不等式的性质与解集
不等式的特殊解集与性质
不等式的特殊解集与性质不等式是数学中常见的一种表达式,用于表示数之间的大小关系。
在解不等式时,有时会出现一些特殊的解集及其性质。
本文将探讨不等式的特殊解集,并分析其性质。
一、绝对值绝对值不等式是一类常见的不等式,其解集具有一些特殊的性质。
考虑以下形式的绝对值不等式:|ax + b| ≤ c (其中 a、b、c 均为实数,且a ≠ 0)1. 当c ≥ 0 时,绝对值不等式恒成立,即其解集为全体实数。
2. 当 c < 0 时,绝对值不等式无解,因为绝对值的值不可能小于负数。
二、分式分式不等式是另一类常见的不等式,其解集也具有一些特殊的性质。
考虑以下形式的分式不等式:f(x)/g(x) ≤ 0 (其中 f(x) 和 g(x) 均为多项式函数,且g(x) ≠ 0)1. 若 f(x) 和 g(x) 异号(即一个为正,一个为负),则不等式的解集为不等式的所有解。
2. 若 f(x) 和 g(x) 同号(即两者都为正或负),则需进一步考虑 g(x) ≠ 0 的条件,即分母不为零的情况。
a) 若 g(x) > 0,则不等式的解集为满足f(x) ≤ 0 的所有解。
b) 若 g(x) < 0,则不等式的解集为满足f(x) ≥ 0 的所有解。
三、复合复合不等式是多个不等式同时存在的情况,其解集和性质需要综合考虑。
考虑以下形式的复合不等式:f(x) < g(x) < h(x) (其中 f(x)、g(x)、h(x) 均为函数)1. 首先解决 f(x) < g(x) 不等式,得到解集 A。
2. 然后解决 g(x) < h(x) 不等式,得到解集 B。
3. 最终复合不等式的解集为 A 与 B 的交集。
四、二次二次不等式是具有二次项的不等式,其解集和性质与一次不等式不同。
考虑以下形式的二次不等式:ax^2 + bx + c < 0 (其中 a、b、c 均为实数,且a ≠ 0)1. 若 a > 0,则二次不等式的解集为开口朝下的抛物线在 x 轴下方。
不等式的性质与解法
不等式的性质与解法不等式是数学中一种重要的表示不等关系的数学语句,它与等式相对应。
研究不等式的性质和解法对于理解数学知识、解决实际问题具有重要意义。
本文将探讨不等式的性质以及一些常见的解法,并为读者提供一些实用的技巧。
一、不等式的基本性质不等式的基本性质包括传递性、对称性和加法、减法、乘法性质。
1. 传递性:如果 a > b 且 b > c,则有 a > c。
这种性质使得不等式在运算过程中具有连续性,方便我们研究和解决问题。
2. 对称性:如果 a > b,则有 b < a。
不等式在进行对称变换时可以改变不等式符号的方向,但不等式仍然成立。
3. 加法、减法性质:如果 a > b,则有 a + c > b + c,a - c > b - c。
不等式在加法和减法运算中,可以将数加减到两边,不等关系仍然成立。
4. 乘法性质:如果 a > b 且 c > 0,则有 ac > bc,如果 c < 0,则有 ac < bc。
不等式在乘法运算中可以将等式两边乘以正数,或者乘以负数并改变不等关系的方向。
二、解一元一次不等式一元一次不等式是最简单的不等式形式,解这类不等式的方法和解方程类似。
以下是解一元一次不等式的步骤:1. 将不等式中的所有项移到一边,使不等式变为“不等于0”的形式。
2. 如果不等式两边乘以负数,则需要改变不等式的方向。
3. 对于一元一次不等式,在不等式两边同时加上同一个数或者乘以同一个正数时,不等式的不等关系不变。
4. 求解出不等式的解集。
例如,解不等式2x - 5 > 7,按照上述步骤进行解答:1. 将不等式变为“不等于0”的形式:2x - 5 - 7 > 0。
2. 对不等式两边同时加上同一个数:2x - 12 > 0。
3. 不等式两边同时除以正数2:x - 6 > 0。
4. 求解出不等式的解集:x > 6。
不等式的基本性质与解法总结
不等式的基本性质与解法总结不等式是数学中常见的一种数值关系表达形式,它描述了两个数或者数值表达式之间大小关系的不同情况。
在解决实际问题中,我们经常会遇到需要研究不等式的性质并解决不等式的问题。
本文将总结不等式的基本性质和解法,帮助读者更好地理解和运用不等式。
一、不等式的基本性质1. 加法性质:如果a<b,那么对于任意的实数c,a+c<b+c仍然成立;如果a>b,那么对于任意的实数c,a+c>b+c仍然成立。
2. 减法性质:如果a<b,那么对于任意的实数c,a-c<b-c仍然成立;如果a>b,那么对于任意的实数c,a-c>b-c仍然成立。
3. 乘法性质:如果a<b且c>0,那么ac<bc仍然成立;如果a<b且c<0,那么ac>bc仍然成立。
4. 除法性质:如果a<b且c>0,那么a/c<b/c仍然成立;如果a<b且c<0,那么a/c>b/c仍然成立。
5. 等式的性质:如果a=b且b=c,那么a=c仍然成立。
可以在不等式的两边加上或者减去相等的数值,不等式的关系仍然保持不变。
二、不等式的分类与解法不等式可以分为一元不等式和二元不等式两类。
一元不等式指只有一个变量的不等式,而二元不等式指含有两个变量的不等式。
下面将分别介绍一元不等式和二元不等式的解法。
1. 一元不等式的解法(1)图像法:将一元不等式转化为二元不等式,绘制出二元不等式的图像,通过观察图像得到一元不等式的解集。
(2)数线法:将一元不等式表示在数轴上,根据不等式的性质,确定不等式的解集。
(3)代数法:通过变形和运算等方式将不等式转化为更简单的形式,进而得到不等式的解集。
2. 二元不等式的解法(1)图像法:将二元不等式表示为平面上的区域,通过观察图像确定变量的取值范围,得到不等式的解集。
(2)代数法:利用一元不等式的解法,将一个变量表示成另一个变量的函数,通过求解一元不等式得到二元不等式的解集。
不等式的性质及解法
不等式的性质及解法不等式是数学中的一种重要的数值关系表示形式,与等式相比,不等式更能反映数值大小之间的差异。
在实际问题中,我们经常会遇到需要确定数值范围的情况,而不等式的性质和解法则帮助我们进行准确的数值分析和解决问题。
一、不等式的基本性质1. 传递性:如果 a<b,b<c,则有 a<c。
这一性质表明不等式的关系可以在数轴上进行传递,简化了分析比较的步骤。
2. 加减性:如果 a<b,则有 a±c<b±c。
对于不等式两边同时加减同一个数,不等式的关系保持不变。
3. 乘除性:如果 a<b 并且 c>0,则有 ac<bc;如果 a<b 并且 c<0,则有ac>bc。
这一性质需要注意,当乘以负数时,不等式的关系需要取反。
4. 对称性:如果a<b,则有b>a。
不等式两边的大小关系可以互换。
二、一元不等式的解法1. 加减法解法:通过加减法将不等式转化为更简单的形式。
例如:对于不等式 2x+3>7,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
