自动喷水灭火系统局部水头损失计算方法

合集下载

自动喷淋系统计算

自动喷淋系统计算

自动喷淋系统计算1、设计数据设计喷水强度qp=6L/min·m 2,计算作用面积160m 2,最不利点喷头出口压力p=50kpa.。

室内最高温度40℃,采用68℃温级玻璃球吊顶型(或边墙型)d=15闭式喷头。

一个喷头的最大保护面积为12.5m 2。

布置在电梯前的走廊上。

在走廊上单排设置喷头,其实际的作用面积为22.5m 2轻危险级、中级场所中配水支管2、流量计算(1)理论设计流量:s L m L Q /1660160min /62=⨯•=(2)一个放火分区的实际作用面积的计流量:s L m L q /25.2605.22min /62=⨯•=3、喷头布置的间距计算:(1)一个喷头最大保护半径,A=12.5m 2 R=14.35.12=1.9m (2)走廊最宽为1.5m ,所以b=0.75m 喷头的最大间距为:S=222b R -=2275.09.12-=3.4m (3)喷头的个数: n=S L =54.32.16≈个 4、水力计算最不利层自喷各支管段的计算根据图2--21最不利层喷头计算图图2—2(1)各支管段的流量计算:①a 处的喷头出水量;/94.050133.0S L H k q a a === a-b 管采用DN=25mm ,A=0.4367h a-b =210b a ALq -=294.04.34367.010⨯⨯⨯=13.1KpaHb=Ha+ha-b=50+13.1=63.1Kpa②b 处的喷头出水量;/06.11.63133.0S L H k q b b === q b-c =q a +q b =0.94+1.06=2.00L/S b-c 管采用DN=32mm ,A=0.09386h b-c =210c b ALq -=200.24.309386.010⨯⨯⨯=12.76Kpa H c = H b +H b-c =63.1+12.76=75.86Kpa③c 处的喷头出水量;/16.186.75133.0S L H k q c c ===④其它喷头都以上面一样算,为了计算简便以表格的形式。

自喷局部应用简单估算举例

自喷局部应用简单估算举例

假定设计开启喷头(标准喷头)以10只计;
每只喷头平均流量1.33L/s计(对应最不利喷头工作压力10m),系统设计流量1.33×10=13.3L/s,乘以不均匀系数1.2为16L/s;
配水主管水头损失(接口至水流指示器):设主管管径DN100,流量为16L/s时管道单位长度沿程阻力为0.0684m/m(公式计算),假设主管长度为40m,考虑局部阻力增加30%,主管水头损失为0.0684×40×1.3=3.6m;
配水支管水头损失:计算复杂,简单估一下10m~30m左右(管径越小损失越大),这里假定为15m;
其他附件损失:报警阀、水流指示器等水头损失以5m计(视有无该设备);
总水头损失为3.6m+15m+5m=23.6m;
假设最不利喷头至系统接入点高差为8m;
最不利喷头设计工作压力为10m;
则系统在接入点所需压力为23.6+12+8=43.6m=0.44MPa。

天正喷淋计算原理参照

天正喷淋计算原理参照

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版) 基本计算公式: 1、喷头流量:
P K q 10=
式中:q -- 喷头处节点流量,L/min
P -- 喷头处水压(喷头工作压力)MPa K -- 喷头流量系数 2、流速V :
2
4j
xh
D q v π=
式中:Q -- 管段流量L/s
D j --管道的计算内径(m ) 3、水力坡降:
3.12
00107.0j
d v i =
式中:i -- 每米管道的水头损失(mH 20/m ) V -- 管道内水的平均流速(m/s ) d j -- 管道的计算内径(m ),取值应按管道的内径减1mm 确定 4、沿程水头损失:
L i h ⨯=沿程 式中:L -- 管段长度m
5、局部损失(采用当量长度法): L i h ⨯=局部(当量)
式中:L(当量) -- 管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C) 6、总损失:
沿程局部h h h += 7、终点压力:
h h h n n +=+1
计算结果:
所选作用面积:159.3平方米
总流量:28.63 L/s
平均喷水强度:10.78 L/min.平方米入口压力:23.95 米水柱
其中高差压力:-0.30 米水柱。

喷淋计算

喷淋计算

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版) 基本计算公式: 1、喷头流量:
P K q 10=
式中:q -- 喷头处节点流量,L/min
P -- 喷头处水压(喷头工作压力)MPa K -- 喷头流量系数 2、流速V :
2
π4j
xh D q v =
式中:Q -- 管段流量L/s D j --管道的计算内径(m ) 3、水力坡降:
3.12
00107.0j
d v i =
式中:i -- 每米管道的水头损失(mH 20/m ) V -- 管道内水的平均流速(m/s ) d j -- 管道的计算内径(m ),取值应按管道的内径减1mm 确定 4、沿程水头损失:
L i h ×=沿程
式中:L -- 管段长度m
5、局部损失(采用当量长度法):
L i h ×=局部(当量)
式中:L(当量) -- 管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C) 6、总损失:
沿程局部h h h +=
7、终点压力:
h h h n n +=+1
计算结果:
所选作用面积:160.1平方米
总流量:23.74 L/s
平均喷水强度:8.90 L/min.平方米入口压力:35.51 米水柱。

