111219研究生线性系统理论复习
研究生线性系统理论
2014级研究生《线性系统理论》作业 2015.03一、 已知系统的状态方程为010000001000312312210002x x u ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1) 求2个不同的反馈阵K ,使得系统的特征值为:43,54j j -±-±; (2) 通过仿真结果说明,取不同反馈阵K 值时,系统的阶跃响应情况。
解:由于rank[B AB A 2B]=4可知系统完全能控。
方法一:使用直接算法求解反馈阵k :首先求取系统的特征多项式α(s)=det(sI-A)=s^4-2*s^3-s^2-6*s-6.α*(s)=s^4-18*s^3-146^2-578*s-1025.p=[2;1]令b=Bp=[0;0;4;2]P=[A 3b A 2b A 1b b]*[1 0 0 0;α3 1 0 0;α2 α3 1 0;α1 α2 α3 1]=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2 4- 2 24 6 0 00 4 6 00 0 46 P -1=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0.2015 0.1493 0.0224- 0.0672- 0.1343- 0.0672 0.0149 0.0448 0.0896 0.0448- 0.1567 0.0299- 0.0597- 0.0299 0.1045- 0.1866K=[α0*-α0 α1*-α1 α2*-α2 α3*-α3 ]P -1=[-178.4552 15.0149 -16.9328 25.8657] K 1=pk=⎥⎦⎤⎢⎣⎡25.8657 16.9328- 15.0149 178.4552- 51.7313 33.8657- 30.0299 356.9104- 方法二:龙伯格能控规范型法:[B AB A 2B A 3B]=[b 1 b 2 Ab 1 Ab 2 A 2b 1 A 2b 2 A 3b 1 A 3b 2]= [0 0 0 0 1 2 2 10 0 0 1 2 2 10 5 22 1 2 2 10 5 22 18 660 2 0 0 1 2 4 14]基于此,组成预变换阵P -1并且求出P ,有P -1=[b 1 Ab 1 A 2b 1 A 3b 1]=[0 0 1 20 1 2 51 2 5 180 0 1 4 ]P=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡'4'3'2'1P P P P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------5.0005.010025.0015.13122由此,导出变换矩阵S -1及其逆S ,有S -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡'1'2'3'4p p p p =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0100001000015.0005.0 推出S=⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢0012100001000010 从而,可以定出给定系统状态方程的龙伯格能控标准形为:A ’=S -1AS=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2166100001000010 B ’=S -1B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡20011000由此可得状态反馈阵K 为: K=[]3*32*21*10*0,,,αααααααα----=⎥⎦⎤⎢⎣⎡0000201475841031 最后,对原系统确定实现指定特征值配置的状态反馈阵K 2。
线性系统理论复习题纲