2. 乘除法解法:通过乘除法将不等式转化为更简单的形式。
同样以不等式 2x+3>7 为例,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
3. 移项解法:利用不等式的基本性质,将所有项移到同一边,得到一个结果。
例如:对于不等式 3(x-2)>4x-7,我们可以先将右边的项移动到左边,得到 3x-6>4x-7,然后将 x 的系数移到一侧,得到 3x-4x>-7+6,化简得到 -x>-1,再乘以 -1,注意需要反转不等式的关系,得到x<1,即解集为 x<1。
4. 系数法解法:当不等式中存在系数时,我们可以通过判断系数的正负来确定解的范围。
例如:对于不等式 2x-3>0,我们观察到系数2>0,说明 x 的取值范围为正数,即解集为 x>3/2。
不等式的基本性质与解法知识点总结
不等式的基本性质与解法知识点总结不等式在数学中占据着重要的地位,它是描述数值关系的一种有效方式。
本文将总结不等式的基本性质和解法知识点。
一、不等式的基本性质1. 加法性质:若a>b,则a+c>b+c,其中c为任意实数。
2. 减法性质:若a>b,则a-c>b-c,其中c为任意实数。
3. 乘法性质:若a>b且c>0,则ac>bc;若a>b且c<0,则ac<bc。
4. 除法性质:若a>b且c>0,则a/c>b/c;若a>b且c<0,则a/c<b/c。
5. 对称性质:若a>b,则-b>-a。
6. 传递性质:若a>b且b>c,则a>c。
7. 绝对值性质:若|a|>|b|,则a^2>b^2。
8. 幂性质:若a>b且n为正整数,则a^n>b^n。
二、不等式的解法1. 图像法:将不等式转化为图像,利用图像直观地判断解集。
2. 对称法:当不等式具有对称性时,可以利用对称性质简化计算。
3. 分情况讨论法:将不等式分成不同的情况进行讨论,逐一求解。
4. 加减法合并法:将不等式中的项进行合并,简化计算。
5. 取绝对值法:若不等式中存在绝对值,可以通过取绝对值简化问题。
6. 平方法:若不等式中存在平方或平方根,可以通过平方或开方简化计算。
7. 代入法:将不等式中的变量代入,通过求解方程得到不等式的解集。
8. 倒置法:将不等式的方向倒置,从而转化为已知的不等式进行求解。
9. 寻找最值法:通过寻找函数的最值,确定不等式的解集。
10. 数学归纳法:对于一些特殊的不等式,可以通过数学归纳方法来证明。
三、实例分析以下是一些例子,通过上述解法来解答:例子1:解不等式2x+3>7。
解法:首先,我们可以使用加减法合并法将不等式化简为2x>4。
然后,再利用乘法性质除以2,得到x>2。
不等式的性质与解集表示
不等式的性质与解集表示不等式是数学中常见的一种表达式形式,它描述了数值之间的大小关系。
在这篇文章中,我将探讨不等式的性质以及如何表示其解集。
一、不等式的性质1.1 相等性质与等式相似,不等式也满足一些性质。
首先是假设不等式两边的表达式相等,可以使用等号代替不等号。
例如,如果a > b,那么a + c >b + c。
1.2 倍数性质其次,不等式的性质也可通过乘除以常数来改变不等号的方向。
例如,如果a > b,且c是一个正数,那么ac > bc。
1.3 加减性质不等式的加减性质与等式类似。
如果一个不等式两边同时加上或者减去相同的数,不等式的方向不变。
例如,如果a > b,那么a + c > b + c。
二、解集表示当我们解一个不等式时,通常需要找出使得不等式成立的数值范围。
这个数值范围可以用解集来表示。
2.1 开区间表示一个不等式解集可以用开区间表示。
例如,对于不等式a > b,它的解集可以表示为(a, ∞),表示所有大于b的实数a。
2.2 闭区间表示除了开区间,我们还可以使用闭区间来表示不等式的解集。
闭区间包括指定的数值。
例如,对于不等式a ≥ b,它的解集可以表示为[a, ∞),表示所有大于或等于b的实数a。
2.3 不等式组表示有时候,我们需要同时考虑多个不等式的解集。
这时,可以使用不等式组来表示解集。
例如,对于不等式组:a > bc < d它的解集可以表示为{a | a > b} ∩ {c | c < d},表示满足a > b和c < d的实数a和实数c的交集。
三、实例分析下面,我将通过几个实例来展示不等式的性质和解集表示。
例1:解不等式2x + 5 > 9首先,我们可以通过减法和除法来解这个不等式。
首先,我们将5从两边减去,得到2x > 4。
然后,我们再将两边都除以2,得到x > 2。
这个不等式的解集可以用开区间表示为(2, ∞)。
不等式的基本性质与解法
不等式的基本性质与解法不等式是数学中常见的一种数学关系,它描述了两个数之间的大小关系。
在解决实际问题中,经常需要研究不等式的基本性质和解法。
本文将介绍不等式的基本性质以及解决不等式的方法,并且给出一些例子来说明。
一、不等式的基本性质1. 加减性性质:对于两个不等式,如果它们的左右两边分别相加或相减,那么它们的不等关系不变。
例如:对于不等式 2x < 6 和 3x > 9,我们可以将两个不等式的左右两边分别相加得到 2x + 3x < 6 + 9,即 5x < 15。
不等式的不等关系保持不变。
2. 乘除性性质:对于不等式,如果两边都乘以一个正数,则不等关系保持不变;如果两边都乘以一个负数,则不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时乘以一个正数 3,我们得到 3 * 2x < 3 * 6,即 6x < 18,不等关系保持不变。
但如果两边同时乘以一个负数 -3,我们得到 -3 * 2x > -3 * 6,即 -6x > -18,不等关系发生改变。
3. 反号性质:对于不等式,如果两边同时取负号,不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时取负号,我们得到 -2x > -6,不等关系发生改变。
4. 绝对值性质:对于不等式,如果绝对值符号"|" 出现在不等式中,我们需要分别讨论绝对值大于零和绝对值小于零的情况。
例如:对于不等式|2x - 4| < 6,我们可以将其分为两个部分来讨论。
当 2x - 4 > 0 时,不等式简化为 2x - 4 < 6,解得 x < 5;当 2x - 4 < 0 时,不等式简化为 -(2x - 4) < 6,解得 x > -1。
二、不等式的解法1. 图像法:对于一些简单的一元不等式,我们可以使用图像法来解决。
将不等式转化为图像表示,通过观察图像来确定不等式的解集。
不等式的性质与解法
不等式的性质与解法在数学中,不等式是表示两个数或者表达式之间大小关系的一种数学陈述。
与等式不同,不等式可以包含大于、小于、大于等于或小于等于等关系符号。
本文将探讨不等式的性质与解法,并提供一些解决不等式的方法。
