22第六章卡方检验
卡方检验医学统计学
卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。
在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。
卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。
期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。
而实际频数则是实验中观察到的实际结果。
卡方检验的步骤如下:1.建立零假设和备择假设。
零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。
2.确定显著性水平 alpha,通常取值为0.05。
3.构建卡方检验统计量。
计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。
4.根据自由度和显著性水平,查卡方分布表得到 P 值。
5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。
卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。
卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。
举个例子,某药厂要研发一种新的药物来治疗心脏病。
为了验证该药的疗效,实验组和对照组各50 人。
在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。
卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。
除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。
卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。
其中比较明显的一点就是对样本量有一定的要求。
当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。
此外,在面对非常态分布数据时,卡方检验也会出现问题。
当数据呈现正态分布时,卡方检验的准确性最高。
然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。
卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。
【实用】卡方检验(5)PPT文档
2 0.619 0.363 (0.4) 0.285 0.316 0.118 试判断该小麦的株高表现是否遵从正态分布。
在假设两种随机现象相互独立的情况下,确定各组合的概率,并计算各组合按概率进行分配时的观测值频数
x 2.381 5.637 12.4 19.72 22.68 18.88 并统计各结果观测值的频数
解:H0:x~N(μσ) HA: x 不服从正太分布 由于总体μ、σ未知,故由样本去估计(采用点估计):
样本 x 65.60,样本 S 22.50
x 65.60, S 22.50
首先算出各组的理论频率:
pi
Φ
xi1
Φ
xi
式中:xi+1、xi表示第i组的上下限(i=1,2,…,k)。 本例中:k=9 再算出各组的理论频数:E(fi)=Npi =100×pi
有7=5%1的0置0信水×平认p为i杨麦1号本的株高例遵从中正态各分布组。 的已计算出并列于表6-2中。 继而便可算出x 统计量值: 若两者相互独立,表明三种灌溉方式对叶态2表现的影响相同。
本例中的自由度df=k-1-p=12-1-2=9,查x2 值表可知,
2 2 2 2 2 2 本例中,设灌溉方式与与叶态表现无关联,则深水灌溉与绿叶同时出现的理论频率应为三种灌溉方式中深水灌溉的频率与三种叶态中
且已经算得 样本x 94.8,样本S 5.2。
试判断该小麦的株高表现是否遵从正态分布。
正态分布是连续分布,没有自然的类别,为了利用卡方检
验,可先用第2章介绍的方法将数据进行分组,然后以每组作为 一个类别,再用卡方检验进行正态分布的适合性检验。
组中值 83 86 89 92 95 98 101 104 107 组分点值 84.5 87.5 90.5 93.5 96.5 99.5 102.5 105.5 组频数 3 6 12 20 23 19 10 5 2 理论频数 2.38 5.64 12.4 19.7222.6818.8811.37 4.95 1.98 偏差量 0.62 0.36 -0.4 0.29 0.32 0.12 -1.37 0.05 0.02
卡方检验
Stata第六章卡方检验本节STATA命令摘要[by分层变量名:]tab2变量1变量2[,allchi2exactcellcolumnrow]tabi#11#12[...]\[#21#22[...][\...][,allchi2exactcellcolumnrow]•列联表分析STATA命令:[by分层变量:]tab2变量1变量2[,allchi2lichi2exactcellcolumnrow]上述命令中,变量1为行计数变量;变量2为列计数变量;all表示卡方(c2)检验,似然比(likelihoodratio)检验以及一些统计描述指标和检验,但不包括Fisher精确检验;exact表示Fisher精确检验;chi2表示c2检验;lichi2表示likelihoodratio检验;cell表示输出的列联表中显示每个观察计数值占该列联表总观察计数值的比例;row表示输出的列联表中显示每个观察计数值占该观察计数值所在行的各观察计数值总数的比例;coloumn表示输出的列联表中显示每个观察计数值占该观察计数值所在的列各观察计数值总数的比例。