《线性系统理论基础》复习提纲第1章线性系统的状态空间描述1、基本概念状态(向量)状态空间状态轨迹状态空间模型(表示)状态方程、输出方程系统矩阵、控制矩阵、前馈矩阵、输出矩阵状态结构(方框)图线性系统时不变(定常)系统、时变系统连续时间系统、离散时间系统 状态线性变换矩阵的特征值、矩阵的特征向量 对角线标准型、约当标准型 模态标准型 正则型矩阵 范德蒙矩阵 传递函数矩阵2、知识要点%%知识点1:根据物理规律建立状态空间模型♦ 简单机械系统 ♦简单电气系统参考例题:例2.1.1,例2.1.2(P8)%%知识点2:微分方程模型转化为状态空间模型♦微分方程中不含输入导数项给定 ()(1)110n n n y a ya y a y bu --++++=&L ,选取状态向量12(1)n n x y x y x y -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦&M M , 则有状态方程: 1122011010010n n n x x x x u x a a a x b -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦&&M O M M M&L输出方程: []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x y M Λ21001 例2.1.3 (注意:方框图在没有要求时可以不画出) ♦微分方程中包含输入函数导数项,且m n <给定()(1)()(1)110110n n m m n m m ya y a y a yb u b u b u b u ----++++=++++&&L L ,m n <,将其转化为()(1)110()(1)110n n n m m m m y a y a y a y u y b yb y b y b y ----⎧++++=⎪⎨=++++⎪⎩&%%%%L &%%%%L ,选取状态向量12(1)n n x yx y x y-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦%&%M M %,则有状态方程 120110100101n n x x u x a a a -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦&&M O M M &L 输出方程 12011[,,,,0,,0]m n m n x x y b b b x --⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L L 123M例2.1.4 ♦ 微分方程中包含输入函数导数项,且n m =若()(1)()(1)110110n n n n n n n ya y a y a yb u b u b u b u ----++++=++++&&L L ,让n y y b u =-%,则转化为如下微分方程的形式()(1)(1)(1)110111100()()()n n n n n n n n n y a y a y a y b a b u b a b u b a b u -----++++=-++-+-%%%%&L L 。
线性系统复习
k1
y(k) CAk x0 C Ak j1Bu( j)
0
j0
CeAtx0 h(t)*u(t)
CAk x0 h(k)*u(k)
h (t )DCe At B
h(k )DCA k 1B
传递函 数阵
H ( s) C ( sI A) 1 B
H ( z ) C ( zI A)1 B
u(k) u(t)
u (t) u (k) k T t (k 1)T y(k)
u(t)
u(k) 保持器 u(t) x Ax Bu
y Cx Du y(u)
x(k1)G(xk)H(uk) y(k)C(xk)D(uk)
{x Ax Bu
定1.理 给定线性y 定 Cx D常 u x系 0)(x统 0 (1
2 ,G
e At
1
0
0.5(
1-e-2T ) e-2T
1 0
0.091
0.819
H (
T e At dt)B
T 1
0
0 0
0.5(
1-e-2t ) e-2t
dt
×10
0.5T 0.25e-2T -0.5e-2T 0.5
Bu (k )
(k
)
(1)
已知 x(k 0 ), 及 u(k) k k 0
k 1
x(k) A k-k 0 x(k 0 )
A k-i- 1 Bu(i)
i k0
若令 k 0 0 , 则有 :
k 1
x(k) A k x( 0 )
A k-i- 1 Bu(i)
线性系统理论第一章
第一章线性定常系统的状态空间描述及运动分析1.1 线性定常系统的传递函数描述传递函数描述局部的,有局限性的描述传递函数描述的是系统的输入--输出关系,即假定对系统结构的内部信息一无所知,只能得到系统的输入信息和输出信息,系统内部结构就像一个"黑箱"一样,因此,传递函数只能刻画系统的输入--输出特性,它被称为系统的输入--输出描述和外部描述.常用的数学工具:拉普拉斯变换主要适用于描述线性定常系统1.单变量情形回顾已知由下列常系数微分方程描述的定常系统其中 : 系统的输出 ; :系统的输入; : 时间; 均为常数 ,(希望input少,收益大)假定所有初始值(包括导数的值)全为0,对上式两边取拉普拉斯变换,得到其中为的拉普拉斯变换,则下式称为系统的传递函数 :传递函数为的真有理分式,则称系统为物理能实现的. 单输入--单输出系统的传递函数必为真有理分式.