运筹学25-27资料

合集下载

运筹学完整版胡运权

运筹学完整版胡运权

运筹学简述
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
线性规划问题的数学模型
Page 16
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
怎样辨别一个模型是线性规划模型?
其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
x3) x3)
x5 2 5
x1 , x2 , x3 , x3, x4 , x5 0
Page 25
线性规划问题的数学模型
Page 26
4. 线性规划问题的解
线性规划问题
n
max Z c j x j (1) j1
s.t
n j1
aij x j
bi
(i 1,2,, m)
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
每年节约成本1500万美元, 年收入大幅增加。 每年节约成本1300万美元
绪论

运筹学基础复习要点

运筹学基础复习要点

《运筹学基础》复习要点一、基本概念与理论1.任意多个凸集的交集还是凸集。

2.任意多个凸集的并集不一定是凸集3.给定1R b ∈及非零向量n R a ∈,称集合}|{b x a R x H Tn=∈=是nR 的一个超平面。

4.由超平面}|{b x a R x H Tn=∈=的两个半平面}|{b x a R x H T n ≥∈=+和}|{1b x a R x H T n ≤∈=都是凸集。

5.设S 是凸集,S x ∈。

若对任何z y S z S y ≠∈∈,,,以及任何10<<λ,都有z y x )1(λλ-+≠,则称x 为S 的顶点。

6.如果一个LP 问题无界,则它的对偶问题必无可行解。

7.设w x ,分别为原始LP 问题、对偶问题的可行解,若b w x c T T =,则原始LP 问题、对偶问题的最优解分别为w x ,。

8.可行解x 是基本可行解的充分必要条件是x 的正分量,所对应的A 中列向量线性无关。

9.写出LP 问题的对偶问题0..min ≥≥⎪⎩⎪⎨⎧x b Ax x c t s T的对偶问题是: 0..min ≥≤⎪⎩⎪⎨⎧w c w A w b t s TT10.设一个标准形式的LP 问题的基为B ,右端向量为b ,则对应的基本解是⎪⎪⎭⎫⎝⎛=-01b B x 。

11.线性规划问题的可行域是凸集。

12.设线性规划问题LP 为0..min ≥=⎪⎩⎪⎨⎧x b Ax t s x c T B 为一个基,对应的典式为0..min 111≥=+⎪⎩⎪⎨⎧-=---x b B Nx B x t s x b B c z N B T TB ζ 其中),0(1T N TB Tc N B c -=-ζ。

13.线性规划问题的规范形式为0..min ≥≥⎪⎩⎪⎨⎧x b Ax x c t s T14. 线性规划问题的标准形式为0..min ≥=⎪⎩⎪⎨⎧x b Ax t s xc T15.线性规划问题的一般形式为⎪⎪⎪⎩⎪⎪⎪⎨⎧+==≥+=≥==n q j x qj x m p i b x a p i b x a t s x c j ji Ti i Ti T ,,1,,2,10,,1,,2,1..min 为自由变量16.对线性规划问题,关于它的解分三种情况:问题无解、问题无界和问题有最优解。

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。

确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。

都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。

问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。

问题中用一组决策变量来表示一种方案。

3. 线性规划问题标准型的特征。

4. 化标准型的方法。

123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。

6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。

7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。

8. 最优解:函数达到最优的可行解叫做最优解。

9.图解法适合于变量个数为2个的线性规划问题。

10.单纯形法解线性规划问题如何确定初始基本可行解。

(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。

(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。

(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。

运筹学完整版(OperationsResearch)

运筹学完整版(OperationsResearch)

本课程的特点和要求
先修课:高等数学,基础概率、线性代数 特点:系统整体优化;多学科的配合;模型方法的应用 运筹学的研究的主要步骤:
真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
2. 线性规划的数学模型由三个要素构成
决策变量 目标函数 约束条件
Decision variables Objective function Constraints
怎样辨别一个模型是线性规划模型?
其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
线性规划问题的数学模型
4. 建模步骤
(1) 确定决策变量:即需要我们作出决策或选择的量。一般 情况下,题目问什么就设什么为决策变量; (2) 找出所有限定条件:即决策变量受到的所有的约束; (3) 写出目标函数:即问题所要达到的目标,并明确是max 还是 min。
线性规划问题的数学模型
5. 线性规划数学模型的一般形式
3x1 +x2 +x3 +2 x4 ≤180
x1、x2 、x3 、x4 ≥0
线性规划问题的数学模型
例1.5 某航运局现有船只种类、数量以及计划期内各条航 线的货运量、货运成本如下表所示:
航线号
船队 类型
1 1
2
3 2
4
拖轮
1 1 2 1
编队形式 A型 驳船 2 — 2 —
B型 驳船 —