例:某地调查肝癌病人与健康人饮用“醋冷水”(一种以冷水和醋为主要成分的饮料)的习惯。
用group=1表示肝癌组患者和group=2表示健康人;用custom=1表示经常饮用醋冷水;custom=2表示偶尔饮用醋冷水和custom=3表示从不饮用醋冷水。
具体资料为:(摘自医学统计方法,金丕焕主编,p163)。
组别经常偶尔从不饮用合计肝癌组26442898健康组28491794合计549345192显然这是一个病例对照研究,所以每组人数是人为确定的,因此只需计算各组"经常","偶而"和"从不饮用"占本组的频数以及检验患肝癌是否与饮水习惯有关。
tab2groupcustom,rowchi2->tabulationofgroupbycustom|customgroup|123|Total-----------+--------------------------------------------+----------1|①264428|98|②26.5344.9028.57|100.00-----------+--------------------------------------------+----------2|③284917|94|④29.7952.1318.09|100.00-----------+--------------------------------------------+----------Total|⑤549345|192|⑥28.1248.4423.44|100.00Pearsonchi2(2)=2.9497Pr=0.229①该行表示第一组(肝癌组)的3个观察数;②该行表示第一组的各个观察数的占第一组观察总数的百分比;③该行表示第二组(健康组)的3个观察数;④该行表示第二组的各个观察数的占第二组观察总数的百分比;⑤该行表示关于饮用醋冷水习惯的三个分类:“经常”,“偶尔”和“从不”的合计数;⑥该行表示上述三个合计数分别占总样本数的百分比。
卡方检验
计数资料:又称为定性资料或无序分类变量资料,也称 名义变量资料,是将观察单位按某种属性或类别分组计 数,分别汇总各组观察单位数后而得到的资料,其变量 值是定性的,表现为互不相容的属性或类别。
计量资料:又称定量资料或数值变量资料,为观测每个 观察单位某项指标的大小而获得的资料。其变量值是定 量的,表现为数值大小,一般有度量衡单位(cm、mmhg、 次/分、单位等)。
2
(2 1)(2 1) 1
3. 确定P值,作出统计推断
查2界值表,得2 0.005,1=7.88, 2 > 2 0.005,1,P <0.005,按 = 0.05水准,拒绝H0 ,接受H1,差 异有统计学意义,可以认为两组的显效率不等
四格表资料2检验的条件
例:为比较西药与中药治疗慢性支气管炎的疗效,某医师将符合 研究标准的110例慢性支气管炎患者随机分为两组(两组具有可比 性),西药组86例,中药组24例。服药一个疗程后,观察患者的 疗效,结果见下表。根据显效率,该医师认为中西药治疗慢性支 气管炎的疗效有差别,中药组的疗效好于西药组
表1 中西药治疗慢性支气管炎的显效率
等级资料:将观察单位按某种属性或某个标志分组,然 后清点各观察单位个数得来。具有等级顺序。(-、+、++、 +++;治愈、好转、无效、死亡)
独立样本:一般情况下,比较两个(类)人之间的差异 就是独立样本。(实验组、控制组)
配对样本:1. 一个人的不同部位进行测试。2.前测后测 的情况属于相关样本(同一人先后测试a、b两种药物)。 3. 两个匹配样本的比较。(测试两人智力,控制语文成 绩相等)
组别 西药组 中药组 合 计 治疗人数 86 24 110 显效人数 35 18 53 显效率(%) 40.70 75.00 48.18
医学统计学(6) 卡方检验
•进一步的两两比较
•P<0.017才有 统计学意义!!
【例6】某中医院用三种治疗方法治疗413例糖尿病患者, 资料见表。为避免中医不同证型对疗效比较的影响,分 析3种疗法治疗的病人按3种中医分型的构成比有无差别?
SPSS软件操作
• 第1步:定义变量
• 第2步:输入 原始数据
• 第3步:定义频数 • 选择数据→加权个案 • 频数→加权个案(频 数变量)
CMH多维卡 方检验
• 第4步:x2检验(2) • 选择统计 量按钮 • 在交叉表: 统计量对 话框:勾 上卡方
• 第4步:x2检验(3) • 选择单元 格按钮 • 在交叉表: 单元显示 对话框: 勾上观察 值、百分 比:行、 列
• 第5步:结果解读(1)
• 结果解读:中西医组的治愈率为98.2%,西 医组的治愈率为74.0%。
【例4】某医师为研究乙肝免疫球蛋白预防胎儿宫内感 染HBV的效果,将33例HBsAg阳性孕妇随机分为预防 注射组和非预防组,结果见表。问两组新生儿的HBV总 体感染率有无差别?