自动喷水灭火系统管网的水力计算及程序实现

自动喷水灭火系统管网的水力计算及程序实现

自动喷水灭火系统管网的水力计算及程序实现目前水力计算方法有二类:一.面积计算法:首先确定最不利位置作用面积,然后按各喷头出水量(按最不利点喷头出水量计)均相等计算作用面积内的喷水量,作用面积后的管段流量不再增加,仅计算管道的水头损失.二.特性系数法:作用面积内每个喷头喷水量按喷头处的水压计算确定.具体计算步骤参见有关技术书籍,本文不作详细讨论.当采用特性系数法,不同方向计算至同一点出现不同压力时,低压力方向管段的流量应根据该点的高压值进行修正.实际工程中,面积计算法适用于初步设计或一些不需要精确数据的场合;而特性系数法适用于绝大多数场合,且能得到较为精确的数据.从现有的资料看,特性系数法的误差主要来自于其修正过程.手册中提供的修正式是:H1/H2=Q12/Q22 Q2=Q1√(H2/H1)(1)式中Q2---- 所求低压方向管段的修正后的流量(l/s).H1---- 低压方向管段计算至此点的压力(mH2O).Q1---- 低压方向管段计算至此点的流量(l/s).H2---- 高压方向管段计算至此点的压力(mH2O).也有的把这种修正式变化为“管道特性系数法”(具体见有关参考书).这种方法把流量的平方和压力看成是简单的线性关系,显然有一定的误差.倘若各管段采用了不同口径不同类型的喷头时,误差更大.因此,有人提出了另一种修正方法,即“倒推法”:Q12=B1H1Q22=B2H2...Qn2=BnHn(2)式中Q---- 低压方向管段上某喷头流量(l/s)B---- 低压方向管段上某喷头特性系数H---- 低压方向管段上某喷头处压力(mH2O)设该修正点高压为Hm,低压方向管段最后一段管长为ln,管道比阻为An,则可得Hm=Hn+AnlnQn2(3)将(3)式,(2)式结合公式Hn=Hn-1+An-1ln-1Qn-12倒推至H1,即可得在修正点高压为Hm时,低压方向管段最不利点的确切水压H1.最终可得到修正后的精确流量.该方法用手工计算极为繁琐,一般通过计算机编程,选用有效的算法加以解决.针对倒推法的复杂,笔者认为:若手算,要得到精确的结果,采用手册提供的特性系数修正式(1)便可满足要求;若是计算机编程实现精确计算,不妨采用以下思路:1.确定精度;2.将修正点的高压值与低压值比较;3.若比较后达到精度要求,则完成计算,可得出精确的流量,否则进行下一步;4.在高压值与低压方向最不利点压力值之间取一个值赋予低压方向管段的最不利点;。

自动喷淋系统的计算

自动喷淋系统的计算

自动喷淋系统的计算自动喷淋系统由水源、加压贮水设备、喷头、管网、报警阀等组成。

自动喷淋系统前十分钟所用水由设在高位水箱提供,十分钟至一小时的喷淋用水由地下室贮水池提供。

根据规范中的要求选择闭式喷水灭火系统。

自动喷淋灭火系统的基本数据(1)喷头的选择《自动喷洒灭火系统设计规范》,闭式湿式自动喷水灭火系统适用范围:因管网及喷头中充水,故适用于环境温度为4~700C之间的建筑物内,所以选用闭式湿式喷头。

(2) 由于该建筑为中度危险等级,喷头总数大于800 个,故需进行分区,地下一层至五层为低区,六至二十七层为高区。

本系统设置7个报警阀,每个报阀组控制的最不利喷头处,都设末端试水装置,每层最不利喷头处均设直径为25mm的试水阀。

每个报警阀部位都设有排水装置,其排水管径为试水阀直径的2倍,取50mm。

(3)查高规,自动喷水灭火系统的基本设计数据见下表:表3-1最不利点喷头最低工作压力不应小于0.05MPa。

(4)管径确定如下表自动喷洒管径确定表表3-2喷头的布置根据建筑物结构与性质,本设计采用作用温度为68℃闭式吊顶型玻璃球喷头,喷头采用2.5m×3.0m和2.7m×3.0m矩形布置,使保护范围无空白点。

作用面积划分作用面积选定为矩形,矩形面积长边长度:L=1.2F=(1.2×160)m=15.2m,短边长度为:10.5m。

最不利作用面积在最高层(五层和二十七层处)最远点。

矩形长边平行最不利喷头配水支管,短边垂直于该配水支管。

每根支管最大动作喷头数n=(15.2÷2.5)只=6只作用面积内配水支管N=(10.5÷3)只=3.5只,取4只动作喷头数:(4×6)=24只实际作用面积:(15.2×9.8)2m=148.962m﹤1602m水力计算(采用作用面积)从系统最不利点开始进行编号,直至水泵处,从节点 1 开始,至水池吸水管为止,进行水力计算。

喷淋计算表

喷淋计算表

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版) 基本计算公式: 1、喷头流量:
P K q 10=
式中:q -- 喷头处节点流量,L/min
P -- 喷头处水压(喷头工作压力)MPa K -- 喷头流量系数 2、流速V :
24j
xh
D
q v π=
式中:Q -- 管段流量L/s
D j --管道的计算内径(m ) 3、水力坡降:
3.1200107
.0j
d
v i =
式中:i -- 每米管道的水头损失(mH 20/m ) V -- 管道内水的平均流速(m/s ) d j -- 管道的计算内径(m ),取值应按管道的内径减1mm 确定 4、沿程水头损失:
L i h ⨯=沿程 式中:L -- 管段长度m
5、局部损失(采用当量长度法): L i h ⨯=局部(当量)
式中:L(当量) -- 管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C) 6、总损失:
沿程局部h h h += 7、终点压力:
h h h n n +=+1
计算结果:
所选作用面积:160.0平方米
总流量:28.90 L/s
平均喷水强度:10.84 L/min.平方米入口压力:39.83 米水柱。

自动喷水系统计算书

自动喷水系统计算书

自动喷水系统设计计算书业主:XX精密工业(苏州)有限公司专案名称:AUO-VIP Project设计计算书:自动喷水系统一、计算过程中所用公式喷头的流量计算:q=K√10P式中q——喷头流量(L/min);P——喷头工作压力(MPa);K——喷头流量系数。