一、不等式的基本性质不等式具有以下基本性质:1. 传递性:对于任意的实数a、b、c,如果a < b而b < c,则有a < c。
同理,如果a > b而b > c,则有a > c。
2. 加减性:对于任意的实数a、b和c,如果a < b,则有a + c < b + c。
同理,如果a > b,则有a + c > b + c。
这意味着在不等式两边同时加上或减去一个相同的数,不等式的大小关系不会改变。
3. 乘除性:对于任意的正数a、b和c,如果a < b,则有ac < bc。
同理,如果a > b,则有ac > bc。
但是,如果a、b和c中存在一个负数,则不等式的大小关系会反转。
例如,如果a < b且c < 0,则ac > bc。
4. 对称性:如果a > b,则有-b > -a;如果a < b,则有-b < -a。
即不等式两边同时取相反数,不等式的大小关系会反转。
二、不等式的解法方法解决不等式的方法因不等式的形式而异。
下面介绍几种常见的解不等式的方法:1. 图解法:对于一元一次不等式,可以将其图形表示在数轴上,通过观察图形确定不等式的解集。
例如,对于不等式x + 2 > 0,可以将x轴上大于-2的部分作为不等式的解集。
2. 实数集合法:根据不等式的形式,考察变量可能取值的范围,从实数集合中选取满足条件的子集作为不等式的解集。
例如,对于不等式2x - 5 ≤ 3x + 1,可以将变量x的取值范围限定在满足2x - 5 ≤ 3x + 1的实数范围内。
3. 分类讨论法:对于复杂的不等式,可以将其分解为简单的不等式,并对每个分段进行讨论。
不等式的基本性质与解法
不等式的基本性质与解法不等式在数学中起着重要的作用,它描述了数值之间的大小关系。
解不等式是解决问题、推导结论的常用方法之一。
本文将介绍不等式的基本性质与解法,帮助读者更好地理解和应用不等式。
一、不等式的基本性质1.1 传递性:若a>b,b>c,则a>c。
这个性质说明了不等式在数值之间的传递性,即如果一个数大于另一个数,而后者又大于第三个数,则第一个数一定大于第三个数。
1.2 加法性:若a>b,则a+c>b+c。
这个性质说明了不等式在两边同时加上一个相同的数时,不等号的方向不变。
1.3 减法性:若a>b,则a-c>b-c。
与加法性类似,减法性说明了不等式在两边同时减去一个相同的数时,不等号的方向不变。
1.4 乘法性:若a>b且c>0,则ac>bc;若a>b且c<0,则ac<bc。
乘法性说明了不等式在两边同时乘以一个正数或负数时,不等号的方向会发生变化。
1.5 除法性:若a>b且c>0,则a/c>b/c;若a>b且c<0,则a/c<b/c。
除法性说明了不等式在两边同时除以一个正数或负数时,不等号的方向会发生变化。
二、不等式的解法2.1 图解法:对于一元一次不等式,可以通过图像来解决。
首先将不等式转换为等式,画出等式对应的直线,然后根据不等号的方向确定直线上的某一边的解集。
这种方法适用于简单的线性不等式。
2.2 求解法:对于更复杂的不等式,通常需要应用一些不等式性质和运算法则。
例如,可以通过加、减、乘、除等操作将不等式化简为简单的形式,再求解。
2.3 分类讨论法:对于一元高次不等式,可以将不等式中的变量分别取不同的值,然后根据不等式的性质进行分类讨论。
通过逐个排除不符合条件的情况,最终得到解集。
2.4 绝对值法:对于含有绝对值的不等式,可以通过拆分绝对值的定义,建立不等式的多种情况,然后分别求解。
不等式的性质和解法
不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。
2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。
(2)同向相加:如果a>b且c>d,那么a+c>b+d。
(3)同向相减:如果a>b,那么a-c>b-c。
(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。
二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。
(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。
(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。
(4)合并同类项:将不等式两边同类项合并。
(5)化简:将不等式化简到最简形式。
2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。
(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。
3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。
(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。
三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。
2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。
3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。
不等式的性质、解集与解法
不等式的基本性质及其解集一、不等式的性质1.不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变. c a b a +⇒> ca b a c b +⇒<+, c b +2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
若:0,>>c b a ,可得ac bc .3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.若ac c b a ⇒<>0, bc . 二.不等式的解集1.定义:一般的,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称这个不等式的解集.2.解与解集的联系: 解集和解那个的范围大.(解是指个体,解集是指群体) 3.不等式解集的表示方法. 1-≤x ①用不等式表示。
如1-≤x 或x <-1等。
x <②用数轴表示.(注意实心圈与空心圈的区别) 4.解一元不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意是否需要变号。