• 第1步:定义变量
SPSS软件操作
• 第2步:输入 原始数据
• 第3步:定义频数 • 选择数据→加权个案 • 频数→加权个案(频 数变量)
医学统计学 (6 )
《中华医学杂志》对来稿统计学处理的有关要求
卡方检验(chi-square test)
• χ2检验是现代统计学的创始人之一,英国人 Karl . Pearson于1900年提出的一种具有广 泛用途的统计方法。 • 可用于两个或多个率间的比较,计数资料 的关联度分析,拟合优度检验等等。
关联性分析
列联系数的意义 • |rp|<0.4,关联程度低 • 0.4≤|rp|<0.7,关联程度中等 • |rp|≥0.7,关联程度高
第六章 卡方检验
• R*2 或2* C • 无序 • 在甲、乙两地进行水牛体型调查,将体型按优、良、中、劣 四个等级分类,其结果见P169表7-13。问两地水牛体型构 成比是否相同? • 表7-13 两地水牛体型分类统计 • 优 良 中 劣 • 甲 10 10 60 10 • 乙 10 5 20 10
• • • • • • • • • • • • • • •
2、选择Table Analysis,打开对话框
3、将A放在Row,将B放在Column,将freq放在Cell Counts
4、在Statistics中设置Exact Test检验,单击OK
5、结果如下,大致分为3部分,第一部分是频数和列百分比表;第二部分是四种 检验方法结果,p值都大于0.05水平;第三部分是Fisher精确检验结果,p值 位0.7246,远远大于0.05,可见判决情况与被告种族是没有关系的。
高级生物统计
• 第六章 卡方检验
列联表分析
使用Statistics菜单下的Table Analysis可以进行 列联表分析(即属性频数数据分析) 例1:为了考察法院判决是否与被告种族有关,调查了 326位被告的判决情况如表所示: 黑人 有罪 17 白人 19
无罪
149
141
1、首先建立数据集 Data panjue ; Input A B freq@@;\*其中A取1表有罪,2无罪;B 取1表黑人,2表白人*\ Cards; 1 1 17 1 2 19 2 1 149 2 2 141 ; Run;
•
Statistics for Table of r by c Statistic DF Value Prob Chi-Square 1 9.2774 0.0023 Likelihood Ratio Chi-Square 1 9.4190 0.0021 Continuity Adj. Chi-Square 1 7.9444 0.0048 Mantel-Haenszel Chi-Square 1 9.1615 0.0025 Phi Coefficient -0.3405 Contingency Coefficient 0.3224 Cramer's V -0.3405
卡方检验
第二节
行×列表资料的 检验
2
行×列表资料
① 两个样本率比较时,基本数据有4个,排成2行 2列,称为2 ×2表,即四格表; ② 多个样本率或构成比比较时,基本数据超过2 行2列,有R行C列,称R×C表或行列表。
检验统计量(通用公式)
A n( 1) nR nC
2
2
(行数 1)(列数 1)
【
2
2 χ 基本公式】
2
( AT ) , (行数-1)(列数 1) T
T为理论频数(theoretical frequency)
式中,A为实际频数(actual frequency)
nR nC TRC n
【 χ2检验的基本原理】
若H0:π1=π2=π0成立,
四个格子的实际频数A与理论频数T相差不应该很大,即统计
度函数可给出不同自由度的一簇分布曲线。
2分布的形状依赖于自由度的大小;当自由
度趋向于无穷大时, 2分布趋向正态分布。
χ2分布特点
χ2分布是一组曲线。 χ2分布与自由度有关 自由度一定时, χ2值越大,P值越小;反之亦然。 =1时, P=0.05, x2 =3.84 P=0.01, x2 =6.63
三、配对四格表资料的 检验
2
也称McNemar检验(McNemar's test)
例6.3 某研究室用甲、乙两种血清学方法检查410 例确诊的鼻咽癌患者,得到结果如表6.4 ,问两 种方法检出率有无差别?
