转换电路来实现阻抗匹配,如差分放大器、阻抗转换器等。

在实际的阻抗匹配设计中,需要根据具体的应用场景和要求选择合适的匹配电路和参数。

阻抗匹配及应用设计实战

阻抗匹配及应用设计实战

阻抗匹配及应用设计实战(老外的经典诠释)阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。

阻抗匹配分为低频和高频两种情况讨论。

我们先从直流电压源驱动一个负载入手。

由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。

假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。

负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。

再来计算一下电阻R消耗的功率为:P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)=U*U*R/[(R-r)*(R-r)+4*R*r]=U*U/{[(R-r)*(R-r)/R]+4*r}对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。

注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。

即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。

对于纯电阻电路,此结论同样适用于低频电路及高频电路。

当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。

在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。

从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。

阻抗匹配详解及高频阻抗匹配实例

阻抗匹配详解及高频阻抗匹配实例

英文名称:impedance matching基本概念信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。

一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。

对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。

匹配条件①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。

②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。

这时在负载阻抗上可以得到最大功率。

这种匹配条件称为共轭匹配。

如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。

这种匹配条件称为共扼匹配。

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

史密夫图表上。

电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。

如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。

重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

共轭匹配在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。

分享笔记之阻抗匹配

分享笔记之阻抗匹配

分享笔记之阻抗匹配阻抗:在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。

在设计电子电路时都需要考虑阻抗匹配,什么是阻抗匹配?为什么要进行阻抗匹配,下面列举三个典型方向说明:一、获得最大功率。

对于理想的电源,我们希望只有电压U,但实际上,每个电源都会有一个内阻,如图1-1所示,电源是由U和内阻r组成的。

接入负载RL,要使负载获得最大的功率,RL取多大的值?由欧姆定律U=I*R 得出IRL=U/(RL+r)URL=IRL*RL=U/(1+r/RL)PRL=URL*IRL=U^2/[4*r+(RL-r)^2/r]所以当RL=r时,(RL-r)^2/r取得最小值0,PRL值最大图1-1在喇叭上都会标注有4Ω、8Ω等字样,就是为了跟功放机的输出阻抗匹配,获得最大功率和更好的音质。

二、提高精度如图2-1,a图是教科书上典型的反相放大器,b图是另一种工程设计中见到的反相放大器,它们的功能是一样的,那么R5是做什么用的?我们称之为匹配电阻,那么为什么要加入这个匹配电阻呢?这时候就要看运放的规格书,如图2-2,是运放OPA369的规格参数,这里面有两个重要的参数,偏置电流IB、失调电流Ios。

理想的运放是不存在这两个参数,但由于实际的制作工艺限制,也就是说,实际的运放输入,会有电流流入或流出运放的输入端的(与理想运放的虚断不太一样)。

那么输入偏置电流就定义这两个电流的平均值,输入失调电流呢,就定义为两个电流的差。

问题来了,假如输入端输入电压为0V,但由于有电流流过电阻,必定会产生电压,输出得到的就不是0V,这时候匹配电阻的作用就是使正反相输入端产生的电压尽可能的相等,减小失调电压。

图2-1图2-2至于为什么R5取值50KΩ,请参考/article/284969.htm偏置电流IB、失调电流Ios的详细讲解请参考/question_answer/analog/amplifiers/f/52/t/18865.aspx三、减小信号干扰在高频电路中,如果走线的阻抗不匹配,在负载端就会产生反射,从而干扰到信号。

简易阻抗匹配方法.

简易阻抗匹配方法.

在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。

阻抗匹配的技术可以说是丰富多样,在此只对几种简单常用的端接方法进行介绍。

为什么要进行阻抗匹配呢?无外乎几种原因,如减少反射、控制信号边沿速率、减少信号波动、一些电平信号本身需要等等。

端接阻抗匹配一般有 5种方法:1. 源端串联匹配,2. 终端并联匹配,3. 戴维南匹配,4.RC 网络匹配,5. 二极管匹配。

1. 串联端接匹配:一般多在源端使用, Rs (串联电阻 =Z0(传输线的特性阻抗 -R0(源阻抗。

例如:若 R0为 22,Z0为55Ω,则 Rs 应为33Ω。

优点:①器件单一;②抑制振铃,减少过冲;③适用于集总线型负载和单一负载;④增强信号完整性,产生更小 EMI 。

缺点:①当 TTL,CMOS 器件出现在相同网络时,串联匹配不是最佳选择;②分布式负载不是适用,因为在走线路径的中间,电压仅是源电压的一般;③接收端的反相反射仍然存在;④影响信号上升时间并增加信号延时。