典型例题例1.①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围. ②不等式a x <2的解集为7<x ,求a 的值.例2.(1)如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围.(2)已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.例3.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。
A 、x >-1B 、x <-1C 、x <-2D 、无法确定 例4.(1)若0)2(32=--+-k y x x 中,y 为非负数,求k 的取值范围.思考题.设c b a ,,均为正数,若ac bc b a b a c +<+<+,试确定c b a ,,三个数的大小.y k 2x(第3题图)【经典练习】一、选择题(每小题2分,共36分)1、“x 的2倍与3的差不大于8”列出的不等式是( ) A 、2x -3≤8 B 、2x -3≥8 C 、2x -3<8 D 、2x -3>82、下列不等式一定成立的是( ) A 、5a >4aB 、x +2<x +3C 、-a >-2aD 、aa 24> 3、如果x <-3,那么下列不等式成立的是( ) A 、x 2>-3x B 、x 2≥-3x C 、x 2<-3x D 、x 2≤-3x 4、不等式-3x +6>0的正整数解有( ) A 、1个 B 、2个 C 、3个 D 、无数多个 *5、若m 满足|m |>m ,则m 一定是( ) A 、正数 B 、负数 C 、非负数 D 、任意有理数 6、在数轴上与到原点的距离小于8的点对应的x 满足( ) A 、-8<x <8 B 、x <-8或x >8 C 、x <8 D 、x >8**7、要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A 、m >23,n >-31B 、m >3,n >-3C 、m <23,n <-31D 、m <23,n >-31*8、 下列说法中,正确的有( ).① 若0ab <,则0,0;a b <<②若0,0a b <>,则0ab <;③若22,a b m m <则a b <;④若a b <,则22am bm <;⑤若0a b <<,则0a b +<;⑥若0a b +<,则0a b <<.A 、4个B 、3个C 、2个D 、1个 9、 下列说法正确的是( ). A 、5是不等式x+5>10的解集 B 、x <5是不等式x-5>0的解集 C 、x ≥5是不等式-x ≤-5的解集D 、x >3是不等式x-3≥0的解集10、 若a-b <0,则下列各式中一定正确的是( ).A 、a >bB 、ab >0C 、ab<0 D 、-a >-b11 不等式5x-1≤24的正整数解有( ).A 、4个B 、5个C 、6个D 、无限多个 **12 实数b 满足|b |<3,并且实数a 使得a <b 恒成立,则a 的取值范围是( ) A 、小于或等于3的实数 B 、 小于或等于-3的实数 C 、小于-3的实数 D 、 小于3的实数 13、 若4x <-,则下列不等式中正确的是( ). A .x 2≥-4x B 、x 2≤-4x C 、 x 2>-4x D 、 x 2<-4x*14、关于x 的方程2435x a x b++=的解不是负数,则a 与b 的关系是( ) A 、35a b > B 、 b ≥53aC 、5a =3bD 、5a ≥3b 15、在不等式100>5x 中,能使不等式成立的x 的最大正整数值为( ). A 、18 B 、19 C 、20 D 、21 16、下列不等式中,错误的是( ). A 、57-<-B 、5>3C 、0a 12>+D 、a a ->**17、已知5x -m ≤0只有两个正整数解,则m 的取值范围是( ) A 、10<m <15 B 、10≤m ≤15 C 、10<m ≤15 D 、10≤m <15 18、下列各式中,是一元一次不等式的是( ). A 、1y x 21<- B 、02x 3x 2>+- C 、2x141x 2+=+ D 、x 61x 31x 21>+二、填空题(每小题2分,共36分)1、不等式6-2x >0的解集是________.2、当x ________时,代数式523--x 的值是非正数. 3、当m ________时,不等式(2-m )x <8的解集为x >m-28. 4、若x =23+a ,y =32+a ,且x >2>y ,则a 的取值范围是________.5、已知三角形的两边为3和4,则第三边a 的取值范围是________.6、已知一次函数y =(m +4)x -3+n (其中x 是自变量),当m 、n 为________时,函数图象与y 轴的交点在x 轴下方.*7、某种商品的价格第一年上升了10%,第二年下降了(m -5)%(m >5)后,仍不低于原价,则m 的值应为________.8、5m-3是非负数,用不等式表示为______. 9、不等式238654x--<-<-的解集为______.10、当a b >,则2ab b <成立的条件是______.*11、明明的语文、外语两科的平均分为m 分,若使语文、外语、数学三科的平均分超过n 分,则数学分数a (分)应满足的关系式是_________.(m >n ) 12、设a <b ,用“<”或“>”|号填空:11(1)_____;(2)100_____100;22(3)1.5_____1.5;(4)_____.1212a b a b a ba b --++--13、不等式的性质:(1)如果a>b, 那么a+c b+c. (2)如果m>n, p>0, 那么mp np. (3) . 14、若-3x +4<-2x -5,则-x ______-9.15、已知直线y=kx+b 经过点(2,0),且k <0,则当x ______时,y <0. 16、不等式x <3的非负整数解是________.17、不等式|x |-2≤3的正整数解是____________.18、在2y 2-3y +1>0, y 2+2y +1=0,-6<-2, 27ab<2, 2312x x +- ,2103y y --<,7x +5≥5x +6中, 一元一次不等式有_____个,它们是_____________________.三、解答题1、解下列不等式,并把解集在数轴上表示出来:(每题4分共16分) (1)3(1-x )-2(x+8)<2; (2)3(x+3)-5(x-1) ≥7; (3)132+-x ≤42+x ;(4))69(6123--x x ≥7+x .3、(6分)在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛。
不等式的基本性质及求解方法
不等式的基本性质及求解方法在数学中,不等式是描述数值之间关系的一种表达方式。
与等式不同,不等式表达了两个数中的一个大于、小于或不等于另一个数的关系。