系统的设计流量:Q s=∑qi式中Q s——系统设计流量(L/s);qi——最不利点处作用面积内各喷头节点的流量(L/min)n——最不利点处作用面积内喷头数.管道的水头损失:h=iL=0.0000107×V2L/d j1.3式中h——配管摩擦水头损失(MPa);i——每米管道的水头损失(Mpa/m);V——管道内水的平均流速(m/s);d j——管道的计算内径(m)取值按管道的内径减1mm确定;L——配管直管长与各接头,阀类换算而得的当量直管长之和(m)二、作用面积的确定作用面积:200m2喷水强度:18L/min. m2喷头流量系数:K=115最不利点处喷头的工作压力:P0=0.16Mpa每个喷头的保护面积:3.0×2.65=7.95 m2保护面积内的喷头数:n=200/7.95=25.15=26只正方形面积的长边尺寸:L=√200=14.14m每根喷水支管的动作喷头数:n=6只三、消防管道的局部水头损失见附件一四、自动喷水系统立体图见附件二五、逐点计算1、q a= K√10P0=115×√10×0.16=2.424L/s32A的计算内径是:d j=0.031m异径接头50A/32A的当量长度:0.45mV A-B=4×2.424/1000×3.14×0.0312=3.214m/sH A-B=i A-B L A-B=0.0000107×V A-B2×L A-B/ d j1.3=0.0000107×3.214×3.214×3.45/0.0311.3=0.035Mpa P B=0.16+0.035=0.195Mpa2、q B= K√10P B=115×√10×0.195=2.676L/s50A的计算内径是:d j=0.052mq B=2.424+2.676=5.1L/sV B-C=4×5.1/1000×3.14×0.0522=2.403m/sH B-C=i B-C L B-C=0.0000107×V B-C2×L B-C/ d j1.3=0.0000107×2.403×2.403×3/0.0521.3=0.009Mpa P C=0.195+0.009=0.204Mpa3、q C’=K√10P c=115×√10×0.204=2.738 L/s50A的计算内径是:d j=0.052m异径接头80A/50A的当量长度:0.75mq C=5.1+2.738=7.838L/sV C-D=4×7.838/1000×3.14×0.0522=3.693m/sH C-D=i C-D L C-D=0.0000107×V C-D2×L C-D/ d j1.3=0.0000107×3.693×3.693×3.75/0.0521.3=0.026Mpa P D=0.204+0.026=0.23Mpa4、q D’=K√10P D=115×√10×0.23=2.907 L/s80A的计算内径是:d j=0.081mq D=7.838+2.907=10.745L/sV D-E=4×10.745/1000×3.14×0.0812=2.086m/sH D-E=i D-E L D-E=0.0000107×V D-E2×L D-E/ d j1.3=0.0000107×2.086×2.086×3/0.0811.3=0.004Mpa P E=0.23+0.004=0.234Mpa5、q E’=K√10P E=115×√10×0.234=2.932 L/s80A的计算内径是:d j=0.081mq E=10.745+2.932=13.677L/sV E-F=4×13.677/1000×3.14×0.0812=2.656m/sH E-F=i E-F L E-F=0.0000107×V E-F2×L E-F/ d j1.3=0.0000107×2.656×2.656×3/0.0811.3=0.006Mpa P F=0.234+0.006=0.24Mpa6、q F’=K√10P F=115×√10×0.24=2.969 L/s80A的计算内径是:d j=0.081m异径接头200A/80A的当量长度:1.6mq F=13.677+2.969=16.646L/sV F-G=4×16.646/1000×3.14×0.0812=3.232m/sH F-G=i F-G L F-G=0.0000107×V F-G2×L F-G/ d j1.3=0.0000107×3.232×3.232×3.1/0.0811.3=0.009Mpa P G=0.24+0.009=0.249Mpa7、对于节点G,其流量和所需的工作压力为:q G=16.646L/sP G=0.249Mpa用管道特性系数B K1表示配水支管1的输水性能:令B K1= q G2/ P G=16.646×16.646/0.249=1112.81200A的计算内径是d j=0.207m三通200A/80A的当量长度为:12.3mV G-H=4×16.646/1000×3.14×0.2072=0.495m/sH G-H=i G-H L G-H=0.0000107×V G-H2×L G-H/ d j1.3=0.0000107×0.495×0.495×14.95/0.2071.3= 0.0004Mpa P H=0.249+0.0004=0.2494Mpa配水支管2的流量:q H’=√B K1P H=√1112.81×0.2494=16.66L/s8、q H= q G+ q H’ =16.646+16.66=33.306L/s200A的计算内径是d j=0.207m三通200A/80A的当量长度为:12.3mV H-I=4×33.306/1000×3.14×0.2072=0.990m/sH H-I=i H-I L H-I=0.0000107×V H-I2×L H-I/ d j1.3=0.0000107×0.990×0.990×14.95/0.2071.3= 0.0012Mpa P I=0.2494+0.0012=0.2506Mpa配水支管3的流量:q I’=√B K1P I=√1112.81×0.2506=16.699L/s9、q I= q H+ q I’ =33.306+16.699=50.005L/s200A的计算内径是d j=0.207m三通200A/80A的当量长度为:12.3mV I-J=4×50.005/1000×3.14×0.2072=1.487m/sH I-J=i I-J L I-J=0.0000107×V I-J2×L I-J/ d j1.3=0.0000107×1.487×1.487×14.95/0.2071.3= 0.0028Mpa P J=0.2506+0.0028=0.2534Mpa配水支管4的流量:q J’=√B K1P J=√1112.81×0.2534=16.792L/s10、q J= q I+ q J’ =50.005+16.792=66.797L/s200A的计算内径是d j=0.207m三通200A/80A的当量长度为:12.3mV J-K=4×66.797/1000×3.14×0.2072=1.986m/sH J-K=i J-K L J-K=0.0000107×V J-K2×L J-K/ d j1.3=0.0000107×1.986×1.986×14.95/0.2071.3= 0.0049Mpa P K=0.2534+0.0049=0.2583Mpa11、设Ka处的工作压力为P Ka,则q Ka=K√10P Ka则80A的计算内径是d j=0.081mV Ka-Kb=4×115×√10P la/1000×3.14×0.0812×60=0.372×√10P KaH Ka-Kb=i Ka-Kb L Ka-Kb=0.0000107×V Ka-Kb2×L Ka-Kb/ d j1.3=0.0000107×0.372√10P la×0.372×√10P Ka×3/0.0811.3= 0.0011 P KaP Kb= P Ka+H Ka-Kb=1.0011 P Ka12、q Kb’=K√10P Kb=115×√10×1.0011 P Ka =6.064√P Kaq Kb= q Ka+ q Kb’ =6.061√P Ka+6.064√P Ka=12.125√P Ka80A的计算内径是d j=0.081m异径接头200A/80A的当量长度:1.6mV Kb-K=4×12.125√P la/1000×3.14×0.0812×=2.354√P laH Kb-K=i Kb-K L Kb-K=0.0000107×V Kb-K2×L Kb-K/ d j1.3=0.0000107×2.354√P Ka×2.354√P Ka×3.1/0.0811.3= 0.0048 P KaP K= P Kb+H Kb-K=1.0059 P KaP K=0.2583Mpa故P Ka=0.2568Mpa所以q Ka=K√10P Ka=115×√10×0.2568=3.071L/sq Kb=12.125√P Ka=6.144L/s13、系统的设计流量:Q S=∑qi=66.797+6.144=72.941L/s200A的计算内径为d j=0.207m200A的90度弯头的当量长度是6.2m200A的蝶阀的当量长度是5.2m200A的闸阀的当量长度是1.3m200A的止回阀的当量长度是17.0mV K-L=4×72.941/1000×3.14×0.207×0.207=2.169m/sH K-L=i K-L L K-L=0.0000107×V K-L2×L K-L/ d j1.3=0.0000107×2.169×2.169×188.9/0.2071.3=0.0737Mpa250A的计算内径为d j=0.250m250A的90度弯头的当量长度是7.6m250A的蝶阀的当量长度是6.3m250A的闸阀的当量长度是1.6m250A的止回阀的当量长度是21.1mV L-M=4×72.941/1000×3.14×0.250×0.250=1.487m/sH L-M=i L-M L L-M=0.0000107×V L-M2×L L-M/ d j1.3=0.0000107×1.487×1.487×270/0.2501.3=0.0387Mpa六、自动配水泵配管摩擦损失水头计算H A-B+ H B-C+ H C-D+ H D-E+ H E-F+ H F-G+ H G-H+ H H-I+ H I-J+ H J-K+ H K-L+ H L-M=3.5+0.9+2.6+0.4+0.6+0.9+0.04+0.12+0.28+0.49+0.15+7.37+3.87 =21.22m七、水泵扬程的计算水泵每秒钟出水量为:72.941L/s水泵扬程H=∑h+P0+Z式中H---水泵扬程或系统入口的供水压力(Mpa)∑h---管道沿程和局部水头损失的累计值(MPa)湿式报警阀和水流指示器取值0.02MpaP0---最不利点处喷头的工作压力(MPa),取值0.16MpaZ---最不利点处喷头与消防水池的最低水位或系统入口管水平中心线之间的高程差.(MPa)H=∑h+P0+Z=0.2122+0.04+0.16+0.1135=0.5257MPa。