表6.4 两种血清学检验结果
甲法 + - 合计 乙法 + 261(a) 8(c) 269 - 110(b) 31(d) 141 合计 371 39 410
表中,a, d 为两法观察结果一致, b, c 为两法观察结果不一致。
医学统计学-卡方检验
卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义
《卡方检验》课件
制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。
卡方检验的原理
卡方检验的原理卡方检验是一种用于检验两个分类变量之间是否存在相关性的统计方法。
它的原理是通过比较实际观察值和期望理论值之间的差异来判断两个变量之间的相关性程度。
在进行卡方检验时,我们首先需要构建一个列联表,然后根据列联表中的数据计算出卡方值,最后根据卡方值来判断两个变量之间的相关性程度。
首先,我们来看一下列联表的构建。
列联表是由两个分类变量的交叉分类频数构成的二维表格。
表格的行表示一个分类变量的各个分类,表格的列表示另一个分类变量的各个分类,交叉点上的数字表示对应分类组合的频数。
构建列联表的目的是为了清晰地展现两个变量之间的关系,为后续的卡方检验提供数据基础。
接下来,我们需要计算卡方值。
卡方值的计算公式为,χ²=Σ((O-E)²/E),其中,Σ表示求和,O表示观察频数,E表示期望频数。
在计算卡方值时,我们需要先计算出期望频数,然后将观察频数和期望频数的差异进行平方,并除以期望频数,最后将所有分类组合的差异平方和除以期望频数的总和就得到了卡方值。
最后,我们根据卡方值来判断两个变量之间的相关性程度。
在进行判断时,我们需要参考自由度和显著性水平。
自由度的计算公式为,df=(r-1)(c-1),其中,r表示行数,c表示列数。
在一般情况下,我们可以查找卡方分布表来确定显著性水平下的临界值,然后比较计算出的卡方值和临界值的大小关系,从而判断两个变量之间的相关性程度。
总的来说,卡方检验是一种用于检验两个分类变量之间相关性的统计方法,它通过比较实际观察值和期望理论值之间的差异来判断两个变量之间的相关性程度。
在进行卡方检验时,我们需要构建列联表,计算卡方值,并根据卡方值来判断两个变量之间的相关性程度。
通过卡方检验,我们可以更加清晰地了解两个变量之间的关系,为进一步的分析和决策提供依据。
第6章 卡方检验 PPT课件
由 χC 2
(|OE|1/2)2可得: E
χ C 2(|8 2 - .7|.7 1 0 5 -.5 )5 6 2 (|8 .7 7|.2 0 5 - 2 .5 )2 5 0 .31 0 .4 90 4 1 .25 06
查附表,
χ2 0.05,1
3.8。4 现
χC 2 1.256002.0,51故应接受
Section 6.2
Fit Test 适合性检验
[例1] 大豆花色一对等位基因的遗传研究,在F2获得表1 所列分离株数。问这一资料的实际观察比例是否符合于3∶1 的理论比值。
表1 大豆花色一对等位基因遗传的适合性测验
花色
F2代实际株数 (O)
理论株数(E)
O-E
紫色
208
216.75 -8.75
0.5
0.4
纵高
0.3 0.2 0.1 0.0
0
自由度=1 自由度=2 自由度=3 自由度=6 a=0.05的临界值
3 3.84 6 7.81 9
1122.59 15
18
卡方值
单侧临界值
➢ 在自由度为
的
2
分布曲线图下,
2 a ,
右方
的面积为
a
,则称
2 a ,
为自由度为
的 2
分布概率为 a 的单侧临界值。可查表。
取 a=0.05。
根据H0的假定,计算各组格观察次数的相应理论次数: 如与146相应的E=(481×160)/547=140.69,
与183相应的E=(481×205)/547=180.26,……, 所得结果填于表4括号内。
根据 2 (OE)2 可得
iE χ 2 ( 1 4 1.6 6 4 )2 9 0 ( 7 8 .7 )2 8 ( 1 1 6 .9 1 )28 5 .62
卡方检验详述
卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。
它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。
该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。
计算这种偏离程度的基本思路如下。
(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。
(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。
因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。
(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。
考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。