本文将介绍不等式的基本性质以及常见的求解方法。
一、不等式的基本性质1. 传递性:如果a>b,b>c,则a>c。
这个性质说明了不等式的关系具有传递性,即一个数大于另一个数,那么它也大于另一个与后者相等的数。
2. 反对称性:如果a≤b且b≤a,则a=b。
这个性质说明了不等式的关系具有反对称性,即一个数小于等于另一个数,同时另一个数也小于等于前者,则这两个数相等。
3. 相反数性质:如果a>b,则-a<-b。
这个性质说明了不等式的两边取相反数后,不等号的方向会发生翻转。
4. 倍增性:如果a>b,并且c>0,则a*c>b*c。
这个性质说明了不等式在两边同时乘上正数的情况下,不等关系保持不变。
二、求解方法1. 加减法求解:如果a+b>c,则a>c-b;如果a-b>c,则a>c+b。
这种方法适用于对不等式进行加减运算求解的情况。
2. 乘除法求解:如果a*b>c (且b>0),则a>c/b (其中b>0);如果a*b<c (且b<0),则a<c/b (其中b<0)。
这种方法适用于对不等式进行乘除运算求解的情况。
需要注意的是,在乘除法求解中,当乘(除)以负数时,不等号需要进行反向翻转。
3. 绝对值法求解:对于形如|a|>b的不等式,有两种情况:a>b 或 a<-b。
取其并集,即a>b 或 a<-b。
4. 平方法求解:对于形如x^2>a的不等式,有两种情况:x>√a 或 x<-√a。
取其并集,即x>√a 或 x<-√a。
5. 区间法求解:对于形如a<x<b的不等式,解集为(a, b)。
不等式的基本性质和解法
不等式的基本性质和解法不等式在数学中具有重要的地位,它描述了数值之间的大小关系。
不等式的研究可以帮助我们解决许多实际问题,如经济学、物理学、工程学等领域中的优化问题。
本文将介绍不等式的基本性质和解法,帮助读者更好地理解和运用不等式。
一、不等式的基本性质1. 不等式的传递性:如果a > b,b > c,则a > c。
这是不等式的传递性质,我们可以通过这个性质建立一系列的大小关系。
2. 不等式的加法性:如果a > b,则a + c > b + c。
两边同时加上相同的数,不等式的大小关系不变。
3. 不等式的乘法性:如果a > b,c > 0,则ac > bc。
两边同时乘以正数,不等式的大小关系不变。
但如果c < 0,则ac < bc。
两边同时乘以负数,不等式的大小关系会颠倒。
4. 不等式的倒置性:如果a > b,则-b > -a。
不等式两边同时取相反数,不等式的大小关系颠倒。
以上是不等式的基本性质,我们在解决不等式问题时需要运用这些性质来推导和转化不等式的形式。
二、不等式的解法1. 一元一次不等式的解法:对于形如ax + b > 0的一元一次不等式,我们可以按照以下步骤进行求解:a) 将不等式转化为等式,得到ax + b = 0;b) 求解得到x = -b/a;c) 根据x的位置和a的正负确定不等式的解集。
2. 一元二次不等式的解法:对于形如ax^2 + bx + c > 0的一元二次不等式,我们可以按照以下步骤进行求解:a) 求解关于x的二次方程ax^2 + bx + c = 0,得到两个解x1和x2;b) 根据a的正负以及x1和x2的位置确定不等式的解集。
3. 绝对值不等式的解法:对于形如|ax + b| > c的绝对值不等式,我们可以按照以下步骤进行求解:a) 将不等式分为两种情况,即ax + b > c和ax + b < -c;b) 求解这两个一元一次不等式,得到两组解集;c) 将两组解集合并,即得到绝对值不等式的解集。
不等式及其性质与解法
(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。
(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。
热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。
(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。
[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。
A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。
不等式的基本性质与解法
不等式的基本性质与解法不等式是数学中常见的描述数量关系的工具,它可以表达两个数、两个量或两个函数之间的大小关系。
在解决实际问题时,不等式的理解和运用至关重要。
本文将介绍不等式的基本性质以及解法,并通过一些例子来进一步说明。
一、不等式的基本性质不等式有以下基本性质:1. 加减性质:对于不等式两边同时加减一个相同的数,不等号的方向不变。
例如:若a < b,则a + c < b + c;若a > b,则a - c > b - c。
2. 乘除性质:对于不等式两边同时乘除一个正数,不等号的方向不变;而若乘除一个负数,则不等号的方向反转。
例如:若a < b,c > 0,则ac < bc;若a > b,c < 0,则ac > bc。
3. 倒置性质:若不等式两边同时倒置(取倒数),不等号的方向也要倒置。
例如:若a < b,则1/a > 1/b;若a > b,则1/a < 1/b。
二、不等式的解法1. 图解法:对于简单的一元一次不等式,我们可以通过图解法来求解。
例如,对于不等式2x + 1 > 5,我们可以先绘制出直线y = 2x + 1和y = 5的图像,然后找到两条直线的交点,交点右侧的区域即为不等式的解集。
2. 转化法:有些不等式可以通过转化为等价的形式来求解。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以将其转化为(x - 1)(x - 3) > 0的形式,然后根据函数图像的正负性来确定解集。
3. 分类讨论法:对于复杂的不等式,我们可以通过分类讨论的方法来求解。
例如,对于不等式|x - 2| < 3,我们可以将其拆解为两个不等式x - 2 < 3和-(x - 2) < 3,并分别求解得到解集,然后取它们的交集。
4. 根据性质求解:我们可以根据不等式的性质来求解。
例如,对于不等式x^2 - 5x + 6 < 0,我们可以分解它为(x - 2)(x - 3) < 0,然后根据乘法性质可知,当x在2和3之间时,不等式成立。
不等式基本性质及其解集