2. 并联端接匹配:此 Rt 电阻值必须等于传输线所要求的电阻值, 电阻的一端接信号,一端接地或电源。

简单的终端并联匹配一般不用于 TTL,COMS 电路,因为在高逻辑状态时,此方法需要较大的驱动电流。

优点:①器件单一;②适用于分布式负载;③反射几乎可以完全消除;④电阻阻值易于选择。

缺点:①此电阻需要驱动源端的电流驱动,增加系统电路的功耗;②降低噪声容限。

此电阻值必须等于传输线所要求的电阻值。

电阻的一端接信号,一端接地。

简单的终端并联匹配一般不用于 TTL,COMS 电路,因为他们无法提供强大的输出电流。

3. 戴维南端接匹配:一个电阻上拉,一个电阻下拉,通常采用 R1/R2=220/330的比值。

戴维南等效阻抗必须等于走线的特性阻抗。

对于大多数设计 R1>R2,否则 TTL/COMS电路将无法工作。

优点:①适用于分布式负载;②完全吸收发送波,消除反射。

;缺点:①增加系统电路的功耗;②降低噪声容限;③使用两个电阻,增加布局、布线难度;④电阻值不易于选择。

阻抗匹配COUPLING

阻抗匹配COUPLING

输出电压为Vs
系统电容
接地电感 示波器内阻等于信号内阻
示波器内阻 Ro=50ohm
4
3-1.阻抗匹配 ( COUPLING )
负载效应 ( LOAD EFFECT ) 示波器与信号源分别为不同独立回路,因此示波器量测造成信号源的损坏,依负载的大小影响程度 不同,通常搭配探头提高示波器阻抗降低负载效应。 探头增加量测系统阻抗,降低负载效应。
示波器内阻 Ro=50ohm
3
3-1.阻抗匹配 ( COUPLING )
终端阻抗 ( TERMINAL ) 一般通讯信号或阻抗设计为 50Ohm 的电路 ( 信号产生器 ),正常使用应该搭配同轴电线 ( BNC ) ,不 须使用探头。
以下图例为交流电源分析:
Vs ~
信号阻抗 Rs=50ohm
DC COUPLING 与 AC COUPLING 的差异 阻抗匹配之设定为 DC1MOhm:观测直流信号+交流信号。 阻抗匹配之设定为 AC1MOhm:观测交流信号,而直流信号被滤波。 阻抗匹配交直流設定。
11
3-1.阻抗匹配 ( COUPLING )
交直流信号 ( DIRECT+ALTERNATING CURRENT )
3-1.阻抗匹配( COUPLING )
COUPLING 设定为 低输入电阻 50Ohm 终端电阻 50Ohm 的设计 ( BNC+50Ohm ) 无源低压探头 ( 500Ohm ) 无源低压探头 ( 5KOhm )
COUPLING 设定为高输入阻抗 1MOhm 无源电压探头 ( 10MOhm ) 无源高压探头 ( 100MOhm ) 有源差动电压探头 ( 1MOhm )
COUPLING 自动设定输入电阻 有源电压探头 ( 1MOhm ) 有源差动电压探头 ( 1MOhm ) 有源电流探头 ( 1MOhm )

微波技术1章阻抗匹配.ppt

微波技术1章阻抗匹配.ppt
-1
00..3322 00..3333 00..3344 00..3355 00..3366 00..3377 00..338 0.39 0.40 0.41 0.42 0.43
传输线的阻抗匹配
阻抗匹配器
2、单支节匹配器
单支节匹配器又叫短截线匹配器。它是在主传输线上并联一个分支线(终端 短路线或开路线),使在匹配器所在处向负载看过去的输入导纳正好等于特性 导纳,从而实现了负载阻抗匹配。
双支节匹配器是由固定在主线上的两个彼此 相隔一定距离而自身长度可以调节的短路支节 构成。距离一般取 λ/8, λ/4, 3λ/8。下面取λ/4讨 论其匹配原理
A
BL
Zc
Zl
A
B
l2
l1
Double Stub Matching
0.01 0.02 0W.0a3ve0l.0e4n0g.t05hs0.0t6ow
单支节匹配器的匹配原理:非匹配负载产生 反射,沿传输线移动的导纳如右图所示。一 般情况下等|Γ|圆与G=1的等G圆总有交
.48
.47
.45.46 .04Fra bibliotek.03
.02
.49 .01
.00 .01 .02
.00 .49 .48
.03 .04
0
.47 .46
.05
.44 .05
.45 .06
点S与T,其读数为1±jB。若于ST点在
-0.2
10
1
2 3 4 5 10
double stub matching
A
λ/8 B L
Zc
1±jB
ZL
Y2 A
B
L 2
L
Y2 =+jB
1