系统的特征多项式: 多项式系统的特征方程 : 代数方程系统的极点 : 特征方程的根或者说特征方程的零点系统的零点 : 多项式的零点传递函数的零点和极点 : 零极相消后剩下的系统的零点和极点 (若系统有相同的零点和极点,则称系统有零极点相消)2.传递函数矩阵考察多输入--多输出的线性定常系统.令输入变量组 : {} , 输出变量组 : {} 且假定系统的初始变量为 0 .用和分别表示和的拉普拉斯变换, 表示系统的由第个输入端到第个输出端的传递函数,其中则由系统的线性属性(即满足叠加原理) 可以导出:称由上式所定义的为系统的传递函数矩阵. 容易看出, 为的一个有理分式矩阵. 当的元传递函数除严格真还包含真有理分式时,即它的一个或一些元传递函数中分母和分子多项式具有相等的最高幂次时,称为真有理分式矩阵.通常,当且仅当为真的或严格真的时,它才是物理上可实现的.作为一个判别准则,当且仅当零阵时, 为严格真的;非零常阵传递函数矩阵为真的.1.2 线性定常系统的状态空间描述1. 状态和状态空间定义1.1 动力学系统的状态定义为完全的表征系统时间域行为的一个最小内部变量组.组成这个变量组的变量称为系统的状态变量,其中为初始时刻由初始变量构成的列向量称为系统的状态向量,简称为状态.状态空间则定义为状态向量取值的一个向量空间.几点解释:1. 状态向量组可完全的表征系统行为的属性.2. 状态变量组的最小性.3. 状态变量组在数学上的特征.4. 状态变量组包含了系统的物理特征.5. 状态变量组选取上的不唯一性定理1.1 系统任意选取的两个状态变量组之间为线性非奇异的关系2.动态系统的状态空间描述和输入--输出描述不同,状态空间描述中把系统动态过程的描述考虑为一个更加细致的过程,输入引起系统状态的变化,而状态和输入则决定了输出的变化."输入"引起"状态"的变化 ( 一个运动的过程)数学上必须采用微分方程或差分方程来表征并且称这个数学方程为系统的状态方程考虑最为一般的连续动态过程: (一个一阶非线性时变微分方程组)进而,在引入向量表示的基础上,还可将状态方程简洁的表示为向量方程的形式:其中"状态"和"输入"决定"输出"的变化 (一个变量见的转换过程)描述这种转换过程的数学表达式为变换方程,并且称之为系统的输出方程或量测方程.最一般的,一个连续的动力学系统的输出方程具有以下形式:表示为向量方程的形式为其中系统的状态空间描述由状态方程和输出方程组成.离散动态过程(离散系统)的状态空间的描述: 只在离散时刻取值,用来表示其状态空间过程描述只反映离散时刻的变量组间的因果关系和转换关系.通常,可采用两条可能的途径来组成系统的状态空间描述:一是分析途径,适用于结构和参数已知的系统;二是辨识的途径,适用于结构和参数难于搞清楚的系统.3.线性定常系统的状态空间描述限于考虑线性定常系统的连续动态过程,此时,向量函数将都具有线性的关系,且不显含时间 .从而线性定常系统的状态空间描述的表达式为其中维状态向量维控制输入向量维输出向量系统矩阵输入矩阵输出矩阵前馈矩阵以上统称为系统的系数矩阵,均为实常阵.线性定常系统也叫做线性时不变系统(linear time-invariant L TI),完全由系数矩阵决定.简记为.对于线性定常系统,我们分别称系统矩阵的特征值,特征向量,若尔当标准型,特征方程,特征多项式为系统的特征值,特征向量,若尔当标准型,特征方程,特征多项式,系统的特征值也称作系统的极点.若,则此系统为单输入线性定常系统;若,此系统为单输出线性定常系统;若,此系统为单输入--单输出系统,或单变量系统.考虑线性定常离散系统的状态空间描述,其一般形式为其中维状态向量维控制输入向量维输出向量阶实常系数矩阵简记为1.3 输入输出描述导出状态空间描述------------- 系统的实现问题(第五章详解)考虑单输入--单输出线性定常系统.表征此系统动态过程的输入-输出描述,时域为或等价的频域描述即传递函数其中和分别表示和的拉普拉斯变换对于由上式描述的系统,可以引进状态变量 ,将其写成状态空间描述形式,其中为维状态变量分别为的常矩阵由"上"写成"下",称为实现问题,实现不具有唯一性1. 当时,有如下结论:定理1.2 给定单输入--单输出线性定常系统的输入输出描述如"上",当时,其对应的一个状态空间描述为:2. 当时,已知"上"求其状态空间描述.先求极限然后令为严格真,直接按的形式写出即可.3. 当时, 此时输入输出关系为此时状态空间描述形式为:1.4 由状态空间描述导出的传递函数矩阵对于多输入--多输出线性定常系统,传递函数矩阵是表征系统输入输出特性的最基本的形式.1. 传递函数矩阵的表示的基本表达式定理1.3 对应于状态空间描述的传递函数矩阵为并且 ,当时, 为真的 , 时, 为严格真的,且有2.的实用关系式有给出的关系式在理论分析上很重要,但从计算的角度而言不方便,下面给出由计算的两个实用算式.定理1.4 给定状态空间描述的系数矩阵 , 求出则相应的传递函数矩阵可表示为注: 的根 : 系统的极点 ; 分子的根 : 系统的零点推论1.1 若的最小多项式为则系统的传递函数矩阵可表示为2. 