不等式的基本性质及其解集【知识要点一】等式与不等式的基本知识对照表:等式不等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.两边都乘以(或除以)同一个数(除数不能是0),所得结果仍是等式 两边都乘以(或除以)同一个正数,不等号的方向不变两边都乘以(或除以)同一个负数,不等号方向改变【知识要点二】1.不等式的解:能使不等式成立的未知数的值.2.不等式的解集:一个含有未知数的不等式的所有解.3.解不等式:求不等式的解集的过程叫做解不等式.4.不等式解集的表示方法:a.用不等式表示:如32≥+x 的解集表示为:1≥xb.在数轴上直观表示如图: 如:a x >b x ≤b x a <≤ 【经典例题】例1.将下列不等式化为""a x >或""a x <形式(1)97<-x(2)145->x x (3)231>x (4)155<-xabba例2.在数轴上表示下列不等式的解集 (1)3-≥x (2)211<x (3)212321<≤-x (4)2||<x例3.求不等式212-≥-x 的非负整数解.练习:求出不等式431≤-≤-x 的解集,并求出其整数解.例4.已知02≤+x ,化简13222+-++x x例5.指出下列不等式成立的条件1.当0>a 时,0>ab 2.当0>a 时,0<ab3.当0<a 时,0<ab 4.当0<a 时,0>ab例6.如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围. 练习:1. ①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围. ②不等式a x <2的解集为7<x ,求a 的值.2. 如果关于x 的方程323bx a x +=-的解是正整,求a 与b 的关系.例7.已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.☆基础探究☆1.由y x >得到ay ax <的条件是( ) A 、0>aB 、0≥aC 、0<aD 、0≤a2.若m 为有理数,下列不等式关系不一定成立的是( )A 、m m +>+79B 、m m -<-43C 、m m 46>D 、0||4≥m3.已知b a ,两数在数轴上对应的点如图所示,下列结论正确的是( ) A 、b a > B 、0<ab C 、0>-a b D 、0>+b a4.下列各数0,3,2.5,,4,21π-中,能使不等式12>-x 成立的是( ) A 、-4,π,5,2 B 、π,5,2 C 、π,5,2,3 D 、21,0,3 5.不等式143<x 的非负整数解是( ) A 、无数个B 、1C 、0,1D 、1,26.下列四个结论:(1)4是不等式63>+x 的解;(2)4>x 是不等式63>+x 的解集; (3)3是不等式63≥+x 的解;(4)3≥x 是不等式63≥+x 的解集,其中正确的是( ) A 、1个B 、2个C 、3个D 、4个7.如果b a >,用"">或""<填空 (1)a 2 b 2 (2)a 3- b 3- (3)a - b - (4)2a 2b(5)35a -b 35- (6)3+a 3+b8.如果b ax >,02<ac ,则xab 9.不等式21131<-x 的解集是 ,12≤-x 的正整数解为 . 10.若不等式a x <6的解集为3<x ,则a 的值为 .11.如果不等式1)1(+>+a x a 的解集为1<x ,那么a 必须满足 . 12.根据不等式性质,把下列不等式化成a x >或a x <的形式 (1)534+>x x(2)3132-<x (3)172<-x (4)123->-x xba 0☆综合能力提升☆ 13.在数轴上表示下列解集(1)大于-3而小于4的数 (2)所有不小于-4的数(3)所有不大于3的数 (4)绝对值小于3的数14.已知关于4152435+=-m m x 的解是非负数,求m 的取值范围,并在数轴上表示出来.15.已知不等式12≤-m x 的正整数解恰是1,2,求m 的取值范围.课后巩固1.设0<a ,则下列各式中不成立的是( ) A 、43+<+a aB 、a a 43<C 、a a -<-43D 、43aa ->-2.若4-<x ,则下列不等式成立的是( )A 、x x 42->B 、x x 42-≥C 、x x 42-<D 、x x 42-≤3.下列按要求列出的不等式中,不正确的是( )A 、m 不是负数,则0≥mB 、m 是非大于0的数,则0≤mC 、m 不小于-1,则1-≥mD 、m 是非正数,则0<m4.与063<-x 不同解的不等式为( ) A 、713<+xB 、63->-xC 、126<xD 、63-<-x5.下列说法中,错误的是( )A 、不等式13<x 的整数解有无限多个B 、不等式52<x 的整数解有有限个C 、不等式82<-x 的解集为4->xD 、不等式153<x 的正整数解有有限个 6.不等式1)2(>-x m 的解集为21-<m x ,则有( ) A 、2>mB 、2<mC 、3>mD 、3<m7.下列不等式中,解集为全体实数的是( ) A 、122+-x x >0 B 、02>x C 、x x 131<- D 、111<+-x x 8.若n m >时,m a 2n a 29.若22bc ac >,则a 3- b 3-10.若24ba ->-,则a b 2 11.不等式13<-x 的正整数解是 . 12.不等式5.5-≥x 的负整数解是 .13.如果关于x 的方程02=+kx 的根是3,那么不等式8)2(->+x k 的解集是什么?请你在数轴上表示出来.14.如果不等式x m x 253-<+没有正数解,求m 的值.15.关于x 的方程1223+=+m x 的解为正数,求m 的取值范围.16.不等式a x <+32的正整数解恰为1,2,求m 的取值范围.。
不等式的性质与解集
不等式的性质与解集不等式是数学中的一种基本关系,用于描述数值之间的大小关系。
与等式不同,不等式存在多种形式和性质。
本文将探讨不等式的性质和解集,并分析其应用。
一、不等式的基本性质1.1 不等式的传递性在不等式a < b和b < c成立的前提下,根据数学的传递性,可推导出a < c。
这意味着如果一个不等式关系成立,那么经过有限次传递,可以得到更多的大小关系。
1.2 不等式的加减性质对于不等式a < b,若两边同时加上(或减去)一个正数或负数,不等式的关系不会改变。
即a + c < b + c对于任意正数或负数c成立。
1.3 不等式的乘除性质对于不等式a < b,若两边同乘以一个正数,或同除以一个正数(负数),不等式的关系不会改变。
即a * c < b * c,若c > 0;a * c > b * c,若c < 0。
二、一元不等式的解集表示一元不等式是指只含有一个未知数的不等式,通常用x表示。
它的解集表示了不等式中使得不等式成立的所有实数值。
2.1 严格不等式的解集表示对于形如a < x < b的严格不等式,解集表示为(a, b),即大于a且小于b的一切实数值构成了解集。
2.2 非严格不等式的解集表示对于形如a ≤ x ≤ b的非严格不等式,解集表示为[a, b],即大于等于a且小于等于b的一切实数值构成了解集。