进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。
医学统计方法之卡方检验
医学统计方法之卡方检验卡方检验,又称卡方分布检验(Chi-Square Test),是一种常用的统计方法,用于检验两个或多个分类变量之间是否存在显著差异。
本文将详细介绍卡方检验的原理、应用范围以及具体的步骤。
一、原理:卡方检验的原理是基于卡方分布的性质。
卡方分布是指具有自由度的正态分布的平方和,记为χ^2(k),其中k为自由度。
在卡方检验中,我们将观察到的频数与理论预期频数进行比较,从而判断两个或多个分类变量之间的差异是否显著。
二、应用范围:卡方检验广泛应用于医学研究中的数据分析,尤其是在对两个或多个分类变量之间的关联进行检验时。
常见的应用场景包括但不限于以下几种:1.检验观察频数与理论预期频数之间的差异,以判断观察结果是否与理论预期相符。
2.检验两个或多个分类变量之间的关联性,以确定它们之间是否存在显著的相关性。
3.比较两个或多个群体在一个或多个分类变量上的分布差异,从而判断它们之间是否存在显著差异。
三、步骤:卡方检验的主要步骤包括以下几个:1. 建立假设:首先需要明确检验的假设。
在卡方检验中,通常有两种假设:“原假设”(null hypothesis,H0)和“备择假设”(alternative hypothesis,H1)。
原假设通常表示没有差异或关联,备择假设则表示存在差异或关联。
2.计算期望频数:根据原假设,计算出理论预期频数。
理论预期频数是基于既定的分布假设和样本总体的参数计算得出的。
3.计算卡方值:将观察频数与理论预期频数进行比较,计算出卡方值。
卡方值是观察频数与理论预期频数之间的差异的平方和。
4.确定自由度:根据检验问题的具体情况确定自由度。
在卡方检验中,自由度通常由分类变量的水平数目决定。
5.查表找出p值:根据卡方分布表,找出相应自由度下的临界值。
将计算得到的卡方值与临界值进行比较,确定其显著性水平。
p值是指在原假设成立的前提下,观察到的差异大于或等于当前差异的概率。
6.做出判断:根据p值与显著性水平的比较,做出判断是否拒绝原假设。
第六章卡方检验
• 为了度量实际观察次数与理论次数偏离的程度,最简单的 办法是求出实际观察次数与理论次数的差数。
• 当将这两个差值相加,(705-696.75)+(224-232.25)= 0。可以说, 任何类似的问题其结果都是 0。
为了避免正、负抵消,可将两个差数平方后再相加,即计算∑(O-E)2,且 由于平方,使得原来较大的差变得更大了,因而增大了分析问题的灵 敏性
先作无效假设:H 0 : 本例男女婴性别比符合常规比例 v s
H A : 不符常规比例
计算
2 c
值
c 2 4 6 9 1 4 4 5 5 1 1 3 3 ..5 5 0 .5 2 |4 1 5 9 4 4 3 3 3 3 6 6 .. 5 5 | 0 .5 2 1 4 .1 6
适合性检验适用于某一实际资料是否符合一理论值, 因此适合性检验常用于遗传学研究、质量鉴定、 规范化作业、一批数据是否符合某种理论分布等。
我们以例 3 来说明适合性检验的一般步骤
设立无效假设,H 0 : 果蝇的分类观测值与理论值相符 v s
H A : 两者不符
计算 2 值,前面已经得到 2 5.519
如果这一 3:1 的理论比例是正确的,那么这一试验所出现的 红花和白花的理论比例应当是:
红花:696.75
白花:232.25
显然,实际出现的红花、白花的朵数与理论值之间有一定的 差异,即observed frequency和expected frequency (如何用 t-test来完成这一检验?)
除此之外,我们还可以用 2 检验来完成检验工作 特别当有多个样本进行比较时,必须用 2 检验来完
成
第一节 2 检验的意义和原理概念
医学统计学课件卡方检验
队列研究中的卡方检验
总结词
在队列研究中,卡方检验用于比较不同暴露 水平或不同分组在某个分类变量上的分布差 异,以评估暴露因素与疾病发生之间的关系 。
详细描述
队列研究是一种前瞻性研究方法,按照暴露 因素的不同将参与者分为不同的组,追踪各 组的疾病发生情况。通过卡方检验,可以比 较不同暴露水平或不同分组在分类变量上的 分布差异,如分析不同饮食习惯的人群中患
卡方检验与相关性分析的区别
卡方检验主要用于比较实际观测频数与期望频数之间的差异,而相关性分析则用于研究 两个或多个变量之间的关联程度。
卡方检验与相关性分析的联系
在某些情况下,卡方检验的结果可以为相关性分析提供参考,帮助了解变量之间的关联 程度。
05
卡方检验的应用实例
病例对照研究中的卡方检验
总结词
02
公式
卡方检验的公式为 $chi^{2} = sum frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$,
其中 $O_{ij}$ 表示实际观测频数,$E_{ij}$ 表示期望频数。
03
适用范围
卡方检验适用于两个分类变量的比较,可以用于分析病例对照研究、队