运筹学解题方法技巧归纳pdf

运筹学解题方法技巧归纳pdf

30个运筹学的解题方法与技巧1. 线性规划:解决在一定约束条件下最大化或最小化线性目标函数的问题。

常用方法有单纯形法、对偶理论和分解算法等。

2. 整数规划:处理决策变量取整数值或只能取整点值的线性规划问题。

常用方法有分支定界法、割平面法等。

3. 动态规划:通过将原问题分解为相互重叠的子问题,解决具有重叠子问题和最优子结构性质的问题。

4. 图论方法:用于解决最短路、最小生成树、最小割、最大流等问题,常用算法有Dijkstra 算法、Prim算法、Ford-Fulkerson算法等。

5. 网络优化:解决运输、分配和布局等问题,常用方法有运输问题算法、分配问题算法等。

6. 排队论:研究等待队列的结构和特性,以及服务机构的工作规律。

主要模型有M/M/1、M/M/c等。

7. 存储论:研究如何科学地管理物资库存,以最低的费用保证生产和销售需要。

常用模型有不允许缺货模型、一次性订货模型等。

8. 决策分析:根据已知信息评估不同行动方案的效果,从而选择最优方案。

常用方法有期望值法、决策树法等。

9. 对策论:研究竞争、对抗和冲突问题的数学模型,常用方法有Nash均衡、优势策略和必胜策略等。

10. 随机规划:处理具有随机性的决策问题,常用的求解方法有期望值法、机会约束规划和贝叶斯决策等。

11. 多目标规划:解决具有多个冲突目标的优化问题,常用的求解方法有主要目标法、权衡法和分层序列法等。

12. 非线性规划:处理目标函数或约束条件非线性的优化问题,常用的求解方法有梯度法、牛顿法等。

13. 启发式方法:采用直观和经验的方法求解问题,如遗传算法、模拟退火算法等。

14. 数学仿真:通过建立数学模型并模拟实际情况,评估不同方案的性能和效果。

15. 多属性决策分析:处理具有多个评估属性的决策问题,常用的求解方法有多属性效用理论、层次分析法等。

16. 模拟退火算法:一种启发式优化算法,通过模拟固体退火过程来寻找全局最优解。

17. 遗传算法:模拟生物进化过程的优化算法,通过遗传、交叉和变异等操作寻找最优解。

清华大学运筹学完整版

清华大学运筹学完整版
物流管理
物流企业需要对运输途中的物资进行暂存和保管,通过合 理的存储规划和管理,可以提高物流效率和客户满意度。
生产管理
在生产过程中,原材料、半成品和产成品的库存管理对于 生产计划的执行至关重要。运用存储论的方法可以帮助企 业制定合理的库存策略,确保生产的顺利进行。
31
07 排队论
2024/1/25
最优解
目标函数在可行域上的最大值或最小值点。
9
单纯形法
初始基可行解
单纯形法从一个基可行解开始迭 代,该解满足所有约束条件并且 目标函数值有限。
迭代过程
通过不断更换基变量和非基变量 ,使得目标函数值不断改善,直 到达到最优解。
终止条件
当所有非基变量的检验数均小于 等于零时,单纯形法终止,当前 基可行解即为最优解。
在金融领域,线性规划可用于优化投 资组合,以最小化风险或最大化收益 。
11
03 整数规划
2024/1/25
12
整数规划问题的数学模型
整数规划问题的定义
整数规划是一类要求部分或全部决策变量为整数的数学规划问题。
整数规划问题的数学模型
通常包括目标函数、约束条件和整数约束三部分。目标函数是决策变量的线性或非线性函数,约束条件限制决策 变量的取值范围,整数约束则要求部分或全部决策变量取整数值。
特点
运筹学具有多学科交叉性,涉及数学、计算机科学、经济学等多个领域。它强调 建立数学模型,运用数学方法进行分析和求解,以得出最优决策方案。
2024/1/25
5
运筹学的应用领域
工业工程
在生产计划、物流管理、质量控制等 方面,运筹学可以帮助企业提高生产 效率、降低成本。
交通运输
在交通规划、路径选择、航班调度等 方面,运筹学可以优化交通网络,提 高运输效率。

运筹学复习资料_普通用卷

运筹学复习资料_普通用卷

运筹学课程一单选题 (共170题,总分值170分 )1. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( )(1 分)A. 基B. 最优解C. 基本解D. 基向量2. 线性规划的标准型中P称为( )(1 分)A. 技术向量B. 价值向量C. 资源向量D. 约束矩阵3. 决策问题的构成要素不包含()(1 分)A. 决策者B. 策略C. 收益D. 约束4. 去掉整数约数条件后得到的线性规划称为原整数规划的()(1 分)A. 松弛问题B. 增益问题C. 对偶问题D. 反问题5. X、Y分别是原问题和对偶问题的可行解,且,则X、Y分别是原问题和对偶问题的( ) (1 分)A. 基本可行解B. 最优解C. 基本解D. 不知6. A是m×n矩阵,则共有多少个非基向量( )(1 分)A. m×nB. mC. nD. n-m7. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( ) (1 分)A. 基B. 最优解C. 基本解D. 基向量8. 在排队系统的符号表示[A/;/;]:[;/E/F]中,A对应的是()(1 分)A. 顾客到达的时间间隔B. 分布服务时间的分布C. 服务台数D. 顾客源总体数目9. 下面不属于决策类型的是()(1 分)A. 战略决策B. 非常决策C. 静态决策D. 动态决策10. Kruskal算法属于哪种思路的方法()(1 分)A. 破圈B. 避圈C. 智能搜索D. 枚举11. 不属于按问题性质和条件分类的决策类型是()(1 分)A. 确定性决策B. 非确定决策C. 连续性决策D. 风险性决策12. 哪个不是常用的存贮策略有()(1 分)A. T-循环策略B. (s,S)策略C. (s,Q)策略D. (T,s,S)策略13. 线性规划在转化标准型时,转换约束条件时新增非负变量称为( )(1 分)A. 决策变量B. 松弛变量C. 资源变量D. 凸变量14. 线性规划问题的可行域是( ) (1 分)A. 四边形B. 凸集C. 不规则形D. 任意集15. 对于无后效性的多阶段决策过程,系统由阶段k到阶段k+1的状态转移方程是()(1 分)A.B.C.D.16. 1947年谁得到了线性规划的单纯形法( )(1 分)A. ErlangB. HarrisC. ShewhartD. Dantzig17. 图G中既无环又无平行边,则称作()(1 分)A. 有向图B. 简单图C. 初级图: 子图18. 在排队系统的符号表示[A/B/C]:[D/E/F]中,A对应的是()。

运筹学案例集

运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。

又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。

问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。

设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成 B 工序。

Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。

问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

(完整版)《运筹学》习题集

(完整版)《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。

1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。

1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。

1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。

运筹学

运筹学

运筹学[填空题]1用改进单纯形法求解以下线性规划问题。

[填空题]2已知某线性规划问题,用单纯形法计算得到的中间某两步的加算表见表,试将空白处数字填上。

参考答案:[填空题]3判断下列说法是否正确,并说明为什么?(1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。