消防(4)自动喷水系统计算

消防(4)自动喷水系统计算
dj----管道(渠) 的计算内径(m),取值应按管内径减1mm确定; v-管内水的平均流速(m/s)。必要时可超过5m/s,不应大于10m/s。
b、局部水头损失的计算: h局=iL当
式中:h局---局部水头损失(MPa) i----同管径同流量下的水力阻力系数 L当----管件的当量长度(m)
各种管件和阀门的当量长度见表7.2.16-1。 (4)、系统设计流量的计算,应保证任意作用面积内的平均喷水 强度不低于表7.2.13-1和表7.2.13-3~表7.2.13-10的规定值。最不 利点处作用面积内任意4只喷头围合范围内的平均喷水强度,轻危险 级、中危险级不应低于表7.2.13-1规定的85 %;严重危险级和仓库 危险级不应低于表7.2.13-1和表7.2.13-3~表7.2.13-10的规定值。 (5)、轻危险级、中危险级场所中各配水管入口的压力均不宜大 于0.40MPa。
(6)、建筑内设有不同类型的系统或有不同危险等级的场所时, 系统的设计流量,应按其设计流量的最大值确定。
见案例计算。
(7)、减压孔板的设计计算: ①、减压孔板应设置在直径不小于50mm的水平直管段上,其前
后管段的长度均不宜小于该管段直径的5倍;减压孔板的孔口直径, 不应小于设置管段直径的30 %, 且不应小于20mm;制作材料应采用 不锈钢板。
泄水阀, 并定期排水。 雨淋、水幕见:案例\喷淋\平面。
配水支管,其长度不宜小于作用面积平方根的1.2倍。 ①、作用面积长边计算:
Lmin1.Leabharlann A12式中:Lmin---作用面积长边的最小长度(m) A----作用面积(m2)
②、作用面积短边计算:
BA/L
式中: A----作用面积的短边(m) 根据以上两个公式,计算出作用面积的长宽,再根据喷头的保 护面积的长宽确定系统设计作用面积,作用面积应是喷头保护面积 的整数,并且大于规范规定的设计作用面积。

自动喷水灭火系统的水力计算(1)

自动喷水灭火系统的水力计算(1)
2.4.1 闭式自动喷水消防系统设计基本参数及水力计算
• ②由于系统水力计算是以最不利点作用面积为依据的。 •误差: • 当火灾发生在有利点时,喷头的出流量比计算值大;采用 •作用面积法,忽略管道阻力损失对喷头工作压力的影响。 •结果: • 系统的计算设计流量比实际流量低。 •因此: • 在计算设计秒流量时要乘以1.15~1.30 的安全系数。 •则,系统设计秒流量为: •

v节——节流管内平均流速,m/s;

d节——节流管计算内径,取节流管内径减0.001m,m;

L ——节流管的长度,m 。
2.4 自动喷水灭火系统的水力计算
2.4.1 闭式自动喷水消防系统设计基本参数及水力计算
• 6)系统水头损失

沿程水头损失、局部水头损失的计算与消火栓给水系统
• 相同,根据计算值确定系统供水压力。
• 1.自动喷水灭火系统用水量
• (2) 起火10min至50min内的消防用水量

如果火灾在1h 后还没有扑灭,则自动喷水灭火系统及其
• 设备也必然被火灾同时烧毁而失去作用。

该时段的用水量是实际扑救火灾的用水量。 《高层民用建筑设计防火规范》(GB50045-95)规定
其用水量按30L/s计算。
• ④ 室内有两种或两种以上类型的系统
系统的设计流量

或有不同危险等级的场所时
• ⑤ 设置自动喷水灭火系统的建筑物同时必须设置消火栓应灭取计算最大值
• 火系统,则消防系统的总流量应按同时使用计算。如果建筑
• 物内还同时设有水幕等消防系统时,应根据这些系统是否同
ቤተ መጻሕፍቲ ባይዱ
• 时使用来确定消防用水总量。
2.4 自动喷水灭火系统的水力计算