天线与阻抗匹配调试方法经验与案例

天线与阻抗匹配调试方法经验与案例

天线与阻抗匹配调试方法经验与案例电子万花筒平台核心服务电子元器件:价格比您现有供应商最少降低10%射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!通常对某个频点上的阻抗匹配可利用SMITH圆图工具进行,两个器件肯定能搞定,即通过串+并联电感或电容即可实现由圆图上任一点到另一点的阻抗匹配,但这是单频的。

而手机天线是双频的,对其中一个频点匹配,必然会对另一个频点造成影响,因此阻抗匹配只能是在两个频段上折衷。

在某一个频点匹配很容易,但是双频以上就复杂点了。

因为在900M完全匹配了,那么1800处就不会达到匹配,要算一个适合的匹配电路。

最好用仿真软件或一个点匹配好了,在网络分析仪上的S11参数下调整,因为双频的匹配点肯定离此处不会太远,只有两个元件匹配是唯一的,但是pi 型网络匹配,就有无数个解了。

这时候需要仿真来挑,最好有使用经验。

仿真工具在实际过程中几乎没什么用处。

因为仿真工具是不知道你元件的模型的。

你必须要输入实际元件的模型,也就是说各种分布参数,你的结果才可能与实际相符。

一个实际电感器并不是简单用电感量能衡量的,应该是一个等效网络来模拟。

本人通常只会用仿真工具做一些理论的研究。

实际设计中,要充分明白Smith圆图的原理,然后用网络分析仪的圆图工具多调试。

懂原理让你定性地知道要用什么件,多调是要让你熟悉你所用的元件会在实际的圆图上怎么移动。

(由于分布参数及元件的频率响应特性的不同,实际件在圆图上的移动和你理论计算的移动会不同的)。

双频的匹配的确是一个折衷的过程。

你加一个件一定是有目的性的。

以GSM、DCS双频来说,你如果想调GSM而又不太想改变DCS,你就应该选择串连电容、并联电感的方式。

同样如果想调DCS,你应该选择串电感、并电容。

理论上需要2各件调一个频点,所以实际的手机或者移动终端通常按如下规律安排匹配电路:对于简单一些的,天线空间比较大,反射本来就较小的,采用Pai型(2并一串),如常规直板手机、常规翻盖机;稍微复杂些的采用双L型(2串2并):对于更复杂的,采用L +Pai型(2串3并),比如用拉杆天线的手机。

实验一 阻抗匹配实验

实验一  阻抗匹配实验

实验一阻抗匹配实验
一、实验目的:
学会利用MATLAB软件进行微波技术方面的仿真。

通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。

二、实验内容:
利用MATLAB软件编程求解下面问题:
1.特性阻抗为Z0=150Ω的均匀无耗传输线, 终端接有负载
Z l=250+j100Ω, 用λ/4阻抗变换器实现阻抗匹配(如图所示), 试求λ/4阻抗变换器的特性阻抗Z01及离终端距离(可设λ=1)。

三、程序
z0=150;
z1=100+j*100;
z2=400+j*100;
t=z1/z2;
tl=abs(t);
ag=angle(t);
l=ag/(4*pi) ;
zl=((1+tl)/(1-tl))*z0;
z01=sqrt(zl*z0);
四、结果
z01=214.46
l=0.043005
五、分析
阻抗匹配是无线电技术中常见的一种工作状态,它反映了输入电路与输出电路之间的功率传输关系.当电路实现阻抗匹配时,将获得最大的功率传输.反之,当电路阻抗失配时,得不到最大的功率传输。