(2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。

(3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

参考答案:(1)错误,原问题有可行解,对偶问题可能存在可行解,也可能不存在;(2)错误,对偶问题没有可行解,原问题可能有可行解也可能有无界解;(3)错误,原问题和对偶问题都有可行解,则可能有有限最优解也可能有无界解;[填空题]4设线性规划问题1是:又设线性规划问题2是:参考答案:把原问题用矩阵表示:原问题和对偶问题的最优函数值相等,所以不等式成立,证毕。

[填空题]5已知线性规划问题 用单纯形法求解,得到最终单纯形表如表所示,要求: (1)求a 11,a 12,a 13,a 21,a 22,a 23,b 1,b 2的值; (2)c 1,c 2,c 3的值;参考答案:初始单纯形表的增广矩阵是:最终单纯形表的增广矩阵为C 2是C 1作初等变换得来的,将C 2作初等变换,使得C 2的第四列和第五列的矩阵成为C 2的单位矩阵。

有:[填空题]6试用对偶单纯形法求解下列线性规划问题。

参考答案:(1)取w=-z,标准形式:最优解:X=(21/13,10/13,0,0)T目标函数最优值为31/13。

(2)令:w=-z,转化为标准形式:原问题最优解:X=(3,0,0,0,6,7,0)T目标函数最优值为9。

[填空题]7现有线性规划问题先用单纯形法求出最优解,然后分析在下列各种条件下,最优解分别有什么变化?(1)约束条件1的右端常数20变为30;(2)约束条件2的右端常数90变为70;(3)目标函数中x3的系数变为8;(4)x1的系数向量变为;(5)增加一个约束条件2x1+3x2+5x3≤50;(6)将约束条件2变为10x1+5x2+10x3≤100。

运筹学参考资料

运筹学参考资料

运筹学参考资料一、单项选择题(本大题共0 0 分,共60 小题,每小题0 分)1. 割平面法若达不到整数要求条件,则针对某个变量( )。

C. 增加一个割平面2. 整数规划模型在其( )基础上附加了决策变量为整数的约束条件。

C. 松弛问题3. 整数规划模型在其松弛问题基础上附加了( )的约束条件。

B. 决策变量为整数4. 如果产出量与投入量(近似)存在线性关系,则可以写成投入产出的( )D. 线性函数5. 分枝定界法不会增加( )的个数。

A. 决策变量6. 割平面法每切割压缩一次都要再增加( )。

B. 切割约束式7. 关于分配问题,叙述错误的是()。

B. 任务书>08. 线性规划问题的特点是( )D. 约束条件限制为实际的资源投入量9. 运筹学的应用另一方面是由于电子计算机的发展,保证其( )能快速准确得到结果。

D. 反馈10. 纯整数或混整数规划问题的求解方法没有( )。

D. 避圈法11. 下列______不是线性规划标准型的特征B. 决策变量无符号限制12. 以下不属于图解法步骤的是()A. 建立目标函数13. 决策变量的一组数据代表一个( )D. 解决方案14. 整数规划的松弛问题指()A. 去掉决策变量取整约束形成的线性规划问题15. 资源数大于任务数的目标最小化分派问题需要( )。

C. 增加任务数至等于资源数,并赋M(无限大)值16. 关于线性规划标准型的特征,哪一项不正确____ _B. 约束条件全为线性等式17. 动态规划的构成要素不包括( )。

D. 阶段和阶段静态参数18. 决策变量表示一种( )C. 活动19. 下列结论错误的是()。

D. 一个图中一定存在圈.20. 下列图形所包含的区域不是凸集的是______C. 圆环21. 动态规划的特点不含有( )。

D. 最优结果唯一22. 运筹学有助于人们在市场经济条件下的( )。

C. 资源合理配置23. 使目标函数增加最快的方向是_________。

运筹学(胡运权第二版)习题答案(第二章)

运筹学(胡运权第二版)习题答案(第二章)

对偶问题: st34yy11
y2 4y3 2 3y2 3y3 4
y1 0, y2 0, y3无限制
School of Management
运筹学教程
page 3 5/17/2021
第二章习题解答
maxZ 5x1 6x2 3x3
x1 2x2 2x3 5
(2)
st
4xx1175xx22
3x3 3x3
运筹学教程
第二章习题解答
page 2 5/17/2021
2.1 写出下列线性规划问题的对偶问题。
min Z 2x1 2x2 4x3
x1 3x2 4x3 2
(1)
st
2x1x3
3 5
x1, x2 , 0, x3无约束
maxW 2y1 3y2 5y3
y1 2y2 y3 2
page 4 5/17/2021
School of Management
运筹学教程
第二章习题解答
m
maxZ cjxj
j1
n
aijxj
bi
(i 1,,m1 m)
(4)
j1 st n aijxj bi
(i m1 1,m1 2,,m)
j1
xj 0 (j 1,,n1,n),xj无约束j( n1 1,,n)
(4)
由于(1)和(4)是矛盾约束,故对偶问题无可行解。 所以原问题目标函数值无界。
page 16 5/17/2021
School of Management
运筹学教程
第二章习题解答
2.7 给出线性规划问题
min Z 2 x1 4 x 2 x3 x 4
x1 3 x2 x4 8
st .