脉冲响应矩阵和状态空间描述定理1.11 线性定常系统其中的实常阵的脉冲响应矩阵为将其写作更为常用的形式定理1.12 两个代数等价的线性定常系统具有相同的脉冲响应矩阵.定理1.13 两个代数等价的线性定常系统具有相同的输出零状态响应和输出零输入响应.3. 脉冲响应矩阵和传递函数矩阵定理1.14 分别表示线性定常系统的脉冲响应矩阵和传递函数矩阵,则有推论1.2 给定两个线性定常系统 ,设两者都具有相同的输入和输出维数,状态维数不一定相同,则两系统具有相同的脉冲响应矩阵(即相同的传递函数矩阵)的充要条件为1.8 线性定常离散系统的运动分析归结为对定常的线性差分方程进行求解.1. 线性定常离散系统的运动规律对于上述系统,其状态运动的表达式为或2. 脉冲传递函数矩阵取初始状态 , 则可得到系统的输入输出关系式为其中为线性定常离散系统的传递函数矩阵, 按习惯称为脉冲传递函数矩阵.G(z) 为 z 的有理分式矩阵,通常只讨论其为真的或严格真的情况,此时 G(z) 为物理可实现的. 1.9 线性定常系统的时间离散化1. 问题的提出把连续时间系统化为等价的离散时间系统的问题. (课本P22 或百度文库)2.线性定常系统按采样周期T的离散化线性定常系统引入三点基本假设,以保证系统离散化后的描述简单,且是可复原的1. 采样器的采样方式取为以常数 T 为周期的等间隔采样. 采样瞬时为2. 保持器为零阶的.3. 采样周期的值要满足香农(Shannon)采样定理所给出的条件香农定理:离散信号可以完满地复原为原来的连续信号的条件为采样频率满足.考虑到 , 故上式可化为定理1.15 上述系统的时间离散化模型为其中注 :定理1.15提供了线性定常连续系统时间离散化的算法, 离散化系统仍为定常系统.不管A是否奇异,离散化后系统矩阵G一定是非奇异的.。
线性系统理论课后答案
6 XI 给定图P2.12)和<b)所示两个电路,试列写出其状态方S 和输出方程。
其中, 分别指定:⑹状态变组廿二叱•勺输入变M « = ef(r):输出支量尹=/(b)状态变宣组X 严气,输入变S“y(O;输出变量丿■“CP2 1解 本题A 于由物理系统養立状态令问描述的基本题,意在训练正磧和熟塚运用电 路定律列写岀电路的状态方程和输出方程•(1)列写P2・l(a)电路的状态方程和输山方程。
首先.考虎到电容C 和电感E 为给定 电路中仅有的两个储能元件•电容端电压弋和流经电感电流了构成此电路的线性无关极 人变*组,从而透取状态变*组州=%:和巧=i 符合定义要求。
基此,利用电路元件关 系式和回路基尔《夫定律,定出电路方程为C 虬r dr L —+= e再由上述电路方程导出状态变量陀和i 的导》项,可得到状态变査方程规范形式, 血C I •—=—(tU C d/ 1 心 1 d/L c L L表%=3山和dW/dn 并将上述方程组表为向量方程,就得到此电路的状态方程:继而.按约定输出y = A 可直接得到此电路的输出方程:(b)列写P2.i(b)电路的状态方程和«ta 方程•类似地.考虑到电容C ]和C2为给定电 路中仅有的两个储能元件,电容端电压乜和七构成此电路的线性无关极大变fi 组,选 取状态变量组二叱和可二叱2符合定义要求,基此,利用电路元件关系式和回路基尔 霍夫定定出电路方程为dur GRpM 叱+叱之71RZ,皿6再由上述电路方程导出状态变量叱和叱的导数项,可得到状态变量方程规范形式: % 1 I 1少GR q GR 5 C,Kdr 表M 也C| /曲和 MqI方程:继而,按约定输出y =坯,可由电路导出:尸叱=%+七 将其表为向*方程,就得萸i 此电路的皴出方程,八不叱~孫"6 +丽e并将上述方程组表为向量方程,就得封此电路的状态K2.6求出下列^输入输出描述的一个状态空同描述: (i) 施)二 2^2 十 18$+40u(s)『+ 6“ +11S+6 (ii) 型十妙⑴_u(j) (g + 3)2(zl)解本®属于由传递函数型输入输出描述导出狀态空间描述的基本fi 。
考研线性代数复习技巧及建议
考研线性代数复习技巧及建议考研线性代数复习技巧及建议考研数学试题的题量一般在20-22道之间,一般6道填空题,6道选择题,10道大题。
数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其中高数6个,线性代数和概率论各2个。
其次选择题命题原则考两个方面,一是对数学概念的理解,二是对数学方法的掌握。
选择题的难易度是中下等。
前两部分不会有难题,所以应该有个比较高的得分率,考生要针对这部分好好复习。
最后,简答题中数一15到19是微积分,20、21是线性代数,22、23是概率论。
数二15到21是微积分,22、23是线性代数。
在这9道题里应该有1到2个难题,而且出在微积分部分,因为微积分部分题多分多。
