激光拉曼光谱解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-4-3
6. 拉曼光谱与红外光谱分析方法比较
拉曼光谱 光谱范围40-4000Cm-1 光谱范围 红外光谱 光谱范围400-4000Cm-1 光谱范围
水可作为溶剂 样品可盛于玻璃瓶, 样品可盛于玻璃瓶,毛细管等容器 中直接测定 固体样品可直接测定
水不能作为溶剂
不能用玻璃容器测定
需要研磨制成 KBR 压片
2011-4-3
内容选择
第一节 第二节 第三节 第四节 第五节 红外基本原理 红外光谱与分子结构 红外分光谱仪 红外谱图解析 激光拉曼光谱
结束
2011-源自文库-3
basic principle of Infrared absorption spectroscopy infrared spectroscopy and molecular structure infrared absorption spectrophotometer analysis of Infrared spectrograph laser Raman spectrometry
红外与拉曼谱图对比
2011-4-3
5.选律 5.选律
ν1 S ν2 ν3 ν4
振动自由度: 振动自由度:3N- 4 = 4 拉曼活性 红外活性
C S
S C S S C S
红外活性 拉曼光谱—源于极化率变化 曼光谱 源于极化率变化
红外光谱—源于偶极矩变化 红外光谱 源于偶极矩变化
对称中心分子CO2,CS2等,选律不相容。 选律不相容。 对称中心分子 , 无对称中心分子(例如SO2等),三种振动既是红外活 无对称中心分子(例如 ),三种振动既是红外活 性振动,又是拉曼活性振动。 性振动,又是拉曼活性振动。
2011-4-3
3.红外活性和拉曼活性振动
①红外活性振动 永久偶极矩 极性基团; 偶极矩; ⅰ永久偶极矩;极性基团; 瞬间偶极矩;非对称分子; ⅱ瞬间偶极矩;非对称分子; ②拉曼活性振动 诱导偶极矩 诱导偶极矩 ρ = αE 非极性基团,对称分子; 非极性基团,对称分子; 拉曼活性振动—伴随有极化率变化的振动。 拉曼活性振动 伴随有极化率变化的振动。 伴随有极化率变化的振动 对称分子: 对称分子: 对称振动→拉曼活性。 对称振动→拉曼活性。 不对称振动→ 不对称振动→红外活性
2011-4-3
2941,2927cm-1 νASCH2 , 2854cm-1 νSCH2 1444,1267 cm-1 δCH2 ,
2011-4-3
1029cm-1 ν(C-C) ) 803 cm-1环呼吸
3060cm-1ν(Α (Αr-H) 1600,1587cm-1 ν(c=c)苯环 1039, 1022cm-1单取代
2011-4-3
二、拉曼光谱的应用
applications of Raman spectroscopy
由拉曼光谱可以获得有机化合物的各种结构信息: 由拉曼光谱可以获得有机化合物的各种结构信息: 1)同种分子的非极性键S-S,C=C,N=N,C≡C产生强拉曼 谱带, 随单键→双键→三键谱带强度增加。 2)红外光谱中,由C ≡N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。 3)环状化合物的对称呼吸振动常常是最强的拉曼谱带。
2011-4-3
1000 cm-1环呼吸 787 cm-1环变形
三、激光Raman光谱仪 激光Raman Raman光谱仪
laser Raman spectroscopy
激光光源:He-Ne激光器,波长632.8nm; 激光光源 Ar激光器, 波长514.5nm, 488.0nm; 散射强度∝1/λ4 单色器: 单色器 光栅,多单色器; 检测器: 检测器 光电倍增管, 光子计数器;
2011-4-3
4)在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键的对称 伸缩振动是强谱带,反这类键的对称伸缩振动是弱谱带。 红外光谱与此相反。 5)C-C伸缩振动在拉曼光谱中是强谱带。 6)醇和烷烃的拉曼光谱是相似的:I. C-O键与C-C键的力常数 或键的强度没有很大差别。II. 羟基和甲基的质量仅相差2 单位。 III.与C-H和N-H谱带比较,O-H拉曼谱带较弱。
2011-4-3
E1 + hν0 ν E2 + hν0 ν
hν0 ν
h(ν0 + ∆ν ν ∆ν) h ∆ν
ANTI-STOKES
Rayleigh
ν0
ν0 + ∆ν
2. Raman位移 位移
对不同物质: ∆ν不同; 对同一物质: ∆ν与入射光频率无关;表征分子 振-转能级的特征物理量;定性与结构分析的依据; Raman散射的产生:光电场E中,分子产生诱导 偶极距ρ ρ = αE α 分子极化率;
2011-4-3
e
E
r e
红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带. 红外活性振动 伴有偶极矩变化的振动可以产生红外吸收谱带. 伴有偶极矩变化的振动可以产生红外吸收谱带