《运筹学》期末复习及答案

《运筹学》期末复习及答案

运筹学概念部分一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据.3.模型是一件实际事物或现实情况的代表或抽象。

4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。

6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境.10.用运筹学分析与解决问题,是一个科学决策的过程.11。

运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解。

13用运筹学解决问题时,要分析,定义待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s·t”表示约束(subject to 的缩写)。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动.18。

1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

二、单选题19.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量B.销售价格C.顾客的需求 D.竞争价格20.我们可以通过( C)来验证模型最优解。

A.观察B.应用C.实验D.调查21.建立运筹学模型的过程不包括( A )阶段。

A.观察环境B.数据分析C.模型设计D.模型实施22。

建立模型的一个基本理由是去揭晓那些重要的或有关的(B )A数量B变量C约束条件 D 目标函数23。

运筹学复习

运筹学复习

运筹学复习一、填空题1、线性规划中,满足非负条件的基本解称为基本可行解,对应的基称为可行基线.2、性规划的目标函数的系数是其对偶问题的右端常数;而若线性规划为最大化问题,则3、对偶问题为最小化问题。

4、在运输问题模型中,1+-个变量构成基变量的充要条件是不含闭m n回路。

5、动态规划方法的步骤可以总结为:逆序求解最优目标函数,顺序求__最优策略、最优路线和最优目标函数值。

6、工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;7、对不定步数问题,用迭代法求解,有函数迭代法和策略迭代法两种方法。

8、在图论方法中,通常用点表示人们研究的对象,用边表示对象之间的某种联系。

9、一个无圈且连通的图称为树。

10、图解法提供了求解只含有两个决策变量的线性规划问题的方法.11、图解法求解生产成本最小线性规划问题时,等成本线越往左下角移动,成本越低.12、如果线性规划问题有有限最优解,则该最优解一定在可行域的边界上上达到。

13、线性规划中,任何基对应的决策变量称为基变量.14、原问题与对偶问题是相互对应的.线性规划中,对偶问题的对偶问题是原问题.15、在线性规划问题中,若某种资源的影子价格为10,则适当增加该资源量,企业的收益将_会 (“会”或“不会”)提高.16、表上作业法实质上就是求解运输问题的单纯形法.17、产销平衡运输问题的基变量共有m+n-1个.18、动态规划不仅可以用来解决和时间有关的多阶段决策问题,也可以处理与时间无关的多阶段决策问题.19、构成动态规划模型,需要进行以下几方面的工作:正确选择阶段(k)变量,正确选择状态(Sk)变量,正确选择_ 决策(UK)变量,列出状态转移方程, 列出_阶段指标函数_,建立函数基本方程.20、动态规划方法可以用来解决和某些与时间有关的问题,但也可以用来解决和某些与时间无关的问题.在图论方法中,图是指由点与边和点与弧组成的示意图.21、网络最短路径是指从网络起点至终点的一条权之和最小的路线.简述单纯形法的计算步骤:第一步:找出初始可行解,建立初始单纯形表。

《运筹学》试题及参考答案

《运筹学》试题及参考答案

《运筹学》在线作业参考资料一、单选题1. 设线性规划的约束条件为 (D)则非退化基本可行解是A.(2,0,0,0)B.(0,2,0,0)C.(1,1,0,0)D.(0,0,2,4)(A)2.A.无可行解B.有唯一最优解C.有无界解D.有多重最优解3.用DP方法处理资源分配问题时,通常总是选阶段初资源的拥有量作为决策变量(B)A.正确B.错误C.不一定D.无法判断4.事件j的最早时间TE(j)是指(A)A.以事件j为开工事件的工序最早可能开工时间B.以事件j为完工事件的工序最早可能结束时间C.以事件j为开工事件的工序最迟必须开工时间D.以事件j为完工事件的工序最迟必须结束时间5.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)A.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量6.连通图G有n个点,其部分树是T,则有(C)A.T有n个点n条边B.T的长度等于G的每条边的长度之和C.T有n个点n-1条边D.T有n-1个点n条边7.下列说法正确的是(C)A.割集是子图B.割量等于割集中弧的流量之和C.割量大于等于最大流量D.割量小于等于最大流量8.工序A是工序B的紧后工序,则错误的结论是(B)A.工序B完工后工序A才能开工B.工序A完工后工序B才能开工C.工序B是工序A的紧前工序D.工序A是工序B的后续工序9.影子价格是指(D)A.检验数B.对偶问题的基本解C.解答列取值D.对偶问题的最优解10.m+n-1个变量构成一组基变量的充要条件是(B)A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关11.为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 (A)A.按最小比值规则选择出基变量B.先进基后出基规则C.标准型要求变量非负规则D.按检验数最大的变量进基规则12.线性规划标准型的系数矩阵A m×n,要求 (B)A.秩(A)=m并且m<nB.秩(A)=m并且m<=nC.秩(A)=m并且m=nD.秩(A)=n并且n<m13.下列正确的结论是(C)A.最大流等于最大流量B.可行流是最大流当且仅当存在发点到收点的增广链C.可行流是最大流当且仅当不存在发点到收点的增广链D.调整量等于增广链上点标号的最大值14.下列错误的结论是(A)A.容量不超过流量B.流量非负C.容量非负D.发点流出的合流等于流入收点的合流15. 工序(i,j)的最乐观时间、最可能时间、最保守时间分别是5、8和11,则工序(i,j)的期望时间是(C)A. 6B. 7C. 8D. 916.在计划网络图中,节点i的最迟时间T L(i)是指(D)A.以节点i为开工节点的活动最早可能开工时间B.以节点i为完工节点的活动最早可能结束时间C.以节点i为开工节点的活动最迟必须开工时间D.以节点i为完工节点的活动最迟必须结束时间17. 工序(i,j)的最早开工时间T ES(i,j)等于 ( C)A.T E(j)B. T L(i)C.{}max()E kikT k t+D.{}min()L ijiT j t−18.运输问题 (A)A.是线性规划问题B.不是线性规划问题C.可能存在无可行解D.可能无最优解19. 工序(i,j)的总时差R(i,j)等于 (D)A.()()L E ijT j T i t−+B.),(),(j iTj iT ESEF−C.(,)(,)LS EFT i j T i j−D. ijELtiTjT�)()(−20.运输问题可以用(B)法求解。