自动喷水灭火系统管道水力常见的计算方法有

自动喷水灭火系统管道水力常见的计算方法有

自动喷水灭火系统(Automatic Sprinkler System,简称ASS)是一种常见的火灾防护自动喷水灭火系统(Automatic Sprinkler System,简称ASS)是一种常见的火灾防护设备,其工作原理是通过管道系统将水均匀地喷洒到火源上,以达到灭火的目的。

在设计和安装自动喷水灭火系统时,需要对管道的水力进行计算,以确保系统的有效性和安全性。

以下是一些常见的管道水力计算方法:1. 流量计算:流量是衡量水流速度的物理量,通常用立方米/小时(m³/h)表示。

在自动喷水灭火系统中,流量的计算需要考虑火灾的类型、火源的大小、管道的长度和直径等因素。

一般来说,流量的计算公式为Q=AV,其中Q是流量,A是管道的横截面积,V是水流速度。

2. 压力损失计算:在水流通过管道时,由于摩擦力和局部阻力的作用,水流的速度会减小,这就是压力损失。

在自动喷水灭火系统中,压力损失的计算需要考虑管道的长度、直径、材料和水流速度等因素。

一般来说,压力损失的计算公式为ΔP=fL/D,其中ΔP是压力损失,f 是摩擦因子,L是管道的长度,D是管道的直径。

3. 扬程计算:扬程是衡量水流能量的物理量,通常用米(m)表示。

在自动喷水灭火系统中,扬程的计算需要考虑水源的高度、管道的长度和直径、流量和压力损失等因素。

一般来说,扬程的计算公式为H=ΔP+ρgh+v²/2g,其中H是扬程,ΔP是压力损失,ρ是水的密度,g是重力加速度,h是水源的高度,v是水流速度。

4. 水泵选择:在自动喷水灭火系统中,水泵的选择需要考虑流量、扬程、效率和功率等因素。

一般来说,水泵的流量应大于系统的最大流量,扬程应大于系统的最大扬程,效率应尽可能高,功率应满足系统的需求。

5. 管道布局设计:在自动喷水灭火系统中,管道的布局设计需要考虑火源的位置、水源的位置、管道的长度和直径、流量和压力损失等因素。

一般来说,管道应尽可能短,直径应尽可能大,流量和压力损失应尽可能小。

喷淋计算

喷淋计算

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版)基本计算公式:1、喷头流量:PK q 10=式中:q --喷头处节点流量,L/minP --喷头处水压(喷头工作压力)MPa K --喷头流量系数2、流速V :2π4j xh D q v =式中:Q --管段流量L/sD j --管道的计算内径(m )3、水力坡降:3.1200107.0jd v i =式中:i --每米管道的水头损失(mH 20/m )V --管道内水的平均流速(m/s )d j --管道的计算内径(m ),取值应按管道的内径减1mm 确定4、沿程水头损失:Li h ×=沿程式中:L --管段长度m5、局部损失(采用当量长度法):L i h ×=局部(当量)式中:L(当量)--管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C)6、总损失:沿程局部h h h +=7、终点压力:hh h n n +=+1管段名称起点压力mH2O 管道流量L/s 管长m 当量长度管径mm K 水力坡降mH2O/m 流速m/s 损失mH2O 终点压力mH2O 1-2 5.000.94 2.150.8025800.385 1.77 1.14 6.142-3 6.14 1.98 2.15 1.8032800.367 2.09 1.457.593-47.59 3.14 3.60 2.1032800.923 3.31 5.2612.8540-4111.09 1.400.600.6025800.854 2.63 1.0212.1241-412.12 1.400.850.0025800.854 2.630.7312.844-512.854.542.702.7040800.9153.614.9417.7942-516.29 1.700.600.602580 1.254 3.19 1.5017.79 5-617.79 6.23 1.05 3.6050800.430 2.93 2.0019.79 43-447.59 1.16 2.150.8025800.584 2.18 1.729.32 44-459.32 2.44 2.15 1.8032800.558 2.57 2.2011.52 45-611.52 3.86 3.60 2.303280 1.401 4.088.2619.79 6-719.7910.10 2.50 3.7065800.295 2.86 1.8321.61 46-719.79 1.870.600.602580 1.523 3.52 1.8321.61 7-821.6111.96 1.30 4.3065800.414 3.39 2.3223.93 47-4811.15 1.40 2.300.8025800.858 2.64 2.6613.81 48-4913.81 2.96 2.30 2.1032800.824 3.12 3.6217.44 49-817.44 4.72 3.55 3.0040800.990 3.75 6.4923.92 8-923.9316.68 2.25 4.6080800.325 3.36 2.2326.15 50-920.00 1.880.600.602580 1.539 3.54 1.8521.85 9-1026.1518.56 1.40 5.4080800.402 3.74 2.7328.89 51-5213.47 1.54 2.300.802580 1.037 2.90 3.2116.68 52-5316.68 3.26 2.30 2.1032800.995 3.43 4.3821.06 53-1021.06 5.18 3.55 3.004080 1.196 4.137.8328.89 10-1128.8923.74 2.15 6.10100800.151 2.74 1.2430.13 11-1230.1323.74 1.500.00100800.151 2.740.2330.36 12-1330.3623.74 2.050.00100800.151 2.740.3130.67 13-1430.6723.74 1.600.00100800.151 2.740.2430.91 14-1530.9123.74 1.270.00100800.151 2.740.1931.10 15-1631.1023.74 1.580.00100800.151 2.740.2431.34 16-1731.3423.74 2.400.00100800.151 2.740.3631.70 17-1831.7023.740.250.00100800.151 2.740.0431.74 18-1931.7423.74 2.350.00100800.151 2.740.3532.09 19-2032.0923.74 1.200.00100800.151 2.740.1832.27 20-2132.2723.74 2.450.00100800.151 2.740.3732.64 21-2232.6423.740.250.00100800.151 2.740.0432.68 22-2332.6823.740.850.00100800.151 2.740.1332.81 23-2432.8123.74 2.150.00100800.151 2.740.3233.13 24-2533.1323.740.250.00100800.151 2.740.0433.17 25-2633.1723.74 1.150.00100800.151 2.740.1733.34 26-2733.3423.74 2.450.00100800.151 2.740.3733.71 27-2833.7123.74 1.100.00100800.151 2.740.1733.88 28-2933.8823.74 2.600.00100800.151 2.740.3934.27 29-3034.2723.740.950.00100800.151 2.740.1434.41 30-3134.4123.74 2.600.00100800.151 2.740.3934.80 31-3234.8023.740.00 1.10100800.151 2.740.1734.97 32-3334.9723.740.950.00125800.049 1.790.0535.01 33-3435.0123.74 2.650.00125800.049 1.790.1335.14 34-3535.1423.740.000.00125800.049 1.790.0035.14 35-3635.1423.740.900.00125800.049 1.790.0435.1936-3735.1923.74 2.750.00125800.049 1.790.1335.32 37-3835.3223.740.350.00125800.049 1.790.0235.34 38-3935.3423.74 3.460.00125800.049 1.790.1735.51计算结果:所选作用面积:160.1平方米总流量:23.74L/s平均喷水强度:8.90L/min.平方米入口压力:35.51米水柱。