考研试卷是按块出题,15到19题难度逐渐上升,21到23题然后再下降,所以在考场上一定要灵活,如果复习的好,这5道微积分就一股作气答完,如果感到棘手就先做容易的题。
线性代数复习技巧指导线性代数的内容不多,但基本概念和性质较多。
他们之间的联系也比较多,特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。
例如:向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。
掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。
线性代数复习建议一、重视基本概念、基本性质、基本方法的理解和掌握基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。
从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够透彻,在答题中对基本性质的应用不知如何下手,因此,造成许多不应该的失分现象。
所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基本知识。
二、加强综合能力的训练,培养分析问题和解决问题的能力从近十年特别是近两年的研究生(论坛)入学考试试题看,加强了对考生分析问题和解决问题能力的考核。
江苏大学线性系统理论(现代控制理论)考试必备--第3章
有限时刻 , t f , t0对 t时f 刻J 的非零t0初始状态
x(t0 ) , x可0 找到一个无约束的容许控制u(t),能在一个有限
的时间间隔内 t ,[t0使,t f某] 一状态轨线在 时刻为t f
,则
称此x(状t f )态在0 时刻为完全能控t的0 。
tf
定义2 如果存在一个无约束的容许控制u(t),能在一个有
【例1】 判别下1 0
x1 x2
0 1
u
解:首先确定出系统的能控判别阵U,并判别阵U的秩。
rankU rank[B
AB]=rank
0 1
1 0
2
显然,由于 rankU n 2 ,因此该系统完全能控。
第3章 线性控制系统的能控性与能观测性
江苏大学电气学院
状态变量是系统的一个内部变量,能否通过系统输入、 输出这一对外部变量来建立或确定系统的初始状态,这是 系统能控性、能观性问题所要研究的内容,也即研究系统 这个“黑箱”的内部状态能否由输入来加以影响和控制以 及能否由输出来加以反映。
第3章 线性控制系统的能控性与能观测性
江苏大学电气学院
如果系统内部的所有状态的运动能够由输入来加以影响 和控制,就称系统是完全能控的,否则系统就称为不完全 能控的或不能控的。同样,如果系统内部所有状态变量的 任意运动形式均可由输出完全地反映出来,则称系统为完 全能观的,否则就称系统为不完全能现的或不能观的。
第3章 线性控制系统的能控性与能观测性
江苏大学电气学院
对于线性定常系统的状态方程可写为:
x Ax Bu , x(0) x0 , t 0
记为{A,B},其中:x为n×1状态向量;u为p×1输入向量; A为n×n常值矩阵;B为n×p常值矩阵。 线性定常系统能控性的常用判据 1. 格拉姆矩阵判据 定理1 线性定常系统{A,B}完全能控的充分必要条件是,存 在一个有限时刻 tf > 0,使如下定义的格拉姆(Gram)矩阵
研究生课程“线性系统理论”的深入解析
作者简介:魏萍(1975—),讲师,研究方向为控制理论及应用。 65
Copyright©博看网 . All Rights Reserved.
教改教法
(2)从非线性系统得到相应稳态点附近的线性系统,数 学表达式中可以看到状态变量发生了变化,线性系统中的 状态变量与输入变量实际上是原非线性系统中状态变量的 增量。一般来说,如果从实际系统经过机理分析建立的数学 模型是非线性模型,那么相应的状态变量有实际的物理意 义,所以此时需要注意,线性系统中的变量是相应增量,在 具体问题分析与设计中,明确这一点至关重要。
(3)对于非线性系统来说,稳态点(x0, u0)可能是不唯一 的,故针对不同的稳态点就对应不同的局部近似线性系统, 不同线性系统就会有不同的运动特征,进而设计不同的控 制系统。另外,从前面两点已经明确,当系统状态(真实状 态)在某稳态点邻域内时,也就是稍微偏离稳定态时,线性 系统的分析综合结果用于非线性系统。而当稳态点不唯一 时,更要注意状态局部偏离的意义,否则一不小心跳到其他 吸引域或发散域,控制效果会出人意料。
文章编号:1672-7894(2015)36-0065-02
摘 要 “线性系统理论”是自动化专业研究生的一门专业 课程,知识体系相对完备,是学习其他后续课程的理论基 础。本文旨在针对平时作业和考试中考查不到、学生平时学 习不关注的部分内容进行深入理论解析,内容包含:线性系 统与非线性系统、时变系统与时不变系统、内部稳定与外部 稳定,以期提升学生对线性系统理论的全面深入理解,进而 培养学习中的“研究”能力。 关键词 线性系统理论 研究生课程 理论解析