《卫生管理运筹学》习题集

《卫生管理运筹学》习题集

《卫生管理运筹学》习题集一、线性规划1.某医学院动物房饲养某种动物供教学与科研使用,设每头该种动物每天至少需700g蛋白质、30g矿物质、100mg维生素.现有5种饲料可供选用,各种饲料每千克营养成分含量及单价如表2-27所示:表2-27 各种饲料的营养素含量及价格饲料蛋白质(g)矿物质(g)维生素(mg) 价格(元/千克)1 3 1.0 0.5 0.22 2 0.5 1.0 0.73 1 0.2 0.2 0.44 6 2.0 2.0 0.35 18 0.5 0.8 0.8要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案(建立问题的线性规划模型,不求解).2.某食品厂用原料A、B、C加工成3种不同类型的食品甲、乙、丙.已知各种类型食品中A、B、C的含量,原料成本,各种原料每月的限制用量,3种食品的单位加工费及售价如表2-28所示:表2-28 3种原料与食品的相关数据食品原料成本每月限制用量原料甲乙丙(元/千克)(kg)A≥60%≥15% 2.00 2000B 1.50 2500C≤20%≤60%≤50% 1.00 1200加工费(元/千克)0.50 0.40 0.30售价(元/千克) 3.40 2.85 2.25问该厂每月生产这3种类型食品各多少千克,使得到的利润为最大?试建立这个问题的线性规划数学模型.3.用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、多重最优解、无界解或无可行解.(1)2146Min x x Z += 1 221≥+x x..t s 5.14321≥+x x 0,21≥x x (2)2184Max x x Z += 1022 21≤+x x..t s 8 21≥+-x x 0,21≥x x(3)21Max x x Z += 246821≥+x x12 6421-≥+x x4 2 2≥x0,21≥x x(4)2123Max x x Z -=1 21≤+x x..t s 42221≥+x x 0,21≥x x (5)2193Max x x Z += 223 21≤+x x 4 21≤+-x x..t s 6 2≤x 052 21≤-x x.t .s0,21≥x x(6)2143Max x x Z +=82 21≤+-x x12 2 21≤+x x12 2 21≤+x x0,21≥x x4.用单纯形法解线性规划问题 (1)2153Max x x Z +=4 1≤x12 2 2≤x 182321≤+x x0,21≥x x(2)322Min x x Z +-=2 2 321=+-x x x13 32≤-x x 2 32≤-x x0,,321≥x x x5. 表2-29中给出某线性规划问题计算过程中的一个单纯形表,目标函数为321228Max Z x x x ++=,约束条件为≤,表中4x 、5x 、6x 为松弛变量,表中解的目标函数值Z =14.表2-29 单纯形表.t .s.t .s.t .s(1)g a ~的值;(2)表中给出的解是否为最优解.6.用大M 法求解下列线性规划问题,并指出问题的解属于哪一类: (1)32154Max x x x Z ++=1823321≥++x x x4 2 21≤+x x5 321=-+x x x 0,,321≥x x x(2)3212Max x x x Z ++= 4224321≥++x x x 20 42 21≤+x x 16284 321≤++x x x 0,,321≥x x x (3)21Max x x Z +=.t .s.t .s246821≥+x x 1264 21-≥+x x 42 2≥x 0,21≥x x(4)432132Max x x x x Z -++= 15 32 321=++x x x 20 5 2 321=++x x x 10 2 4321=+++x x x x 0,,,4321≥x x x x (5)321436Min x x x Z ++= 30 1≥x 50 2≤x..t s 203≥x 120 321=++x x x0,,321≥x x x7.写出下列线性规划问题的对偶问题 (1)321210Max x x x Z ++=102 321≤++x x x..t s 20 4 321≤++x x x 0,,321≥x x x(2)43214323Min x x x x Z +-+=3432 4321≤++-x x x x.t .s.t .s543 432-≥++x x x 24732 4321=---x x x x01≥x ,04≤x ,2x 、3x 无约束 (3)321765Min x x x Z ---=153 5 321≥-+-x x x201065 321≤+--x x x5 321-=--x x x 01≤x ,02≥x ,3x 无约束 8.用对偶单纯形法求解下列线性规划问题: (1)321432Min x x x Z ++= 3 2 321≥++x x x..t s 43 2 321≥+-x x x 0,,321≥x x x (2)32123Min x x x Z ++=6 321≤++x x x4 31≥-x x 3 32≥-x x 0,,321≥x x x9.已知线性规划问题用单纯形法计算时得到的初始单纯形表及最终单纯形表如表2-30所示,请将表中空白处数字填上.表2-30 初始与最终单纯形表.t .s.t .s.t .s… … …10.某出版单位有4500个空闲的印刷工时和4000个空闲的装订工时,拟用于下列4种图书的印刷和装订.已知各种书每册所需的印刷和装订工时如表2-31所示:表2-31 4种图书的印刷与装订所需资源及利润设j x 为第j 种书的出版数(单位:千册),据此建立如下线性规划模型:432134Max x x x x Z +++=45483 4321≤+++x x x x..t s 403 2 4321≤+++x x x x 0,,,4321≥x x x x用单纯形法求解得最终单纯形表如表2-32所示,试回答下列问题(各问题条件互相独立):表2-32 最终单纯形表(1)据市场调查第4种书最多只能销5000册,当销量多于5000时,超量部分每册降价2元,据此找出新的最优解;(2)经理对不出版第2种书提出意见,要求该种书必须出2000册,求此条件下最优解;(3)作为替代方案,第2种书仍须出2000册,印刷由该厂承担,装订工序交别的厂承担,但装订每册的成本比该厂高0.5元,求新的最优解;(4)出版第2种书的另一方案是提高售价,若第2种书的印刷加装订成本合计每册6元,则该书售价应为多高时,出版该书才有利?