列研究等类型的研究。
卡方检验的用途
如比较不同年龄组、性别组等人群中某种疾病的患病率。
卡方检验的基本假设
每个单元格中的期望 频数应该大于5。
卡方检验对于样本量 较小的情况可能不适 用。
观察频数与期望频数 应该服从相同的概率 分布。
02
卡方检验的步骤
收集数据
01
02
03
确定研究目的
在开始卡方检验之前,需 要明确研究的目的和假设 ,以便有针对性地收集数 据。
医学统计学卡方检验
计算期望频数
2
根据独立性假设,计算预期的频数。
3
计算卡方值
根据观察频数和期望频数,计算卡方值。
判断显著性
4
根据卡方值和自由度,判断结果是否显著。
卡方检验的计算方法
卡方检验的计算方法主要包括计算卡方值、计算自由度以及查找临界值。 计算卡方值:
1. 计算每个组别的观察频数和期望频数之差的平方。 2. 将所有差的平方相加,得到卡方值。 计算自由度: • 自由度 = (行数 - 1) * (列数 - 1) 查找临界值:
卡方检验的应用范围和特点
卡方检验广泛应用于医学研究中,例如研究疾病与风险因素之间的关联性。 卡方检验的特点包括:
非参数检验
不依赖于总体的任何参数假设。
适用性广泛
可用于分析两个或释。
卡方检验的步骤
1
收集数据
收集观察到的数据,例如不同组别的频数。
根据自由度和显著性水平,在卡方分布表中查找对应的临界值。
案例分析:卡方检验在医学统计学中的应用
临床研究
通过卡方检验分析患者病情与治疗 效果之间是否存在关联性。
遗传研究
运用卡方检验检测基因型与表型之 间的关联性。
公共卫生
分析卡方检验数据以确定风险因素 与疾病之间的关联性。
结论和总结
卡方检验是一种强大的统计工具,可用于分析变量之间的关联性。 通过掌握卡方检验的原理、应用和计算方法,我们能更好地理解数据背后的 关系,并做出有针对性的决策。
医学统计学卡方检验
卡方检验是一种常用的统计方法,主要用于比较观察到的数据与期望值之间 是否存在显著差异。
卡方检验的原理和假设
卡方检验基于观察到的频数与期望频数之间的差异,用于判断变量之间是否存在关联性。 卡方检验的假设为:
医学统计方法之卡方检验
医学统计方法之卡方检验卡方检验(Chi-square test)是一种常用的医学统计方法,用于比较观察频数与期望频数的差异,以判断两个或多个类别变量之间是否存在相关性或差异。
卡方检验适用于分类数据的分析,常用于研究疾病与相关因素的关系、药物与不良反应的关系等。
卡方检验的基本原理是通过计算观察频数与期望频数之间的差异,并比较差异的程度来判断两个或多个分类变量之间的关联性。
卡方值越大,观察频数与期望频数之间的差异越大,相关性越显著。
卡方检验的零假设(Null hypothesis)是假设变量之间没有关联性,即观察频数与期望频数之间的差异是由随机误差引起的。
卡方检验的计算步骤如下:1.建立零假设与备择假设。
例如,我们想要研究其中一种药物与不良反应的关系,零假设可以是“该药物与不良反应之间没有关联性”,备择假设可以是“该药物与不良反应之间存在关联性”。
2.构建两个变量的列联表,计算观察频数。
列联表是将两个或多个分类变量交叉组合生成的一个二维表格。
例如,我们可以将药物使用与不良反应按行和列分别组合,得到一个2×2的列联表。
3.计算期望频数。
期望频数是在零假设成立的情况下,根据总体总数和变量之间的独立性计算的理论频数。
期望频数可以通过计算每个组合的行合计、列合计以及总体合计来得到。
4.计算卡方值。
卡方值是观察频数与期望频数之间的差异的平方和除以期望频数的总和,即卡方值=Σ((O-E)²/E),其中O为观察频数,E为期望频数。
5.比较卡方值与临界值。
通过查找卡方分布表,根据给定的显著性水平(一般为0.05或0.01),确定临界值。
如果卡方值大于临界值,则拒绝零假设,认为两个变量之间存在关联性。
如果卡方值小于等于临界值,则无法拒绝零假设,认为两个变量之间不存在关联性。
6.进行推论。
如果拒绝零假设,可以推断两个变量之间存在关联性。
反之,如果无法拒绝零假设,不能推断两个变量之间存在关联性。
需要注意的是,卡方检验对样本容量有一定要求,通常要求每个格子的期望频数不低于5、如果期望频数低于5,需要采取合适的修正方法或使用其他适用于小样本的检验方法。
卡方检验
假设检验方法
01 基本原理
03 检验方法 05 代码实现
目录
02 步骤 04 资料检验
卡方检验,是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括两个率或两个构成比 比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
基本原理
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程 度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡 方值就为0,表明理论值完全符合。
卡方检验要求:最好是大样本数据。一般每个个案最好出现一次,四分之一的个案至少出现五次。如果数据 不符合要求,就要应用校正卡方。