负载与传输系统的匹配,就是要消除负载的反射,由实验可知,信号通过T型、π型阻抗转换器时,衰减几乎为零,而通过50Ω电阻时信号衰减约为1000倍。

所以在传输系统与负载连接时,在其间连接一个阻抗转换器,消除负载的反射。

如何用史密斯圆图进行阻抗匹配

如何用史密斯圆图进行阻抗匹配

如何用史密斯圆图进行阻抗匹配!!----------------------------------------------------------------------------------------------史密斯圆图红色的代表阻抗圆,蓝色的代表导纳圆!!先以红色线为例!圆中间水平线是纯阻抗线,如果有点落在该直线上,表示的是纯电阻!!例如一个100欧的电阻,就在中间那条线上用红色标2.0的地方;15欧的电阻就落在中间红色标0.3的点上!水平线上方是感抗线,下方是容抗线;落在线上方的点,用电路表示,就是一个电阻串联一个电感,落在线下方的点,是一个电阻串联一个电容。

图上的圆表示等阻抗线,落在圆上的点阻抗都相等,向上的弧线表示等感抗线,向下的弧线表示等容抗线!!可以看出是感是容,是高是低接着讲蓝色线。

因为导纳是阻抗的倒数,所以,很多概念都很相似。

中间的是电导线,图上的圆表示等电导圆,向上的是等电纳线,向下的是等电抗线!用该图进行阻抗匹配计算的基本原则是:是感要补容,是容要加感,是高阻要想办法往低走,是低阻要想办法抬高。

无论在任何位置,均要向50欧(中点)靠拢。

进行匹配时候,在等阻抗圆以及等电导圆上进行换算。

下图表示的是变化趋势!以图上B点为例,如何进行阻抗匹配!!B点所在位置为40+50j,先顺着等电导圆,运动到B1点,再顺着等阻抗圆,运行到终点(50欧)。

按照上贴的运动规律,电路先并电容,再串电容。

由此完成阻抗匹配。

匹配方法讲完了,具体数值可通过RFSIM99计算!!再说点,S参数与SMITCH圆图的关系!!高频三极管,特别是上GHz的,一般都会列出一堆S参数。

以下以C3355 400MHz时候S11参数为例,说明S参数和圆图的关系。

频率|S11| 相位400M 0.054 -77.0根据S参数的定义可知,S11反射系数为0.054,也就是输入功率为1,则反射功率约为0.003。

由于SMITCH图是反射系数的极坐标,因此,可用公式表示,r=0.054(cos(-77/360)+j*sin(-77/360)). r为圆图上的阻抗点。

阻抗匹配问题

阻抗匹配问题

Z0 1
Z1
tan l2
Z1 Z 0 Z0Z1
1
(1- 5- 14a)
其中, Zl′由式(1- 5- 9)决定。式(1- 514a)还可写成
l1
2
arctan
1
l2
2
arctan
Байду номын сангаас
1
(1- 5- 14b)
其中, λ为工作波长。 而AA′距实际负载的 位置l1
l1=l1′+ lmax1
(1- 5- 15)
lm in1
4
1
4
Y1 Y0
(1- 5- 16)
图 1- 15 并联单支节调配器
令 l1' l1 lmin1 , 并设参考面AA′处的输入 导纳为Yin1, 则有
Yin1
Y0
Y1 Y0
jY0 tan(l1) jY1tan(l1)
G1
jB1
(1- 5- 17)
终端短路的并联支节输入导纳为
Γ1
Γ1 e j1
Z1 Z0 Z1 Z0
0.333 j0.667 0.7454e j1.1071
驻波系数
1
Γ1
6.8541
1 Γ1
第一波腹点位置
lm a x1
4
1
0.0881m
调配支节位置
l1
lm ax1
2
arctan
1 0.1462 m
调配支节的长度
l2

arctan
1
Rin Rin )2
(1- 5- 4)
可见当 dP 0 时P取最大值, 此时应满足
dRin
Rg=Rin
(1- 5- 5)