喷淋计算原理参照

喷淋计算原理参照

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版) 基本计算公式: 1、喷头流量:
P K q 10=
式中:q -- 喷头处节点流量,L/min
P -- 喷头处水压(喷头工作压力)MPa K -- 喷头流量系数 2、流速V :
2
π4j
xh D q v =
式中:Q -- 管段流量L/s
D j --管道的计算内径(m ) 3、水力坡降:
3.12
00107.0j
d v i =
式中:i -- 每米管道的水头损失(mH 20/m ) V -- 管道内水的平均流速(m/s ) d j -- 管道的计算内径(m ),取值应按管道的内径减1mm 确定 4、沿程水头损失:
L i h ×=沿程
式中:L -- 管段长度m
5、局部损失(采用当量长度法):
L i h ×=局部(当量)
式中:L(当量) -- 管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C) 6、总损失: 沿程局部h h h +=
7、终点压力: h h h n n +=+1
计算结果:
所选作用面积:163.3平方米
总流量:32.87 L/s
平均喷水强度:12.08 L/min.平方米入口压力:34.69 米水柱。

自动喷水灭火系统局部水头损失计算方法

自动喷水灭火系统局部水头损失计算方法

通过对自动喷水灭火系统局部水头损失计算方法及舍维列夫公式与海曾-威廉公式之间差别的分析,提出需对《自动喷水灭火系统设计规范》( GB50084 - 2001)中的管件当量长度进行修正的观点,并推得适用于舍维列夫公式的各种管径管件的当量长度。

关键词局部水头损失当量长度喷头工作压力舍维列夫公式海曾-威廉公式修正系数水力计算是自动喷水灭火系统设计中的一项重要内容。

水力计算结果将直接影响系统的可靠性、合理性、经济性,而合理的水力计算方法是水力计算结果正确的基础。

在局部水头损失计算方法方面《自动喷水灭火系统设计规范》( GB50084 - 2001)(以下简称“新规范”) 较《自动喷水灭火系统设计规范》( GBJ 84 - 85) (以下简称“旧规范”) 作了较大的改动。

笔者结合工程实例对两本规范局部水头损失的计算进行分析和探讨。

1 局部水头损失计算方法分析在“新规范”颁布实施前,对自动喷水灭火系统局部水头损失的计算国内现行设计手册及教材普遍采用估算的方法。

即系统的局部水头损失仅在管道水力计算结束时取沿程水头损失的20 %。

这种计算方法不足之处在于:首先,20 %的取值忽略了每个工程管网布置、配置的特殊性,误差较大;其次,在管道水力计算时忽略了局部水头损失对喷头的喷水压力影响,进而影响系统的设计流量、管道的水头损失或系统所需的扬程。

由于估算法存在较大的误差,在局部水头损失的计算方法上“新规范”摒弃了“旧规范”中估算的方法。

“新规范”第9.2.3 条明确规定:“管道的局部水头损失,宜采用当量长度法计算。

当量长度表见规范附录C”。

当量长度法的采用既为简化局部水头损失的计算创造了条件,同时也间接确定了将局部水头损失的计算纳入到沿程水头损失的计算中,所以在计算作用面积内各喷头节点流量时,也就同时考虑了沿程水头损失和局部水头损失对各喷头节点的喷水压力影响。

由此可见,在局部水头损失计算方面“新规范”弥补了“旧规范”的不足。

1-2消防水带的技术性能及水头损失知识讲解

1-2消防水带的技术性能及水头损失知识讲解

⑵ 各支线铺设情况不完全相同
PD = KDQ2+
n
Pxi
i=1
1
n
1
=
KD
i=1
K支i
1
1
1
1
=
+
+
R
R1
R2
R3
U = IR
消防车两侧水泵出口,一出口铺设 2×D65 胶 里水带,另一出口铺设 2×D65 麻质水带,合 并后接 QJ32 移动式带架水枪,水枪的工作压 力为 55×104Pa,流量26L/s,计算并联系 统的压力损失。
Pdx = Pd + Px = KQ2 + Px = 0.035×6.52 + 0 = 1.48 (104Pa)
② 垂直铺设
Pdy = βL + Pd + Py
Pdy —— 每条垂直铺设的水带的水头损失,104Pa Pd —— KQ2
L —— 每条垂直铺设的水带的长度,m β —— 垂直铺设水带修正系数
SK15m φ19
2×D65 胶里 2×D65 胶里
2×D65 麻质
SK15m φ19
2×D65 胶里 2×D65 胶里
2×D65 麻质
PD = PD1 + PD2
1
2
1
=
KD
i=1
K支i
1
2
1
=
KD

i=1
K支i
=
1
+
1
2×0.035
2×0.086
= 6.19 KD = 0.026
SK15m φ19
SK15m φ19
2×D65 胶里 2×D65 胶里

浅谈消防系统水头损失的计算方法

浅谈消防系统水头损失的计算方法

浅谈消防系统水头损失的计算方法发表时间:2013-01-09T17:46:56.420Z 来源:《建筑学研究前沿》2012年11月Under供稿作者:许晓峰[导读] 从前面内容的分析探讨中,我们可以看出,消防问题,安全可靠永远是最重要的Showing the calculation of lead loss of a pipe system in building fire protection and prevention 许晓峰(机械工业第一设计研究院上海分院 200333)【摘要】消防管道沿程水头损失的计算方法。