主要着重于习题研究,或部分理论用于实验指导。所以在研 究生课程学习中,仍习惯沿袭以往的方式,过于注重实用, 如具体计算和直接套用,而忽略一些深层次理解,不能体现 “研究”能力的培养。本文旨在结合“线性系统理论”时间域 理论教学体会,从学生所忽略的方面深入展开,以期达到培 养学生“研究”习惯的形成。
江苏大学线性系统理论(现代控制理论)考试必备--第2章
t e 0 0 0 0 te e
(t; t0 , x0 , u) (t ; t0 , x0 , 0) (t ;t0 , 0,u )
线性系统的一个基本属性是满足叠加定理。基于叠 加定理,可将线性系统的全响应可看成初始状态 x0 和 输入u(t)共同作用下的系统状态运动 x(t ),分解为由初始 x0 和输入u(t)分别单独作用所产生的响应的叠加。 状态
e A1t
e2t
n t e
Al t e
典型2 若矩阵A为对角线分块矩阵,则 e 为:
A2
At
e
At
e A2t
第2章 线性系统的运动分析
江苏大学电气学院
典型3 若矩阵A具有如下形式 ,应用e At 的定义式,可得 e At
性质9 e 的相似变换 如果矩阵A的特征值互不相同,并且存在非奇异变换 矩阵P,使得 A PAP 1,由 e At定义可得到:
At
e At Pe At P 1
第2章 线性系统的运动分析
At e 三. 几种典型的矩阵指数函数
江苏大学电气学院
由于矩阵指数函数 e At在计算线性系统的响应起着十分
第2章 线性系统的运动分析
江苏大学电气学院
三. 零输入响应和零状态响应及全响应
1. 零输入响应 线性系统的零输入响应是指只有初始状态作用即 x0 0 , 而无输入作用即 u(t ) 0 时的系统的状态响应。此时,系 统的状态方程为
A(t )x , x(t0 ) x0 , t t0 , t x
显然,e At 和矩阵A一样,也是一个方阵。
江苏大学线性系统理论(现代控制理论)考试必备--第5章
望的闭环系统特征多项式
* n 1 * 1 * * ( s) ( s i* ) s n an s a s a 1 1 0 i 0 n
第5章 状态反馈
江苏大学电气学院
第3步:写出通过非奇异变换 x Px 将(A,b)化成能控
第5章 状态反馈
江苏大学电气学院
系统经输出反馈后,其系统矩阵变成了 A -BFC ,此处 FC的相当于状态反馈中的K。可见,选择 F 也可以改变系
统矩阵的值使系统特征根位置发生改变。
虽然状态反馈和输出反馈都可改变系统矩阵,但两者 是有区别的。状态变量包含了系统所有的运动信息,而系
统输出量是状态变量的线性组合。当输出矩阵 C 为单位矩
变成了一个单输入能控系统 ( A BK, bi ) 。 利用这一结论,在随后的多输入系统状态反馈极点 配置相关的结论证明中,可以方便地将多输入能控系统 变成单输入系统来讨论,从而利用单输入系统的极点配 置的相关结论。
第5章 状态反馈
江苏大学电气学院
5.3 系统的极点配置
一. 极点配置的概念
由前面的讨论可知,状态反馈使原系统的系统矩阵由 A变成了A-BK,通过选择不同的反馈增益矩阵 K ,可改 变系统的特征值。后面将看到,当系统完全能控且完全能 观时,系统的特征值也就是闭环传递函数矩阵的极点 。 由经典控制理论可知,闭环系统传统意义上的一些主
1.状态反馈与输出反馈的概念 2.反馈对能控性和能观性的影响 3.系统与输出反馈的极点配置 4.状态反馈的解耦
第5章 状态反馈
江苏大学电气学院
5.1 状态反馈与输出反馈的概念
经典控制理论以输出量作为反馈量,使系统得以稳定 或使系统性能指标得到改善。在系统的状态空间描述中,
线性系统理论(复习)
u
u1
x1
1
y1
x2
2
y2 y
y1 1 0 x1
R
S2: x2 x2 3u2
y2 2x2
+
e(t)
i
C - uc
e
uc
RC
duc dt
,
x 1 x 1 u, RC RC
yx
解:
1 2 0 1
.
x
A1 B2C1
0 A2
x
B1
B2
D1
u
0 3
3 0
0 x1 3 u 1 0
例 线性定常系统的齐次状态方程为
x1 x2
0 2
1 x1
3
x2
求其状态转移矩阵 eAt
解
[sI
A]1
s 2
1
1
1 s 3
s 3
(s 1)(s
2)
2
1 s
s
2 1
s
1
2
2 s 1
s
2
2
s
1 1
s
1
2
1 s 1
s
2
2
于是
eAt L
1[sI
A]1
2et
x1
x2
[D1
D2
]u
G(s) G1(s) G2 (s)
:
p
x1 A1
xN
y C1
x1 B1
u
AN xN BN
CN
x1 x2
[D1
DN ]u
N
G(s) Gi (s) i 1
u1
例:求如下并联系统的状态空间描述 u