二、特殊的线性规划1. 试述运输问题数学模型的特征,为什么模型的(nm+)个约束中最多只有(1-+nm)个是独立的?2. 如何把一个产销不平衡的运输问题(含产大于销和销大于产)转化为产销平衡的运输问题.3. 某药厂有三个生产基地A1、A2、A3,分别向四个地区医药公司B1、B2、B3、、B4供货,每个基地的产量和各公司的需要量(单位:吨)以及单位运费(百元)见表3-17.(1) 分别用西北角法和最小元素法求初始调动方案,并比较其费用;(2) 如何安排调运方案,使总费用最少?表3-17 药厂基地至医药公司的单位运费表B1 B2 B3 B4基地的产量(t)单位运费(单位:百元)A1A2A3医药公司的需要量(t)10 6 20 11 15 12 7 9 20 25 6 14 16 18 5 5 15 15 104. 已知某运输问题的产销平衡表,单位运价表及给出的一个调运方案分别见表3-18和表3-19.试判断所给出的调运方案是否最优?如果是最优,说明理由.如果不是最优,请给出最优调运方案.表3-18 单位运价表表3-19 产销平衡表及某一调运方案5. 已知某运输问题的产销平衡表,最优调运方案及单位运价表分别如表3-20和表3-21所示.由于从产地2至销地B 的道路因故暂时封闭,故需对表3-20的调运方案进行修正.试用尽可能方便的方法重新找出最优调运方案.表3-20 产销平衡表及某一调运方案表3-21 单位运价表6. 利用隐枚举法求解下面规划问题:12312312313123Max 4322534(1)433(2)s.t.1(3),,01Y x x x x x x x x x x x x x x =++-+≤⎧⎪++≥⎪⎨+≥⎪⎪=⎩或 7. 某医药公司拟在某省城东、西两个区设立门市部,共有5个位置A 1、A 2、A 3、A 4、A 5可供选用.不同位置所需的投资额及预期利润如表3-22所示.规定在东区A 1、A 2、A 3中至多选两点;在西区A 4、A 5中至少选一点,问如何选址可使预期总利润最大?表3-22 不同位置的投资、利润表门 市 部 A 1 A 2 A 3 A 4 A 5 总投资额(万元)投资额(万元)20 30 25 40 45 100年利润(万元)10252025308. 某校篮球队拟从编号为1,2,3, 4, 5, 6的六名预备队员中,选拔三名正式队员,要求他们的平均身高尽可能高.此外,入选队员尚须符合下列条件:① 至少有一名后卫;② 2号和5号只能入选一名;③ 最多入选一名中锋;④ 2号或4号入选,6号就不得入选.这些预备队员的有关情况见表3-23.试问:哪三名预备队员应当入选?只需建立数学模型.9. 指派问题的实质是什么?简述求解指派问题的匈牙利法基本原理. 10. 利用匈牙利法求解下列指派问题:4411(1).Min ij ij i j Y b x ===∑∑()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎩⎪⎪⎪⎨⎧====∑∑==161512111514161517161213121097:)4,3,2,1,(1,011s.t.4141ij ij j ij i ij b j i x x x 效率矩阵为4411(2).Max ij iji j Y a x ===∑∑()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎩⎪⎪⎪⎨⎧====∑∑==1379111114134128711691715:)4,3,2,1,(1,011.s.t 4141ij ij j ij i ij a j i x x x 效率矩阵为11. 某医院的五位大夫A 1、A 2、A 3、A 4和A 5从家中直接出诊,各去五个家庭病床B 1、B 2、B 3、B 4 和B 5中的一个.从每位大夫的家到每个家庭临床的路程见表3-24.怎样安排他们的出诊任务,方能使其总路程最短?表3—24 路程表 表3—25 工作效率表表3-23 队员条件预备队员编号位置 身高(m ) 1 中锋 1.93 2 中锋 1.91 3 前锋 1.87 4 前锋 1.86 5 后卫 1.80 6后卫1.8512. 某中医院准备指派赵、钱、孙、李充当老中医大夫周、吴 、郑 、王的助手.根据过去的经验,他们在一起工作的效率如表3—25所示.如何搭配可使他们的总工作效率最高?13. 某医学院为了活跃学术气氛,决定下周举办能源、交通、材料和生物工程四个专题讲座.每个讲座在下周下午各举办一次,每个下午不许多于一个讲座.根据详细的调查资料,估计每天下午不能出席的学生人数如表3—26所示.试从缺席的学生人数最少着想,设计一个讲座日程表.14. 某医疗器械厂拟派四名推销员甲、乙、丙、丁各去四座城市A 、B 、C 、D 推销产品.由于这些推销员的能力和经验各不相同,他们去各地推销而使该厂获取的利润预计如表3—27所示.试制定可获最大利润的指派方案.表3—26 缺席人数表表3—27 利润表AB C D 利润(万元)甲 37 27 28 35 乙 40 34 29 28 丙 33 24 32 35 丁28 322524(刘国旗)三、目标规划1.试述目标规划的数学模型与一般线性规划数学模型的相同和不同之处. 2.为什么求解目标规划时要提出满意解的概念,它同最优解有什么区别? 3.某医用器械厂生产甲、乙两种仪器,甲仪器每件可获利600元,乙每件可获利400元.生产过程中每件甲、乙所需台时数分别为2和3个单位,需劳动工时数分别为4和2个单位.