对消防管道局部水头损失,采用不同的方法进行估算,并且做出比较。

【关键词】沿程水头损失局部水头损失舍维列夫计算公式Abstract: Giving the way in calculation of frictional lead loss of a pipe system in building fire protection and prevention. Selecting a way in calculation of local lead loss of a pipe system in building fire protection and prevention. Key words: frictional lead loss, local lead loss, the formula from Φ.A. Shevelev (CCCP) 1 水头损失计算的重要性 1.1 水泵是给排水专业最具典型性的设备,它将电能转换为水的动能和势能(机械能),即静止或者低能量状态的水通过水泵能量增加,专业上我们用扬程表示这个能量增加值,所以扬程是水泵最重要的指标性参数。

消防系统中水泵扬程需经过计算确定,其中对消防管道水头损失的计算是重点之一。

1.2 以国内某地区的消火栓系统为例,为计算系统扬程,我们使用如下公式:H = Σhx + Hxh + 0.01Zx -hc ,Σhx 为局部水头损失和沿程水头损失之和,Hxh 为栓口所需压力,Zx 为最不利点消火栓栓口中心线与市政进水管中心线的高程差,hc 为当从市政管网直接抽水时为市政管网的最低水压。

参考扬程

参考扬程

喷淋泵的选型及计算方式
一、计算方式
1,自动喷水灭火系统管道单位长度的水头损失按下式计算: i=0.00107V2/dj1.3(米水柱/米)
式中:i-管道单位长度的水头损失(米水柱/米);
V-管道内的平均水流速度(米/秒);
dj-管道计算内径(米)。

注:局部水头损失可采用当量管道长度法计算或按管网沿程水头损失值的20%计算。

2,给水管或喷淋水泵的计算压力按下式计算:
H=∑h+h0十hr+z
式中:H-给水管或消防水泵的计算压力(米水柱);
∑h-自动喷水灭火系统管道沿程水头损失和局部水头损失的总和(米水柱);
h0-最不利点处喷头的工作压力(米水柱);
hr-报警阀的局部水头损失(米水柱);
z-最不利点处喷头与给水管或消防水泵的中心线之间的静水压(米水柱)。

此楼地上总高度40米,喷淋泵装在地下一层,按负5米考虑,水泵房设消防水池,故泵为自罐式吸水,泵房距最远端的水平距离为450米,故z-最不利点处喷头与给水管或消防水泵的中心线之间的静水压(米水柱)取0.45MPa, h0-最不利点处喷头的工
作压力(米水柱)取0.25MPa, hr-报警阀的局部水头损失(米水柱)取0.05 MPa, ∑h-自动喷水灭火系统管道沿程水头损失和局部水头损失的总和(米水柱)取0.2 MPa,故消防水泵的计算压力按下式计算:
H=∑h+h0十hr+z=0.9 MPa,
二、喷淋泵的选型
考虑到留点系数,此项目的喷淋泵扬程建议选用105米,水泵型号可选用XBD10.5/70G-LOSW100/310A 型卧式单级双吸消防泵组Q=70L/S,H=105m.N=110kw,共三台,两用一备。

北京中山消防保安技术有限公司。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通过对自动喷水灭火系统局部水头损失计算方法及舍维列夫公式与海曾-威廉公式之间差别的分析,提出需对《自动喷水灭火系统设计规范》( GB50084 - 2001)中的管件当量长度进行修正的观点,并推得适用于舍维列夫公式的各种管径管件的当量长度。

关键词局部水头损失当量长度喷头工作压力舍维列夫公式海曾-威廉公式修正系数水力计算是自动喷水灭火系统设计中的一项重要内容。

水力计算结果将直接影响系统的可靠性、合理性、经济性,而合理的水力计算方法是水力计算结果正确的基础。

在局部水头损失计算方法方面《自动喷水灭火系统设计规范》( GB50084 - 2001)(以下简称“新规范”) 较《自动喷水灭火系统设计规范》( GBJ 84 - 85) (以下简称“旧规范”) 作了较大的改动。

笔者结合工程实例对两本规范局部水头损失的计算进行分析和探讨。

1 局部水头损失计算方法分析在“新规范”颁布实施前,对自动喷水灭火系统局部水头损失的计算国内现行设计手册及教材普遍采用估算的方法。

即系统的局部水头损失仅在管道水力计算结束时取沿程水头损失的20 %。

这种计算方法不足之处在于:首先,20 %的取值忽略了每个工程管网布置、配置的特殊性,误差较大;其次,在管道水力计算时忽略了局部水头损失对喷头的喷水压力影响,进而影响系统的设计流量、管道的水头损失或系统所需的扬程。

由于估算法存在较大的误差,在局部水头损失的计算方法上“新规范”摒弃了“旧规范”中估算的方法。

“新规范”第9.2.
3 条明确规定:“管道的局部水头损失,宜采用当量长度法计算。

当量长度表见规范附录C”。

当量长度法的采用既为简化局部水头损失的计算创造了条件,同时也间接确定了将局部水头损失的计算纳入到沿程水头损失的计算中,所以在计算作用面积内各喷头节点流量时,也就同时考虑了沿程水头损失和局部水头损失对各喷头节点的喷水压力影响。

由此可见,在局部水头损失计算方面“新规范”弥补了“旧规范”的不足。

2 局部水头损失计算的分析与探讨对采用以镀锌钢管为输水管材的给水工程的沿程水头损失的计算,我国现行的设计手册及规范均采用舍维列
夫公式,即式(1) ;英、美、日、德等国采用海曾O威廉公式,即式(2) 。

由于各方面的原因,对沿程水头损失的计算, “新规范”仍采用舍维列夫公式。

式中i ———单位管道的水头损失,mH[sub]2[/sub]O/ m ; Q ———流量,m[sup] 3[/sup]/ s ; d[sub]j[/sub] ———管道计算内径,m ; C ———海曾-威廉系数(见表1) 。