阻抗匹配的计算公式

阻抗匹配的计算公式

阻抗匹配的计算公式阻抗匹配是在电子电路和通信领域中一个非常重要的概念,它关乎着信号传输的效率和质量。

那阻抗匹配的计算公式到底是啥呢?咱先来说说啥是阻抗匹配。

简单来讲,就是让输出阻抗和输入阻抗相等或者接近,这样能让能量传输得更顺畅,减少反射和损耗。

比如说,你有个电源要给一个设备供电,如果阻抗不匹配,就像水管接错了头,水会乱喷,电也没法好好传输。

阻抗匹配的计算公式有不少呢,咱先瞅瞅最常见的。

其中一个重要的公式就是:Zin = Z0 * (ZL + jZ0tan(βl)) / (Z0 + jZLtan(βl)) 。

这里面,Zin 是输入阻抗,Z0 是传输线的特性阻抗,ZL 是负载阻抗,β 是相移常数,l 是传输线的长度。

这公式看着有点复杂,别急,我给您慢慢解释。

我记得有一次,我在实验室里调试一个通信电路。

那个电路老是出问题,信号传输时强时弱,不稳定得很。

我就开始琢磨,是不是阻抗不匹配的原因。

于是我拿起笔,按照上面的公式一点点算。

当时我那认真劲儿,就跟侦探破案似的,不放过任何一个细节。

我反复测量各个参数,然后代入公式计算。

经过一番折腾,终于发现是传输线的长度没选对,导致阻抗不匹配。

再来说说另一个常用的公式:Rs = Rl * (√(ZL) - √(Z0))² / Z0 。

这里Rs 是串联匹配电阻的值。

这个公式在一些特定的电路设计中特别有用。

在实际应用中,阻抗匹配可不只是算算公式这么简单。

还得考虑到频率、温度、材料特性等各种因素的影响。

比如说,在高频电路中,由于寄生电容和电感的存在,阻抗会变得很复杂,这时候就得更仔细地分析和计算。

总之,阻抗匹配的计算公式虽然复杂,但只要咱耐心研究,多实践,就能掌握好这门技术,让电子电路和通信系统工作得更稳定、更高效。

希望通过我这一通讲解,您对阻抗匹配的计算公式能有更清楚的了解。

别被那些复杂的符号和公式吓住,多动手,多思考,您一定能搞定它!。

阻抗匹配与阻抗线线宽设置_1129

阻抗匹配与阻抗线线宽设置_1129

一、阻抗匹配概念定义:1、指信号源或者传输线跟负载之间的一种合适的搭配方式;阻抗匹配分为低频和高频两种情况讨论。

2、阻抗匹配(Impeda nee matchi ng是微波电子学里的一部分,主要用于负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

我们以下例(软管送水浇花来感性认识一下阻抗匹配的功用A、一端于手握处加压使其射出水柱,另一端接在水龙头,。

当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区.如下图所示:B、然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源。

也有可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱(阻抗太高;如下图所示:C、反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。

(阻抗太低,如下图所示;唯有拿捏恰到好处才能符合实际需求的距离。

(阻抗匹配二、PCB走线的阻抗匹配与阻抗控制(1定义阻抗匹配是电路学里的重要议题,也是射频微波电路的重点。

一般的传输线都是一端接电源,另一端接负载,此负载可能是天线或任何具有等效阻抗ZL的电路<传输线阻抗和负载阻抗达到匹配的定义,简单说就是:ZO=ZL。

在阻抗匹配的环境中,负载端是不会反射电波的,换句话说,电磁能量完全被负载吸收。

因为传输线的主要功能就是传输能量和传送电子讯号或数字数据,一个阻抗匹配的负载和电路网络,将可确保传输到最终负载的电磁能量值能达到最大量。

(2 PCB走线作阻抗控制的原因1:针对目前高频高速的要求,及对信号失真状况越来越高的要求,在设计PCB时方波信号在多层板讯号线中,其特性阻抗值必须要和电子元件的内置电子阻抗相匹配,才能保证信号的完整的传输。