设厂方在计划期内可提供机器台时数100个单位,B 1 B 2 B 3 B 4 B 5 路 程(km )A 1 11 14 24 21 21 A 2 14 19 15 29 25 A 3 20 17 7 28 11 A 4 10 18 16 15 19 A 51912192817周 吴 郑 王工作效率赵 11 9 10 1 钱 1 9 3 13 孙 5 8 5 12 李811011能源 交通 材料生物工程 缺 席 人 数星期一40 60 20 50 星期二 30 40 30 40 星期三 20 30 20 60 星期四 30 20 30 30 星期五20103010劳动工时数120个单位,如果劳动力不足尚可组织工人加班,厂领导制定了下列目标:(1) 计划期内利润达18 000元; (2) 机器台时数充分利用; (3) 尽量减少加班的工时数;(4) 甲产品产量达22件,乙产品产量达18件. 试给出该多目标问题的数学模型.4.地市级电视台考虑怎么安排娱乐、新闻和商业节目的播出时间,以获得最好效益.依据法律,该台每天允许广播12小时,其中商业节目用以赢利,每分钟可收入250美元,新闻节目每分钟需支出40美元,娱乐节目每播送一分钟消耗17.5美元.按法律规定,正常情况下商业节目只能占广播时间的20%,每小时至少安排5分钟新闻节目.问每天的广播节目该如何安排?优先级如下:P 1: 满足法律要求;P 2: 每天的纯收入最大.试建立该问题的目标规划模型.5. 用图解法找出下列目标规划问题的满意解:11233212111222123312(1)Min 2424s.t.28,0;,0(1,2,3)i i Z p d p d p d x x d d x x d d x x d d x x d d i +++-+-+-++-=++⎧-++-=⎪-+-=⎪⎨++-=⎪⎪≥≥=⎩ 13223111211122223312(2)Min ()62245s.t.515,0;,0(1,2,3)i i Z p d p d p d d x x d d x x d d x d d x x d d i +-+--+-+-++-=+++⎧++-=⎪++-=⎪⎨+-=⎪⎪≥≥=⎩ 112233412111222133124412(3)Min ()4002500s.t.3000.40.3240,0;,0(1,2,3,4)i i Z P d d P d P d x x d d x x d d x d d x x d d x x d d i ++---+-+-+-++-=+++⎧++-=⎪++-=⎪⎪+-=⎨⎪++-=⎪⎪≥≥=⎩ 6. 用单纯形法求解本章习题中第3题的解.7. 试用单纯形法求解下列目标规划:1122233123121112221233(1)Min ()211s.t.210810560;,0(1,2,3)ii i Z Pd P d d P d x x x x x d d x x d d x x d d x d d i +-+--+-+-++-=+++⎧++=⎪-+-=⎪⎪++-=⎨⎪++-=⎪⎪≥≥=⎩ 1122333123111232212333(2)Min ()360210s.t.200;,0(1,2,3)ii i Z p d p d p d d x x x d d x x x d d x x x d d x d d i -+-+-+-+-++-=+++⎧+++-=⎪-++-=⎪⎨+-+-=⎪⎪≥≥=⎩ 112233412111222123314412(3)Min ()244312s.t.82,0;,0(1,2,3,4)i i Z p d d p d p d x x d d x x d d x x d d x d d x x d d i ++-+-+-+-+-++-=+++⎧++-=⎪++-=⎪⎪++-=⎨⎪+-=⎪⎪≥≥=⎩ 8. 某企业生产两种产品A 、B ,产品A 售出后每件可获利10元,产品B 信出后每件可获利8元.生产每件产品A 需3小时的装配时间,每件产品B 需2小时的装配时间.可用的装配时间共计为每周120小时,但允许加班.在加班时间内生产的产品每件的获利分别降低1 元.加班时间限定每周不超过40小时,企业希望总获利最大.试凭自己经验确定优先级别,并建立该问题的目标规划模型.(刘国旗)四、动态规划1.如图5-3所示,求从始点A到终点E的最短路线及其长度.图5-3 A到E的线路图2.某药厂有五套新设备,拟分配给所属的三个车间.各车间将不同套数的设备投入生产后,每年创造的产值(单位:万元)如表5-44所示.表5-44 不同设备的产值表问应怎样分配这五套新设备,才能使整个药厂所获得的总产值最大,并求最大总产值.3.有一部货车给某医药公司4个零售点共卸下6箱药物,各零售点出售该药物所得的利润如表5-45所示.求在各零售点各卸下几箱药物,才能使所获得的总利润最大?并求最大总利润.表5-45 不同零售点的利润表4.某药厂根据市场的要求,明年头6个月的交货任务如表5-46所示.表中数字为月底的交货量.该厂的生产能力为每月400件,该厂仓库的存储能力为300件,已知每百件货物的生产费用为10000元,在进行生产的月份工厂要支出管理费4000元,仓库保管费为每百件货物每月1000元,假定开始时及6月底交货后无存货,问每月各应生产多少件产品,才能既满足交货任务又能使总费用最少?表5-46 需求量表5.某药厂生产一种药品,该产品在来年前四个月的估计销售量如表5-47所示.该项药品的生产准备费为每批500元,每件的生产费为1元,每件的存储费为每月1元.假定1月初的存货为100件,5月初的存货为0件,求该厂在这四个月内的最优生产计划.表5-47 销售量表6.某医药公司考虑为某种新产品定价,该产品的单价拟从每件5元、6元、7元、8元这四个价格中选其中一个,每年年初允许价格变动,但变动幅度不能超过1元.该公司预计该产品畅销只有五年,五年后将被淘汰,根据销售情况的预测,在价格不同的情况下各年的预计利润值如表5-48所示.请制定一条最优定价策略,使五年内所获利润总值最大.表5-48 预计利润值表(单位:万元)7.某药厂生产三种药品,各种药品的重量与利润如表5-49所示.现将这三种药品运往市场出售,运输能力总重量不超过6吨,问应如何安排,才能使总利润最大?表5-49 重量与利润值表8.某旅行者外出旅行,需将5件物品装入包中,包裹总重量不超过13千克.物品的单件重量及效用价值如表5-50所示.问如何装这些物品,才能使总价值最大?表5-50 重量与价值表9.如果要考虑某种医疗设备在今后4年内的更新问题,并且新的设备成本是6.7万元,使用t 年后的残值在t ≤ 4时,s (t )= 4- t ;t > 4时,s (t )=0;使用t 年后每年所创造的利润在t ≤ 4时,tt p +=14)(.