0 1 0
线性系统理论复习大纲
第一部分复习大纲1.什么是线性系统?线性系统一般怎样分类?2.状态空间的描述和输入输出描述的基本概念及其关系。
3.系统状态空间描述建模。
主要是指电路、力学装置、机电装置的状态空间描述数学模型。
4.状态方程的约当标准型及其性质。
5.传递函数矩阵概念。
传递函数矩阵与状态空间描述之间的关系(已知状态空间描述求传递函数矩阵和已知传递函数矩阵进行状态空间描述实现)。
6.线性坐标变换。
7.组合系统的状态空间描述,输入输出描述建模。
8.矩阵指数函数及其性质。
9.线性系统的运动求解,系统矩阵特征值,特征向量对运动的影响。
10.脉冲响应阵与传递函数阵的关系、卷积定理。
11.状态转移矩阵及其性质。
12.线性连续系统离散化及其性质、求解。
13.连续系统与离散系统的能控性、能达性、能观性、能测性及其判据。
14.能控性指数、能观性指数、对偶原理。
15.能控能观标准型及其结构分解,结构分解后各部分与输入输出描述,状态空间描述之间的关系,会对约当标准型进行结构分解并求传递函数。
16.线性系统内部稳定、BIBO稳定概念及其性质。
17.连续和离散系统的lyapunov稳定概念及其各种判别定理,会用lyapunov方法判断连续系统、离散系统的稳定性。
18.状态反馈、输入输出反馈性能比较。
19.极点配置及其算法。
20.镇定条件、镇定与极点配置的关系(算法不考,但对一个线性系统能进行是否能镇定条件判断)。
21.解耦控制形式、分类,各种解耦方法特点,系统能否解耦判断,会进行积分型解耦算法。
22.跟踪问题及其结构框图、内模原理(会建立跟踪问题的内模)、可跟踪条件。
23.各种线性二次型最优控制问题指标含义,掌握最优控制及其性能指标求法。
24.无限时间最优控制的稳定裕度,反馈增益可摄动范围及其物理意义。
25.状态观测器设计、分类及其特点,掌握全维和降维观测器设计方法。
26.状态观测器设计与状态反馈设计之间的关系问题。
第二部分复习大纲1.多项式、多项式矩阵的基本概念。
江苏大学线性系统理论(现代控制理论)考试必备--第4章
间关系和因果关系,可将受扰运动表示为
x0u (t ) (t ; x0 , t0 ) , t [t0 ,)
式中, 表示向量函数,括号内分号前反映对时间t 的函
数关系,分号后用以强调导致运动的初始状态x0 及其作用 时刻t0 。显然,对 t=t0 ,受扰运动的向量函数满足
(t0 ; x0 , t0 ) 0
则称平衡状态 xe 是李雅普诺夫意义下的稳定。如果 xe 0 ,则称原点是李雅普诺夫意义下的稳定的。
第4章 控制系统的稳定性分析
江苏大学电气学院
这个定义的几何意义是:对给 定的实数 0 ,存在实数
( , t0 ) 0 (其大小依赖于 和 t0 )。在状态空间中以原点 xe
式中的A(t)为n×n时变矩阵,且满足解存在唯一性条件。
设系统的状态零输入响应 x0u (t )是由任意非零初始状态 x0
引起的状态响应。 定义2(内部稳定性) 对于连续时间线性时变系统,如果由 时刻t0 任意非零初始状态 x(t0 ) x0 引起的状态零输入响
)是有界的,并满足 应 x0u (t ) 对所有t [t0 ,
第4章 控制系统的稳定性分析
江苏大学电气学院
四. 李雅诺夫稳定性定义
1. 自治系统、平衡系统和受扰系统 系统运动的稳定性实质上归结为系统平衡状态的稳定 性。直观上,系统平衡状态的稳定性就是,偏离平衡状态
的受扰运动能否只依靠系统内部的结构因素,或者使之限
制在平衡状态的有限领域内,或者使之同时最终返回到平 衡状态。 定义1(自治系统) 没有外加输入作用即不受外部影响的系 统称为自治系统。自治系统的一般描述为
第4章 控制系统的稳定性分析
江苏大学电气学院
在几何上,受扰运动 (t ; x0 , t0 ) 呈现为状态空间从初始点
研究生线性系统理论题
1.为什么要对连续系统进行离散化?离散化有哪些方法?它们各自的特点是什么?因为连续系统在电脑上无法实现,只能把连续系统离散化,而离散华是将连续变化的模拟量信号,转换成数字量(脉冲)信号,但是这里的离散化是非常密集的,在误差允许的范围内,可以非常的逼近原函数.这样就能用数字电子计算机(电脑)进行计算或处理。
1.前向差分法S平面左半平面得极点可能映射到Z平面单位圆外,这种方式所得到得离散滤波器可能不稳定2.后向差分法变换计算简单;S平面得左半平面映射到Z平面得单位圆内部一个小圆内因此如果D(s)稳定则变换后的D(z)也稳定;离散滤波器得过程特性及频率特性同原连续滤波器比较有一定得失真,需要较小得采样周期T。
3.双线性变换法如果D(s)稳定,则相应得D(z)也稳定;D(s)不稳定,则相应的D(z)也不稳定;所得D(z)的频率响应应在低频段与D(s)得频率响应相近,而在高频段相对于D(S)得频率响应有严重畸变。