2:当特性阻抗值超出公差时,所传讯号的能量将出现反射、散失、衰减或延误等劣化现象,严重时会出现错误讯号。

3:由于元件的电子阻抗越高,其传输速率越快。

2.3阻抗变换与阻抗匹配

2.3阻抗变换与阻抗匹配
1. 串—并联等效转换公式
品质因数:
RS 等效原则:变换前后电路总阻抗不变:
QS
XS
RP QP XP
Z s ( j ) Z p ( j )
主要分析的问题: RP 、XP 、QP 与 XS 、RS、 QS 之间的关系
要使Zp=Zs,必须满足:
1 1 1 RP jX P RS jX S
2.3 阻抗变换与阻抗匹配
信号源/
前级单元电路 负载/ 后级单元电路
RS(RO)
RL(Ri)
若RS ≠RL,阻抗不匹配,传输效率不高
信号源/ 前级单元电路 RS(ZO)
阻抗变换 网络
RL’(Ri’)
负载/ 后级单元电路 RL(Ri)
若RS= RL’ ,阻抗匹配,传输效率高
2.3.2 LC网络阻抗变换
由0.16μH电感和318pF电容组成的L-Ⅱ型匹配网络:
如负载为10Ω电阻和0.2 μH电感相串联:
0.2μH电感在20MHz时的电抗值为: XL=ωL=2π×20×106×0.2×10-6=25.1 Ω XL+XS’=XS XS’=XS-XL=20-25.1=-5.1 Ω
1 1 C2 1560 pF 6 w X 2 X L 2 20 10 5.1
XP RL RL RL Q Re RL

Q
RL XP
得出:
RL Re 1 Q2
L-I型网络适合于RS<RL的情况
L-Ⅱ型匹配网络:
设:RL——负载电阻
RS——信号源内阻 当RS>RL时,采用L-II型网络匹配
信 号 源
Re——匹配后的负载电阻
匹配要求:(1)匹配后的负载电阻等于信号源内阻,即:Re= Rs (2)匹配后的网络对工作频率谐振

阻抗匹配计算公式 zhihu

阻抗匹配计算公式 zhihu

阻抗匹配计算公式 zhihu
(最新版)
目录
1.阻抗匹配的定义和重要性
2.阻抗匹配计算公式的概述
3.阻抗匹配计算公式的应用实例
4.阻抗匹配计算公式的局限性和发展趋势
正文
一、阻抗匹配的定义和重要性
阻抗匹配是一种在电路中实现能量最大传输的技术,广泛应用于无线通信、射频电路和信号处理等领域。

在电路设计中,阻抗匹配的目的是将负载阻抗与源阻抗相等或接近相等,以实现最大功率传输和最小信号反射。

二、阻抗匹配计算公式的概述
阻抗匹配计算公式主要包括两种:一种是基于复数形式的计算公式,另一种是基于矢量形式的计算公式。

复数形式的阻抗匹配计算公式主要包括 Z1/Z2=ωL2/ωC1 和 Z1*Z2=ωL1/ωC2。

矢量形式的阻抗匹配计算公
式主要包括 S11=S22 和 S12=S21。

三、阻抗匹配计算公式的应用实例
以无线通信系统为例,为了实现信号的有效传输,需要对天线阻抗进行匹配。

此时,可以通过计算源阻抗和负载阻抗的复数形式,找到最佳的匹配条件,从而实现阻抗匹配。

具体计算过程为:首先根据电路参数计算出源阻抗 Z1 和负载阻抗 Z2 的复数形式,然后通过 Z1/Z2=ωL2/ωC1 公式求解匹配条件。

四、阻抗匹配计算公式的局限性和发展趋势
虽然阻抗匹配计算公式在实际应用中取得了良好的效果,但它仍然存在一定的局限性。

例如,对于复杂的非线性电路和分布式系统,传统的阻抗匹配计算公式可能无法满足匹配要求。

为了克服这些局限性,研究人员提出了许多新的阻抗匹配方法,如人工智能辅助阻抗匹配、非线性阻抗匹配等。

单支节阻抗匹配例题

单支节阻抗匹配例题
应于Y%2 j1.3的点为D,其
相应的电长度l=0.355(即由短路点 Y% 顺时针方向转至
=-j1.3处),则单跨线的长度为l1=(0.355-0.25)λ=0.105λ。 B% j1.3当负载改变实现匹配时,分支线接入的位置和长度 都随之而变,这对同轴线、 带线等传输线形式就不方便了,
这正是引入双支节匹配器的原因。
还有第2种情况可以求得d2=(0.33- 0.018)λ=0.312λ
l2=(0.107+0.25)λ=0.357λ
第3页/共3页
的可调匹配圆相交的C点(其对应的电长度l=0.171),读得C 点的坐标为 Y%1 1 j1.3
由B点至C点的距离即为d1,即d1=(0.171-0.018)λ =0.153λ
第1页/共3页
第4章 传输线理论
0.107
开路点
短路点(0.25)
导纳圆图
第2页/共3页
0.33
第4章 传输线理论
(3) 单支节线的归一化导纳为 Y%2 1 Y%1 j1.3 (4) 求单支节线的长度。
第4章 传输线理论
例4-7-1 已知ZL=300-j100 Ω,Z0=100 Ω,用单支节实 现阻抗匹配。
解 A(其对(1)应求的归电一长化度负l=载0.导26纳8)。Z%LA点ZZ沿L0 等3ρ圆j1,转在18圆0°图至上B标点为即点 得 Y%L 0.3 j0.1
(2) B点沿等ρ圆向电源方向(顺时针方向)转至与 G% 1