谢谢观看
注意:卡方检验针对分类变量。
步骤
(1)提出原假设: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为 H0:总体X的分布律为P{X=xi}=pi, i=1,2,... (2)将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取 A1=(a0,a1],A2=(a1,a2],...,Ak=(ak-1,ak), 其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值个数不小于5, 而区间个数k不要太大也不要太小。 (3)把落入第i个小区间的Ai的样本值的个数记作fi,成为组频数(真实值),所有组频数之和 f1+f2+...+fk等于样本容量n。 (4)当H0为真时,根据所假设的总体理论分布,可算出总体X的值落入第i个小区间Ai的概率pi,于是,npi 就是落入第i个小区间Ai的样本值的理论频数(理论值)。
检验方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
≤ (或
2
2 )< c
2 0.01 ,0.01<
p≤0.05,表明实际观察次数与理论次数差异显著,
实际观察的属性类别分配显著不符合已知属性类
别分配的理论或学说;
若 (或
2
2 c)≥
2 ,p 0.01
≤0.01,表明实际
观察次数与理论次数差异极显著,实际观察的 属性类别分配极显著不符合已知属性类别分配
第二节
适合性检验
一、适合性检验的意义
判断实际观察的属性类别分配是否符合
已知属性类别分配理论或学说的假设检验称
为适合性检验 。
在适合性检验中,无效假设
H0
:实际观
察的属性类别分配符合已知属性类别分配的理 论或学说; 备择假设
HA
:实际观察的属性类
别分配不符合已知属性类别分配的理论或学说。
在无效假设成立的条件下,按已知属性类 别分配的理论或学说计算各属性类别的理论次 数。 适合性检验的自由度等于属性类别数减1。 若属性类别数为 k,则适合性检验的自由度为 k-1。然后根据(6-1)或(6-2)式计 p T. i
2 i
其中,Ai为第 i 组的实际观察次数,pi 为 第 i 组的理论比例,T. 为总观察次数: T. Ai
将【例6· 2】按(6-3)式计算 :
2
A 1 T. T. pi
2 2 2 2 2 1 491 76 90 86 743 743 9 / 16 3 / 16 3 / 16 1 / 16
2 c
1650
2 c
1650
3、计算
c2
( A T 0.5)2 ( 390 412.5 0.5) 2 412.5
T (1260 1237.5 0.5) 2 1237.5
1.5644
4、统计推断
实际计算的
2 c =1.5644
<
2 0.05(1)
2
2
2 ( x x ) i i 1
n
2
(n 1) S 2
2
图6-1 几个自由度的概率分布密度曲线
三、 连续性矫正
2
间断型次数资料由(6-1)式定义的 ,即
2
统计学家K. Pearson(1899)发现,对于
2
(A T )
i 1 i i
k
Ti 近似地服从自由度为 df k 1
6. 求 2值
2 ( f T ) 2 T (9 7.50) 2 (10 11.26) 2 (14 13.83) 2 (11 9.65) 2 7.50 11.26 13.83 9.65 0.8688
7. 确定自由度:df = k-3 = 7-3 = 4 8. 统计推断 2 由df=4,查 表得: 02.05( 4) 9.49,实际计 2 算的 2 0.8688 0 .05( 4 ) 9.49,故p>0.05, 表明各组实际次数与正态分布计算的理论次数 差异不显著,湘菊梨单株产量服从正态分布。
② 符合3:1,实际出现的 705:224是抽样 误差造成的。 到底属于哪种情况 ,需寻求合适的统计 数进行统计分析,即进行显著性检验。
表6-1 豌豆杂交F2花色分离的实际观察次数与理论次数 花色 实际观察次数(A) 理论次数(T) A-T (A-T)2/T 705(A1) 696.75(T1) +8.25 0.0977 红色 白色 合计 224(A2) 929 232.25(T2) 929 -8.25 0 0.2931 0.3908
第六章 检验
2
对次数资料进行适合性检验和独
立性检验的 检验法。
2
第一节 统计数
2
一、 统计数的意义
2
豌豆花色遗传中,红花和白花是受一 孟德尔 (1865)在杂交 F2 群体中随机调查 对等位基因控制的一对相对性状,杂交 F2 了929株,其中705株为红花,224株为白花。 植株的理论比例为 红: 白=3:1。 这一结果是否符合3:1 的理论比例。
先将A1-T1、A2-T2平方,然后再求和,即 由表6-12 看出,两组的差数A1-T1、A2-T2 计算 ( A T ) 。 之和等于0,即 ( A T ) 0 。因此, ( A T ) 不 2 ( A T ) 数值的大小可用来表示实际观察 能用来表示实际观察次数与理论次数符合程度 次数与理论次数的相差程度 。 的大小。