三、二元不等式的解集表示二元不等式是指含有两个未知数的不等式,通常用x和y表示。
解集表示了使得不等式成立的所有实数对。
3.1 不等式的图解法可以通过将二元不等式转化为平面直角坐标系上的区域来直观地表示解集。
通常在坐标系上绘制不等式相关的线条,然后确定位于线条上或线条所构成的区域内的点为解集的一部分。
3.2 不等式的符号法表示对于形如ax + by < c的二元不等式,符号法表示解集是平面上位于不等式所确定的曲线或区域的一侧的所有点的集合。
不等式的性质及求解方法
不等式的性质及求解方法不等式是数学中常见的一种关系表达式,描述了两个数或多个数之间的大小关系。
在解决实际问题中,不等式的性质及求解方法起着重要的作用。
本文将介绍不等式的常见性质以及常用的求解方法。
一、不等式的性质1. 不等式的传递性对于不等式 a < b 和 b < c,可以推导出 a < c。
这是因为如果 a 比 b 小,而 b 又比 c 小,则可以得出 a 比 c 小的结论。
2. 不等式的加减性对于不等式 a < b,如果两边同时加上(或减去)相同的数 c,则不等式的关系不变。
即 a + c < b + c 或 a - c < b - c。
3. 不等式的乘除性对于不等式 a < b,如果两边同时乘以(或除以)正数 c,则不等式的关系不变。
但如果乘以(或除以)负数 c,则不等式的关系会发生改变,需要改变不等式的方向。
即 a * c < b * c(或 a / c < b / c),当 c > 0 时,不等式的方向不变;当 c < 0 时,不等式的方向需要改变。
4. 不等式的倒置性对于不等式 a < b,将不等式两边同时取负号,则不等式的关系会发生倒置,即 -a > -b。
5. 不等式的平方性对于不等式 a < b,如果 a 和 b 都是非负数,则可以对不等式两边同时进行平方操作,即 a^2 < b^2。
但如果 a 和 b 中存在负数,则不等式的关系会发生改变,需要改变不等式的方向。
二、不等式的求解方法1. 图像法图像法是一种直观的求解不等式的方法。
对于一元不等式,可以将其在数轴上绘制出来,然后根据不等式的性质找出满足不等式的解集。
例如,对于不等式 x > 2,可以在数轴上标出 2,并用一个开口朝右的箭头表示大于 2 的数,这样就得到了不等式的解集。
2. 辅助方程法对于一些复杂的不等式,可以通过构造一个辅助方程来求解。
不等式的性质及其解法
不等式的性质及其解法1、不等式的性质:(首先熟悉对称性、传递性、可加性、可乘性以及加法法则、乘法法则、乘方法则、开方法则)(1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a cb d +>+(若,a bcd ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则a c b d >(若0,0a b c d >><<,则a b c d>);(3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则nna b>或>(4)若0ab >,a b >,则11ab<;若0ab <,a b >,则11ab >。
例(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②ba bc ac>>则若,22;③22,0b ab a b a >><<则若;④bab a 11,0<<<则若;⑤ba ab b a ><<则若,0; ⑥ba b a ><<则若,0;⑦bc b ac ab ac ->->>>则若,0;⑧11,a b ab>>若,则0,0ab ><。
其中正确的命题是______(答:②③⑥⑦⑧);例(2)已知11x y -≤+≤,13x y ≤-≤,则3x y-的取值范围是______例(3)已知c b a >>,且,0=++c b a则ac 的取值范围是______2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商(常用于分数指数幂的代数式); (3)分析法; (4)平方法;(5)分子(或分母)有理化; (6)利用函数的单调性; (7)寻找中间量或放缩法 ; (8)图象法。
初中数学知识归纳不等式的性质与解法
初中数学知识归纳不等式的性质与解法初中数学知识归纳:不等式的性质与解法在初中数学中,不等式是一种重要的数学工具,它常常用于描述数值之间的关系。
通过学习不等式的性质与解法,我们可以更好地理解数学问题,并能够灵活地运用不等式进行问题的求解。
本文将从不等式的基本性质、不等式的解集表示以及不等式的解法等方面进行归纳总结。
一、不等式的基本性质不等式的基本性质是我们学习不等式的起点,它们包括:1. 同加同减性质:对于不等式两边同时加上或减去一个相同的数,不等关系保持不变。
例如,若a > b,则 a + c > b + c,a - c > b - c。
2. 同乘同除性质:对于不等式两边同时乘以或除以一个正数,不等关系保持不变;如果乘或除以一个负数,不等关系改变。
例如,若a > b,则 ac > bc (c > 0),ac < bc (c < 0)。
3. 对称性质:不等关系的两边可以互换。
例如,若a > b,则b < a。
以上基本性质为我们解决不等式问题提供了基础,我们可以通过对不等式进行恰当的运算,来得到不等式的等价形式或简化形式,以便更好地分析和求解。
二、不等式的解集表示对于不等式问题,我们通常需要确定其解集表示。
以下是一些常见的解集表示形式:1. 数轴表示法:对于一元不等式,我们可以使用数轴上的点来表示解集。
例如,若不等式为x > 2,解集可以表示为一个开区间(2, +∞)。
2. 区间表示法:对于一元不等式,我们可以使用区间表示解集。
例如,若不等式为-1 ≤ x ≤ 3,解集可以表示为闭区间[-1, 3]。
3. 集合表示法:解集也可以用集合的形式表示。
例如,若不等式为x < -2,解集可以表示为{x | x < -2}。
不同的表示形式可以根据具体问题的需求进行选择,有时也可以根据问题的要求进行转换。
三、不等式的解法在解决不等式问题时,我们需要根据具体的不等式形式和问题要求选择相应的解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与集合
一元一次不等式
不
等
式
与
集
合
一元二次不等式
不等式
性质与集合
含有绝对值
的不等式
PPT模板下载:
节日PPT模板:
PPT背景图片:
优秀PPT下载:
Word教程:
资料下载:
范文下载:
教案下载:
学习目标
行业PPT模板:
PPT素材下载:
PPT图表下载:
PPT教程:
Excel教程:
它们的绝对值,绝对值大的反而小
两个正实数的大小比较一般采用作差法、
作商法、平方法等.