阻抗匹配(II)

阻抗匹配(II)
史密斯圖阻抗匹配在圓族的上半面q0電感性史密斯阻抗圖是以pq為座標軸且反射係數pjq則在圖上任一點與中心00的距離表示反射係數的大communicationlab
阻抗匹配(II)
Microwave & Communication Lab.
1
史密斯圖阻抗匹配
史密斯圖的結構
考慮Z0為實數的信號源內阻,ZL為複數的負載阻抗,
jXS1
I
II
jXS2
並且RS=15 Ω <RL=225 Ω , 所以由I點決定負載Q值。
jXP1
RV jXP2
RL=225
Microwave & Communication Lab.
18
三元件阻抗匹配網路
[解] (續) 2.繪出Q=5的恒定Q值曲線,並選擇Z0=75Ω,則 ~ z S = 0.2 + j 0.2 * ~ zL = 3 ⇒ ~ zL =3 * zL 3.在史密斯圖上分別標示出 ~ 為a及b。 zS 及 ~ 4.由a點沿rS=0.2的恒定電阻圓以反時針方向移動到與Q=5的 恒定Q值曲線交點c,為串聯一電容C1: 1 ∆x1 = 0.2 − (−1.0) = 1.2 ⇒ C1 = = 58.9 pF ω∆x1 Z 0 5.再由點c沿gc=0.2恆定電導圓以反時針方向移動到rL=3的恒 定電阻圓之交點d,為並聯一電感L: Z0 ∆b = 0.96 − (−0.16) = 1.12 ⇒ L = = 355nH ω∆b
r=0⇒圓心為(0 , 0) ,半徑=1⇒是一單位圓。 r=1⇒圓心為(0.5 , 0) ,半徑=0.5。 r=∞⇒圓心為(1 , 0) ,半徑=0⇒是指點(1 , 0)。
1 ,半徑為 1 , ¾ 由(2)式可繪出圓族的圓心為 ( p, q ) = 1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特征阻抗
在这个模型中,每个小电容的大小就是传输线单位长度的电容量与步长的乘积;
电流为每步时间间隔从脚底流出注入到每个电容上的电量:电容乘以其两端的电压;
每步之间的时间间隔,等于单位步长除以信号的速度。电流的求解公式如下:
I Q tC V xCL x xvVCLvV v
其中:I 表示信号电流;Q 表示每步的电量;C 表示每步的电容; t 表示从一个电容跨到另一个
阻抗匹配实例
Cadence 信号完整性分析 仿真模型:IBIS模型(Input/Output Buffer Information Specification)
拓扑结构
阻抗匹配实例
仿真结果
阻抗匹配实例
阻抗匹配实例
电阻/电容/电容等效模型
谢谢!常用的ຫໍສະໝຸດ 输线:双线传输线,同轴线,微带线。
特征阻抗
电磁场理论:特征阻抗 在自由空间,向正z方向传播的平面电磁波可写成典型的正弦波的形式:
Ex E0xcostz Hy H0ycostz
电场分量和磁场分量的比值即为特征阻抗:
H Exy Z0 0r 0r
377r r
:磁导率 :介电常数
特征阻抗
阻抗 = 电压/电流 零阶模型:传输线瞬时阻抗
反弹图
源端阻抗匹配
源端串联40欧电阻,源端和终端的电压图
阻抗匹配方法
Smith图
等电阻圆,等电抗圆 等电导圆,等电纳圆
阻抗变换方法: 串联:使用阻抗圆 并联:使用安导圆
阻抗匹配方法
双元件:L形匹配
三元件:T形/ 形匹配
阻抗匹配方法
使用ADS软件进行阻抗匹配
ADS软件简介:ADS电子设计自动化(EDA软件全称为 Advanced Design System,是美国
Z2= 0
-1
0
反弹图
例:源电压为1V,内阻为10欧,传输线长度1ns,终端开路。