4. 红外与拉曼谱图对比
红外光谱:基团; 红外光谱:基团; 拉曼光谱:分子骨架测定; 拉曼光谱:分子骨架测定;
2011-4-3
2011-4-3
傅立叶变换傅立叶变换-拉曼光谱仪
FT-Raman spectroscopy 光源: 光源:Nd-YAG钇铝石榴石激光器(1.064µm); 检测器: 检测器:高灵敏度的铟镓砷探头; 特点: 特点: (1)避免了荧光干扰; )避免了荧光干扰; (2)精度高; )精度高; (3)消除了瑞利谱线; )消除了瑞利谱线; (4)测量速度快。 )测量速度快。
2011-4-3
一、激光拉曼光谱基本原理
principle of Raman spectroscopy
Rayleigh散射: 散射: 散射 激发虚态 弹性碰撞; E1 + hν0 ν 无能量交换,仅 E0 + hν0 ν 改变方向; hν0 ν Raman散射: 散射: 散射 hν0 hν ν ν0 非弹性碰撞 E1 ;方向改变且有 V=1 E0 V=0 能量交换;
基本原理
Raman散射 1. Raman散射
Raman散射的两种 跃迁能量差: h(ν0 - ∆ν ν ∆ν) ∆E=h(ν0 - ∆ν ν ∆ν) E1 V=1 产 生 stokes 线 ; 强 基态分子多; ;基态分子多; E0 V=0 ∆E=h(ν0 + ∆ν ν ∆ν) 产 生 反 stokes 线 ; STOKES 弱; Raman位移: 位移: 位移 Raman 散 射 光 与 入 射光频率差∆ν; ∆ν; ∆ν ν0 - ∆ν
第十八章 红外吸收光谱 分析法
infrared absorption spectroscopy,IR , 第五节 激光拉曼光谱分析法
laser Raman spectroscopy
一、 拉曼光谱基本原理 principle of Raman spectroscopy 二、拉曼光谱的应用 applications of Raman spectroscopy 三、 激光拉曼光谱仪 laser Raman spectroscopy
Rayleigh散射 散射
h(ν0 - ∆ν ν ∆ν)
hν0 + ∆ν ν
Raman散射 h ∆ν 散射
E0基态, E1振动激发态; E0 + hν0 , E1 + hν0 激发虚态; ν ν 获得能量后,跃迁到激发虚态. (1928年印度物理学家Raman C V 发现;1960年快速发展)
2011-4-3
6. 拉曼光谱与红外光谱分析方法比较
拉曼光谱 光谱范围40-4000Cm-1 光谱范围 红外光谱 光谱范围400-4000Cm-1 光谱范围
水可作为溶剂 样品可盛于玻璃瓶, 样品可盛于玻璃瓶,毛细管等容器 中直接测定 固体样品可直接测定
水不能作为溶剂
不能用玻璃容器测定
需要研磨制成 KBR 压片
2011-4-3
内容选择
第一节 第二节 第三节 第四节 第五节 红外基本原理 红外光谱与分子结构 红外分光谱仪 红外谱图解析 激光拉曼光谱
结束
2011-源自文库-3
basic principle of Infrared absorption spectroscopy infrared spectroscopy and molecular structure infrared absorption spectrophotometer analysis of Infrared spectrograph laser Raman spectrometry
红外与拉曼谱图对比
2011-4-3
5.选律 5.选律
ν1 S ν2 ν3 ν4
振动自由度: 振动自由度:3N- 4 = 4 拉曼活性 红外活性
C S
S C S S C S
红外活性 拉曼光谱—源于极化率变化 曼光谱 源于极化率变化
红外光谱—源于偶极矩变化 红外光谱 源于偶极矩变化
对称中心分子CO2,CS2等,选律不相容。 选律不相容。 对称中心分子 , 无对称中心分子(例如SO2等),三种振动既是红外活 无对称中心分子(例如 ),三种振动既是红外活 性振动,又是拉曼活性振动。 性振动,又是拉曼活性振动。
2011-4-3
3.红外活性和拉曼活性振动
①红外活性振动 永久偶极矩 极性基团; 偶极矩; ⅰ永久偶极矩;极性基团; 瞬间偶极矩;非对称分子; ⅱ瞬间偶极矩;非对称分子; ②拉曼活性振动 诱导偶极矩 诱导偶极矩 ρ = αE 非极性基团,对称分子; 非极性基团,对称分子; 拉曼活性振动—伴随有极化率变化的振动。 拉曼活性振动 伴随有极化率变化的振动。 伴随有极化率变化的振动 对称分子: 对称分子: 对称振动→拉曼活性。 对称振动→拉曼活性。 不对称振动→ 不对称振动→红外活性
2011-4-3
2941,2927cm-1 νASCH2 , 2854cm-1 νSCH2 1444,1267 cm-1 δCH2 ,
2011-4-3