例题解析
比较大小
(x+5)(x-8)
(x+1)(x+3)
1
不等式的性质与解集…
实数
什么是不等式?
1、观察下面这几个式子,完成下面的填空。
∵ ab
∴ a 3 b3
等式的基本性质1:
同一个数
等式的两边都加上(或减去)______
<
知识应用 判断对错并说明理由
1. 若 -3<0, 则 -3+1<1
(√ )
2. 若 -3 × 2> -5 ×2, 则 -3< -5
(× )
3. 若 a<b, 则 3 a< 3 b
( √ )
4. 若 -6a < -6 b, 则 a < b
( ×)
知识应用 判断对错并说明理由
5. 若 a>b, 则-a < -b
如果a>b,且c < 0,
a
那么ac < bc,
c
<
b
c
尝 试 反 馈,巩 固 知 识
设 a b,
用" "或" " 填空 :
(1)
> 3b;
3a ___
( 2)
a 7 ___
> b 7;
5a ___
< 5b;
(3)
( 4)
(5)
2a 5 ___
2
b
5
;
>
3.5a 1 ___ 3.5b 1.
4
2
两边同时乘以
(或除以)同
一个正数,不
等号方向不变
不等式性质
不等式的两边都加上(或减去)
同一个数, 不等号方向不变,
所得到的不等式仍成立.
如果a>b,那么a+c>b+c,a-c>b-c.
如果a<b,那么a+c<b+c,a-c<b-c.
不等式性质
不等式的两边都乘以(或除以)
同一个正数, 不等号方向不变,
TONY
JOE
SARAH NICOLE
集合的元素可以是字母、
数字、甚至是图形。
表示方法:
集合通常用大写英
文字母A、B、C……
表示
&
集合中的元素是数,
这样的集合叫做数集
元素属于集合,
记作a∈ 元素不
属于集合,记作
a∉
TONY
JOE
SARAH NICOLE
集合性质
确定性(本质)
a与的关系
是确定的
( √ )
6. 若 -2x >0, 则 x > 0
(× )
7. 若 -2<1, 则 -2a < a
( ×)
8. 若 a >0, 则 3a > 2a
( √ )
课堂小结
1、谈一谈这节课的收获。
2、对于哪些地方还存在疑问?
PPT模板下载:
节日PPT模板:
PPT背景图片:
优秀PPT下载:
Word教程:
资料下载:
04
01
03
小数
02
自然数
整数
SARAH NICOLE
&
德国数学家、数学王子高斯
(Gauss,1777——1855)
“数学是科
学的皇后,
数论是数学
中的皇冠”
TONY
JOE
SARAH
NICOLE
数的分类
&
TONY
JOE
实数大小比较的原则
数轴上右边的点表示的实数比左边的点
表示的实数大
两个负数进行大小比较时,先比较
1
表示不相等
关系的式子
用不等号将两个解析式连结
起来所成的式子。不等号有"
<",">","≤","≥","≠"。
比如:3<2,x+y<1,x≠0,
sin(x+y)<1都是不等式。
不等式性质
不等式有
传递性
3
两边同时乘
以(或除以)
同一个负数,
不等号方向
改变
1
两边同时加上
(或减去)同
一个实数,不
等号方向不变
或 同一个整式,所得的结果仍是等式。
2、继续观察下面这几个式子,完成下面的填空。
∵
∴
∴
ab
3a 3b
a b
4 4
等式的基本性质2:
等式的两边都乘以(或除以)同一个数
(除数不能为零),所得的结果仍是等式。
我今年70岁.
我今年40岁.
你能用不等式表示他们俩年龄的大小关系吗?
70 > 40
不等式
PPT课件下载:
试卷下载:
实数的大小、不等式性质
能说出实
能说出实
能说出不
数的分类
数的大小
等式的四
比较方法
个性质
A
B
C
原始人狩猎
SARAH
NICOLE
&
TONY
JOE
SARAH
NICOLE
原始人狩猎
&
TONY
JOE
数的概念
数的产生
成数
我们的祖先在劳动中有了计数的需要
约数、倍数
百分数
05
分数
06
合关系
元素a与一个给定的集合A只有两种可能:
1、a属于集合A,表
述为a是集合A的元素,
记作a∈A
2、a不属于集合A,
表述为a不是集合A的
元素,记作a∉A。
集合与集
合关系
1
包含
关系
相等
关系
3
真包含
关系
2
集合的运算
交集
并集
补集
所得到的不等式仍成立.
如果a>b,且c>0,
a
那么ac > bc,
c
>
b
c
不等式性质
不等式的两边都乘以(或除以)
同一个负数, 不等号方向改变,
所得到的不等式仍成立.
如果a>b,且c < 0,
a
那么ac < bc,
c
<
b
c
不等式性质
不等式的两边都乘以(或除以)
同一个负数, 不等号方向改变,
所得到的不等式仍成立.
无序性
集合之间的元素
没有顺序、地位
之分,互相平等
TONY
互异性
集合之间的元素
两两不相等
JOE
常用数集
N——全体自然数组成的集合称为自然数集
N*或N+——全体非零自然数组成的集合称为正整数集
Z——全体整数组成的集合称为整数集
Q——全体有理数组成的集合称为有理数集
R——全体实数组成的集合称为实数
元素与集
范文下载:
教案下载:
行业PPT模板:
PPT素材下载:
PPT图表下载:
PPT教程:
Eห้องสมุดไป่ตู้cel教程:
PPT课件下载:
试卷下载:
学习目标
集
合
能说出集
能写出常
能正确表
合的定义
用数集及
达集合
其符号
A
B
C
SARAH NICOLE
集合的定义
把一些确定的、不同的对象看
成一个整体,其中对象叫做元素
(element),整体叫做集合(group)。