对局部水头损失的计算,由于我国缺乏试验数据及局部阻力系数不全,故“新规范”引用美国规范中的当量长度,各管件的当量长度见表2 。

但表2中的当量长度值是针对式(2) 推得,而“新规范”采用的式(1) 与式(2) 有较大的差值。

表3 是各种管径式(1) 与式(2) 在相同流量条件下的单位水头损失比值。

由表3 可知,若直接引用表2 中的当量长度值代入式(1) 中求局部水头损失,其求出的局部水头损失比代入式(2) 中求出的局部水头损失大,而在水力计算过程中局部水头损失的误差又将引起各设计管段流量和水头损失的误差,进而引起系统总设计流量和扬程的误差。

笔者认为,“新规范”直接引用美国规范中C=120 时的当量长度值忽略了式(1) 与式(2) 的不同欠妥。

即使同采用海曾O威廉公式,当C 取值不同时,管件的当量长度也需修正(见“新规范”第106 页倒数第一行) 。

因此,有必要对表2 中的当量长度值进行修正,使其适用于舍维列夫公式。

注: ①过滤器当量长度的取值,由生产厂提供; ②当异径接头的出口直径不变而入口直径提高1 级时,其当量长度应增大0.5 倍;提高2 级以上时,其当量长度应增大1.0 倍; ③表中的当量长度值是按海曾O威廉系数C = 120 时计算。

求各管件当量长度修正系数α的大小是系统安全可靠、经济合理的关键。

因此,α的取值须综合考虑经济流速及规范对各种管径所控制喷头数的要求,保证系统的安全可靠、经济合理。

由表3 可知,对某一管径式(1) 与式(2) 的比值随流量的增大而增大,而不是定值。

考虑系统的安全性因素,α值的大小宜按各种管径可能出现的最小流量来确定。

表3 中各种规格管径的最小流量是综合考虑经济流速及规范对各种管径所控制喷头数的要求,按各种规格管径可能服务的最小流量来确定的。

因此,取表3 中各种规格管径最小流量对应的式(1) 与式(2) 的比值为各种规格管径管件的当量长度修正系数α(见表4) 。

把表2 中的各管件当量长度值
除以表4 中相应管径的修正系数α, 则可得针对式(1) 的各管件当量长度值(见表5) 。

注: ①过滤器当量长度的取值,由生产厂提供; ②当异径接头的出口直径不变
而入口直径提高1 级时,其当量长度应增大0.5 倍;提高2 级以上时,其当量长度应增大1.0 倍; ③表中的当量长度值是按海曾-威廉系数C=120 时计算。

④直流的三通或四通局部水头损失忽略不计。

3 算例对比结合某中危险Ⅱ级工程,对局部水头损失分别采用“新规范”颁布前通常所使用的取沿程水头损失的20%、“新规范”中推荐的当量长度值及修正后的当量长度值来推求等三种方法进行水
力计算。

设计基本参数均为: ①喷水强度q[sub]0[/sub] = 8 L/(min•m[sup]2[/sup]) ; ②计算作用面积F = 160 m[sup]2[/sup] ; ③采用标准喷头,流量系数K = 80 ; ④最不利点喷头工作压力取P = 7mH[sub]2[/sub]O。

结果见表6~表8 。

表6 为管件的局部水头损失采用取沿程水头损失的20%进行水力计算的算例。

表7 为管件的局部水头损失采用表2 中当量长度值进行水力计算的算例。

表8为管件的局部水头损失采用表5 中当量长度值进行水力计算的算例。

由表6~表8 的水力计算结果可知:采用“新规范”中推荐的当量长度值来推求的局部水头损失最大,占沿程水头损失的84.6 % ,在横干管与立管接口处所需节点水压为41.
27 mH[sub]2[/sub]O。

比采用“新规范”颁布前通常所用的局部水头损失取沿程水头损失的20%的方法求出的节点水压26.60 mH[sub]2[/sub]O 大14.76 mH[sub]2 [/sub]O ,水头损失相差74.8 % ,流量相差4.17L/ s ,两种计算方法所求出的结果
相差较大。

其主要原因:首先,是原计算方法忽略了局部水头损失对喷头出流量的影响及20 %的取值偏低;其次,采用“新规范”中推荐的当量长度值来推求的局部水头损失时忽略了舍维列夫公式与海曾-威廉公式的不同,进而造成所求出的局部水头损失偏大。

而采用表5 中经过修正后的当量长度值进行水力计算,局部水头损失仅占沿程水头损失的45 % ,且水力计算算至横干管与立管接口处时节点水压为32.34 mH[sub]2[/sub]O ,比采用“新规范”中推荐的当量长度值来推求出节点水压低8.93 mH[sub]2[/sub]O。

此外,从管件当量长度值随口径的增大而增大及水力计算特点可知,对作用面积越大的危险等级及配对称的喷淋系统,采用修正前与修正后当量长度值进行水力计算,二者水力计算结果则相差更大。

4 结束语本文是基于在采用“新规范”引用的美、英等国的当量长度值计算出的局部水头损失正确的基础上,通过分析舍维列夫公式与海曾-威廉公式单位水头损失的差别,反推适合舍维列夫公式的管件的局部水头损失当量长度值。

局部水头损失的计算关系到系统的安全性和经济性,各种管件的局部水头损失的大小以及计算方法亟待通过试验研究加以验证,以便更好地指导工程设计,使所设计的自动喷水灭火系统既安全又经济。

另悉,为适应与国际接轨及给水管材的多样性特点, 《建筑给水排水设计规范》送审稿已把原规范中的舍维列夫公式改为海曾-威廉公式。

对自动喷水灭火系统管道的沿程水头损失计算公式是否也改为海曾-威廉公式也值得探讨。

参考文献1 聂梅生,姜文源,周虎城,等. 水工业设计手册- 建筑和小区给水排水. 北京:中国建筑工业出版社,2000 2 中华人民共和国公安部主编. 自动喷水灭火系统设计规范( GB50084 - 2001) . 北京:中国计划出版社,2001 3 周玉文,赵洪宾. 排水管网理论与计算. 北京:中国建筑工业出版社,2000 4 黄秉政. 浅议中、轻危险级喷水灭火系统的水力计算. 给水排水,2002 ,28 (2) :96~101。

相关文档
最新文档