1029cm-1 ν(C-C) ) 803 cm-1环呼吸
3060cm-1ν(Α (Αr-H) 1600,1587cm-1 ν(c=c)苯环 1039, 1022cm-1单取代
2011-4-3
二、拉曼光谱的应用
applications of Raman spectroscopy
由拉曼光谱可以获得有机化合物的各种结构信息: 由拉曼光谱可以获得有机化合物的各种结构信息: 1)同种分子的非极性键S-S,C=C,N=N,C≡C产生强拉曼 谱带, 随单键→双键→三键谱带强度增加。 2)红外光谱中,由C ≡N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。 3)环状化合物的对称呼吸振动常常是最强的拉曼谱带。
2011-4-3
1000 cm-1环呼吸 787 cm-1环变形
三、激光Raman光谱仪 激光Raman Raman光谱仪
laser Raman spectroscopy
激光光源:He-Ne激光器,波长632.8nm; 激光光源 Ar激光器, 波长514.5nm, 488.0nm; 散射强度∝1/λ4 单色器: 单色器 光栅,多单色器; 检测器: 检测器 光电倍增管, 光子计数器;
2011-4-3
4)在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键的对称 伸缩振动是强谱带,反这类键的对称伸缩振动是弱谱带。 红外光谱与此相反。 5)C-C伸缩振动在拉曼光谱中是强谱带。 6)醇和烷烃的拉曼光谱是相似的:I. C-O键与C-C键的力常数 或键的强度没有很大差别。II. 羟基和甲基的质量仅相差2 单位。 III.与C-H和N-H谱带比较,O-H拉曼谱带较弱。
2011-4-3
E1 + hν0 ν E2 + hν0 ν
hν0 ν
h(ν0 + ∆ν ν ∆ν) h ∆ν
ANTI-STOKES
Rayleigh
ν0
ν0 + ∆ν
2. Raman位移 位移
对不同物质: ∆ν不同; 对同一物质: ∆ν与入射光频率无关;表征分子 振-转能级的特征物理量;定性与结构分析的依据; Raman散射的产生:光电场E中,分子产生诱导 偶极距ρ ρ = αE α 分子极化率;
2011-4-3
e
E
r e
红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带. 红外活性振动 伴有偶极矩变化的振动可以产生红外吸收谱带. 伴有偶极矩变化的振动可以产生红外吸收谱带
4. 红外与拉曼谱图对比
红外光谱:基团; 红外光谱:基团; 拉曼光谱:分子骨架测定; 拉曼光谱:分子骨架测定;
2011-4-3
2011-4-3
傅立叶变换傅立叶变换-拉曼光谱仪
FT-Raman spectroscopy 光源: 光源:Nd-YAG钇铝石榴石激光器(1.064µm); 检测器: 检测器:高灵敏度的铟镓砷探头; 特点: 特点: (1)避免了荧光干扰; )避免了荧光干扰; (2)精度高; )精度高; (3)消除了瑞利谱线; )消除了瑞利谱线; (4)测量速度快。 )测量速度快。
2011-4-3
一、激光拉曼光谱基本原理
principle of Raman spectroscopy
Rayleigh散射: 散射: 散射 激发虚态 弹性碰撞; E1 + hν0 ν 无能量交换,仅 E0 + hν0 ν 改变方向; hν0 ν Raman散射: 散射: 散射 hν0 hν ν ν0 非弹性碰撞 E1 ;方向改变且有 V=1 E0 V=0 能量交换;
基本原理
Raman散射 1. Raman散射
Raman散射的两种 跃迁能量差: h(ν0 - ∆ν ν ∆ν) ∆E=h(ν0 - ∆ν ν ∆ν) E1 V=1 产 生 stokes 线 ; 强 基态分子多; ;基态分子多; E0 V=0 ∆E=h(ν0 + ∆ν ν ∆ν) 产 生 反 stokes 线 ; STOKES 弱; Raman位移: 位移: 位移 Raman 散 射 光 与 入 射光频率差∆ν; ∆ν; ∆ν ν0 - ∆ν
第十八章 红外吸收光谱 分析法
infrared absorption spectroscopy,IR , 第五节 激光拉曼光谱分析法
laser Raman spectroscopy
一、 拉曼光谱基本原理 principle of Raman spectroscopy 二、拉曼光谱的应用 applications of Raman spectroscopy 三、 激光拉曼光谱仪 laser Raman spectroscopy
Rayleigh散射 散射
h(ν0 - ∆ν ν ∆ν)
hν0 + ∆ν ν
Raman散射 h ∆ν 散射
E0基态, E1振动激发态; E0 + hν0 , E1 + hν0 激发虚态; ν ν 获得能量后,跃迁到激发虚态. (1928年印度物理学家Raman C V 发现;1960年快速发展)
2011-4-3