2 2
的连续型随机变量 分布。由间断型次数资 料按(6-1)式算得的 值均有偏大的趋势, 尤其是当 df 1 时,偏差较大。
F. Yates(1934)提出对 2进行连续性矫正。 矫正方法是,先将各组实际观察次数与理 论次数的差数的绝对值分别减去0.5,然后再平 方进行计算。矫正后的 记为 ,即
稃尖无色糯稻:T4=743×1/16=46.44,
或 T4=743-417.94-139.31-139.31
=46.44。
3、计算
2
2
2
(A T) T 2 2 (491 417.94) (76 139.31) 417.94 139.31 2 2 (90 139.31) (86 46.44) 139.31 46.44 92.6961
4、统计推断
11.34 , 故 p <0.01,否定 H 0,接受 H ,表明该水稻 A
= 92.6961 >
2 0.01(3)
因
2
稃尖和糯性性状在 F2 的实际观察次数之比极
显著不符合 9:3:3:1 的理论比例。
这一结果表明,该两对等位基因并非完全
显性、无连锁。
当属性类别数大于 2 时,可利用下面简 化公式计算 2:
2
将所计算得的 比较:
或
2
2 c。
值表(附表7)所得的临界 值: 0.05 或
2 c值与根据自由度 2 2
k-1查
2
2 0.01
若 (或
2
2 c)
2 < 0.05 ,p>0.05,表明实际观
察次数与理论次数差异不显著,可以认为实际观 察的属性类别分配符合已知属性类别分配的理论 或学说; 若
3.84,
故 p>0.05,不能否定 H 0,表明实际观察次数
与理论次数差异不显著。
可以认为大豆花色在F2的这一结果是符合
3:1 的理论比例,即大豆紫花与白花这一相对
性状在 F2 的分离比例符合一对等位基因的遗
传规律。
【例6· 2】两对等位基因控制的两对相对性
状遗传。如果两对等位基因完全显性且无连锁,
相差 8.25。
如果把各组的 ( A T )2 除以相应的理论次
数,即 ( A T ) / T,并记为 ,即
2
2
2
=
( Ai Ti ) Ti i 1
k
2
其中,k 为组数, Ai 为第 i 组的实际观察次数, 为第 i 组的理论次数。 2 是度量实际观察次数与理论次数偏离程
若符合理论比例 红:白=3:1,则929株中的
红花株数应为: 929×3/4=696.75(株) 白花株数应为: 929×1/4=232.25(株) 实际上获得的是红:白=705:224=3.147:1。 实际观察次数与理论次数有差异,各相差
8.25株。
产生这种情况有两种可能:
① 红花植株与白花植株的比例不符合3:1;
2 i
16 4912 76 2 90 2 2 86 743 743 9 3 3 92.7063
用(6-3)式计算的 与用(6-1)式计算
2
的 因舍入误差略有不同。
2
用(6-3)式计算 不需计算理论次数,
2
且舍入误差小。
三、资料分布类型的适合性检验
【例6· 2】根据100株湘菊梨单株产量资料
检验湘菊梨单株产量是否服从正态分布。
1. 将资料(原始数据)整理成次数分布表
2. 计算标准正态离差
3. 求各组的累积概率 4. 求每一组的概率 5. 计算理论次数
表6-3 湘菊梨单株产量服从正态分布的适合性检验表 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 组限 组中值 实际次 l x u l x 累积概 各组概 理论次 S 数( f ) 率F(u) 率(p) 数(T) 47 ~ 48.5 3 -13.92 -2.44 0.0073 0.0201 2.01 7.50 9 50 ~ 51.5 6 -10.92 -1.91 0.0274 0.0549 5.49 53 ~ 54.5 10 -7.92 -1.39 0.0823 0.1126 11.26 56 ~ 57.5 18 -4.92 -0.86 0.1949 0.1702 17.20 59 ~ 60.5 21 -1.92 -0.34 0.3669 0.2084 20.84 62 ~ 63.5 17 1.08 0.19 0.5753 0.1889 18.89 65 ~ 66.5 14 4.08 0.72 0.7642 0.1283 13.83 68 ~ 69.5 7 7.08 1.24 0.8925 0.0691 6.91 9.65 11 71 ~ 72.5 4 10.08 1.77 0.9616 0.0274 2.74 ≥74 13.08 2.29 0.9890 100 1 100 合计
实际观测得来的资料是否服从某种理论分布,可 应用适合性检验来判断。 在正态分布的适合性检验中,理论次数是由样本 总次数、平均数与标准差决定的,用去 3 个自由度, 所以自由度为k-3(k为组数)。 在二项分布的适合性检验中,理论次数由总次数 与均数求得,丧失 2 个自由度,所以自由度为 k-2。 当组段内理论次数小于 5 时,必须与相邻组段进 行合并,直至合并的理论次数大于 5 时为止。