进入传输线的初始电压为:1V×50/(10+50)=0.84V。 1ns后,0.84V的电压到达传输线末端,产生0.84V反射信号返回端。终端电压为1.68V; 再经过1ns后,0.84V反射波到达源端,又一次遇到阻抗突变,源端的反射系数为(10-50)/(10+50) = -0.67 ,这时将有0.84V×(-0.67)=-0.56V反射回线远端。线远端开路处将同时测得4个行波:从一次行波中得 到2×0.84=1.68V,从二次反射中得到2×(-0.56)=-1.12V,故总电压为0.56V。
按照电路特性,求解微分方程,得出特征阻抗 Z 0
Z0V I V I
RjwL GjwC
PCB板调整微带线的特征阻抗(调整介质厚度和线宽)。
特性阻抗
对于均匀传输线,当信号在上面传播时,在任何一处受到的瞬态阻抗都是相同的。瞬态阻
抗即为传输线的特性阻抗,标为:Z 0
著名的特性阻抗:
RG174
RG58
RG59
安捷伦(Agilent)公司所生产拥有的电子设计自动化软件;ADS功能十分强大,包含时域电 路仿真 (SPICE-like Simulation)、频域电路仿真 (Harmonic Balance、Linear Analysis)、三 维电磁仿真 、通信系统仿真(Communication System Simulation)和数字信号处理仿真设( DSP);支持射频和系统设计工程师开发所有类型的 RF设计,从离散的射频/微波模块到用 于通信和航天/国防的集成MMIC,是当今国内各大学和研究所使用最多的微波/射频电路和通 信系统仿真软件软件。
RG62
电视天线
有线电视电缆
双绞线
自由空间
50欧 52欧 75欧 93欧 300欧 75欧 100 – 130欧 377欧
阻抗/瞬时阻抗/特征阻抗
不同观测时刻和不同连接线长度的瞬时阻抗 下图为同轴电缆(无损耗),通过欧姆表测量轴心导体和外导体的阻抗。
阻抗/瞬时阻抗/特征阻抗
反射
如果信号沿互连线传播时所受到的瞬态阻抗发生变化,则一部分信号将被反射,另一
3-30KHz 30-300KHz 300-3000KHz 3-30MHz 30-300MHz 300-3000MHz 3G-30GHz 30G-300GHz 300G-3000GHz
2-4GHz
射频频率范围:通常是指从VHF到S波段
阻抗失配的示例
传输线及传输线理论
当信号的波长可于分立电路元件的几何尺寸相比拟时,电压和电流不再保持空间 不变,必须把它们看做传输的波。信号采用传输线理论进行分析。
电容的时间;C L 为单位长度的电容量; x 表示步长;v 表示信号的速度;V 表示信号的电压。
传输线的瞬时阻抗为:
PCB常用微带线的瞬时阻抗:
ZV V 83 I CLvV CL
r
其中: r 表示材料的介电常数
Z83 C L
r 3 8.3 3450
特征阻抗
一阶模型:特征阻抗
特征阻抗
使用基尔霍夫电压定律得出:
R j w L I z z V z z V z
L z i m 0 V z z z V z d V d Z z R j w L I z
使用基尔霍夫电压定律得出:
I z V z z G j w C z I z z L z i m 0 I z z z I z d I d Z z G j w C V z
部分发生失真并继续传播下去。
阻抗突变处的反射:若第一个区域的瞬态阻抗是Z 1 ,第二区域的瞬态阻抗是 Z 2 ,则反
射系数(反射程度)为:
V反射=Z2-Z1
V入射 Z2 Z1
V传 输 =V入 射 +V 反 射 =Z 22 + Z Z 21
反射系数 电压
Z2 =Z1
0
V入射
Z2 =
1
2×V 入 射
射频阻抗匹配
Sun Feng 2015/06/19
IEEE频谱分段
频段
ELF(极低频) VF(音频)
VLF(甚低频) LF(低频) MF(中频) HF(高频)
VHF(甚高频) UHF(特高频) SHF(超高频) EHF(极高频)
亚毫米波 S波段
IEEE频谱
频率
30-300Hz 300-3000Hz
相关文档
最新文档