4.脉冲响应不变法D(z)和D(s)有相同得单位脉冲响应序列;若D(z)稳定,则D(s)也稳定;D(z)存在着频率失真。
该法特别适用于频率特性为锐截止型的连续滤波器的离散化。
主要应用于连续控制器D(s)具有部分分式结构或能较容易地分解为并联结构,以及D(s)具有陡衰减特性,且为有限带宽得场合。
这时采样频率足够高,可减少频率混叠影响,从而保证D(z)得频率特性接近原连续控制器D(s)。
5.阶跃响应不变法若D(s)稳定,则相应的D(z)也稳定;D(z)和D(s)得阶跃响应序列相同;6.零极点匹配法需要先求出连续传递函数得全部零极点,计算复杂;能够保持变换前后特征频率处得增益不变;不改变系统得稳定区域,变换前后G(z)和G(s)的稳定特性不变2.多输入/多输出系统能控性和能观测性与系统传递函数矩阵的关系如何?在单输入单输出系统中,能控且能观测得充分必要条件是传递矩阵G (s )的分母与分子之间不发生因子相消。
线性系统理论第一章(1)
ti
图 1—3 用脉冲函数近似输入 因为系统是初始松弛的线性系统,故输出
y = Hu »
å [H dD (t - ti )]u(ti )D
i
(1—7)
当 D 趋于零时,(1—7)式成为
y =
ò-¥ [H d(t - t )]u(t )d t
H d(t - t ) = g(t, t )
+¥
(1—8)
若对所有的 t , H d(t - t ) 为已知,则对于任何输入,输出可由(1—8)定义。 (1—9)
y(t ) =
+¥
ò-¥
G(t, t )u(t )d t
(1—11)
其中
é g11(t, t ) g12 (t, t ) g1p (t, t ) ù ê ú ê g (t, t ) g (t, t ) g (t, t ) ú ê 21 ú 22 2p G(t, t ) = ê ú ê ú ê ú ê g (t, t ) g (t, t ) g (t, t ) ú q2 qp êë q 1 úû
"t Î (-¥, +¥)
(1—12)
对于具有线性和因果性的松弛系统,根据 G(t, t ) 的定义, G(t, t ) 中的每一个元都是时刻 t 加 于系统的 d 函数输入所引起的输出,若系统具有因果性,则系统在加入输入之前的输出为 零,即
G(t, t ) = 0 "t < t, t Î (-¥, +¥)
§ 1— 1
系统的输入—输出描述
系统的输入—输出描述给出了系统输入与输出之间的关系。 在推导这一描述时, 系统内 部结构的信息是不知道的。唯一可接触的是系统的输入端与输出端。在这种情况下,可把系 统看作是如图 1—1 所示的一个“黑箱” 。显然,我们所能做的只是向该黑箱施加各种类型的 输入并测量与之相应的输出。然后,从这些输入—输出对中获悉有关系统的重要特性。 u “黑箱” y
线性系统-复习
一个差分方程实际上就是一个迭代方程,特别适合于计 算机求解,但为分析系统,我们还希望得到一般的解.
与微分方程一样,差分方程的解也是通解加特解的形式. 可以用z变换求解差分方程.上式两边取z变换,利用z变换的 线性性质和平移定理,有:
-0.25
0.005 0.091
于是对应离散化状态方程为 :
x(k
1
)
1 0
0.091 0.819
x1(k) x2(k)
0.005 0.091u(k)
{
x (k 1) Ax y ( k ) Cx ( k )
(k) Du
考虑系统
X AXBu :Y CXDu
引入坐标变换 X PX(P非奇异)
并令变换后的状态空间描述为
:
X
AX
Bu
Y CX Du
则成立 A P 1 A B PC B C 1P D D
并称 和 为代数等价系统
坐标变换不改变系统的特征值
n
n
(zn aizni )y(z)α(z) ( bizni )U(z)β(z)
i1
i0
其中(z)和(z)均是由于两边的初 成值 的. 造
n
令 A(z) Δz n ai z ni
n
B(z )Δ bi z ni
i 1
i0
有 : A(z)Y(z)- α(z) B(z)U(z) β(z)
u(k) u(t)
u (t) u (k) k T t (k 1)T y(k)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生“线性系统理论”课程部分复习内容
一、比较状态空间模型、传递函数模型和微分方程模型的优缺点。
二、熟练地对含有两个独立储能元件的电路系统建立状态空间数学模型。
三、掌握系统能控性分析和判别方法。
四、掌握系统能观性分析和判别方法。
五、较深入理解李亚普诺夫系统稳定理论中几种不同稳定的含义和区别。
六、用基于李亚普诺夫第二法的用克拉索夫斯基方法判别系统平衡状态
-
--
-
=0
e
X
处的稳定性。
七、用基于李亚普诺夫第二法的变量梯度法法判别系统平衡状态
-
-
-
-
=0
e
X处的稳
定性。
八、用李亚普诺夫第一法分析系统在原点的稳定性。
九、全维状态观测器的设计
1。