开始时设备已使用了两年,其余数据不变,问每年年初应如何作出决策,才能使四年内所获得的总利润最大.五、网络分析与网络计划1.已知无向图1G ={1V ,1E }、2G ={2V ,2E }、3G ={3V ,3E }、4G ={4V ,4E },其中:1V ={1v ,2v ,3v ,4v ,5v },1E ={(1v ,2v ),(1v ,3v ),(1v ,4v ),(2v ,3v ),(2v ,4v ),(3v ,4v ),(3v ,5v ),(4v ,5v )}; 2V ={1v ,2v ,3v ,4v ,5v },2E ={(1v ,2v ),(2v ,3v ),(2v ,3v ),(3v ,4v ),(3v ,5v ),(4v ,5v )}; 3V ={1v ,2v ,3v ,4v },3E ={(1v ,2v ),(2v ,3v ),(2v ,3v ),(3v ,4v )}; 4V ={1v ,2v ,3v ,4v ,5v },4E ={(1v ,2v ),(2v ,3v ),(2v ,4v ),(3v ,5v ),(4v ,5v )}. (1)试求这四个图的图解,并判断是否连通图. (2)试问2G ,3G ,4G 是否1G 真子图和生成子图.(3)试判断1G 中1μ={1v ,2v ,3v ,4v ,5v }、2μ={1v ,2v ,3v ,4v ,5v ,3v ,1v }、3μ={1v ,2v ,3v ,5v ,4v ,1v }、4μ={1v ,3v ,2v ,4v ,3v ,5v }是否为开链、闭链、初等链、圈.2.有向图D =(V ,A ),其中:V ={1v ,2v ,3v ,4v ,5v },A ={(1v ,2v ),(1v ,3v ),(2v ,4v ),(2v ,5v ),(3v ,2v ),(4v ,3v ),(4v ,5v )}. (1)试求D 及其基础图的图解.(2)试判断1μ={1v ,2v ,3v ,4v ,5v }、2μ={2v ,5v ,4v ,3v ,2v }、3μ={1v ,3v ,4v ,5v ,2v ,1v }4μ={1v ,3v ,2v ,4v ,3v ,2v ,5v }、5μ={2v ,4v ,3v ,2v ,}是否为开链、闭链、初等链、路、回路.3.分别用避圈法和破圈法求下列网络的的最小树: (1)(2)(3)4.在六个居民小区中建立一个有线电视网,假设各小区有线网建设费用仅与架线距离有关,六个小区相互间的距离(单位百米)见表6-12.试选择架线方案使有线电视网的建设费用最低.表6-12 六个小区相互间的距离(单位百米)5.在下列网络中:(1)用Dijkstra标号法求从S点到T点的最短距离以及最短路;(2)用逐次逼近法求S点到各点的最短距离以及最短路.图习题6-56.在下列网络中试求v1到各点的最短距离.7.某零件生产经毛胚、机加工、热处理和检验四道工序,在满足同样的技术要求前提下,各道工序有不同的实施方案,其费用(元)如表6-13,试确定一个生产费用最低的加工方案.表6-13 各道工序不同的实施方案及其费用8.在下面网络中,弧旁的括号标注了弧的容量和流量.试求(1)所有的截集及截量;(2)最大流;(3)最小截集.9.试求下面网络中v (f )=4的最小费用流,图中弧旁数字为(ij b ,ij r ).10.试求下面网络的最小费用最大流,图中弧旁数字为(ij b ,ij r ).图习题6-1011.表6-14给出某运输问题的产销平衡表与单位运价表,将此问题转化为最小费用最大流问题.画出网络图并进行求解.表6-14 某运输问题的产销平衡表与单位运价表12.指出下列统筹图的错误,若有可能进行更正.图习题6-12(a)(b)(c)(d)13.根据作业明细表绘制网络图:(1)工序明细表见表6-15:表6-15 工序明细表(2)工序明细表见表6-16:表6-16 工序明细表14.已知网络图,计算(1)各结点的最早时间和最迟时间;(2)各工序的最早开工、最早完工、最迟开工和最迟完工时间.图习题6-14-1图习题6-14-215.已知表6-17所列资料,要求:(1)绘制网络图;(2)计算各工序的最早开工、最早完工、最迟开工、最迟完工时间和总时差;(3)确定关键路线.表6-17 各工序的逻辑关系及时间16.已知一个车库基建工程的作业明细表如表6-18所示,要求:(1)工程从开始施工到全部结束的最短周期;(2)如果工序l拖10天,对整个工程有何影响;(3)如果工序j的工序时间由12天缩短到8天,对整个工程进度有何影响;(4)为保证整个工程进度在最短周期内完成,工序I最迟在哪天开工;(5)如果要求工程在75天完工,要不要采取措施?应从哪些方面采取措施?表6-18 车库基建工程的作业明细表17.在第16题中,试确定70天内完工,又使工程费用最低的施工方案.各工序的正常进度和赶工进度的工序时间及费用情况如表6-19.表6-19 各工序的正常进度和赶工进度的时间及费用18.某工程各工序的工序时间及需要人数如表6-20.现有人数10人,试确定工程完工时间最短的工程进度计划.表6-20 各工序的工序时间及需要人数19.某计划项目的资料如表6-21,要求:(1)绘制网络图并计算每个工序的期望时间和方差以及总工期的期望和方差;(2)分别判断总工期提前3天完成以及延迟不超过5天完成的可能性大小.表6-21 项目的有关资料六、存贮1.为什么要进行存贮管理?2.存贮管理中两个主要的决策变量是什么?3.说明存贮管理中各种费用的含义.4.简要说明解决存储问题的5个步骤.5.基本经济订货模型的适用条件是什么?6.利用计算机模拟解决存贮问题的优点和缺点是什么?7.某医院需要某种人工心脏瓣膜每月20只左右,每只年保存费用10元,订货后可立即到货,每次订货费75元.问每次最优订货量是多少?多长时间订货一次?年最小总存贮费用是多少?8.某防疫站每月需要某杀毒剂100千克,因为预防疾病的需要不允许缺货.供应科每天可以配制此杀毒剂20千克,每次启动配制费用为800元,每千克杀毒剂每天存贮费用为0.1元.问每次启动配制多少使存贮总费用最小?多少天启动配制一次?9.某医院需要某种人工关节每月50个,订货后很快就到货,使用每个人工关节获利50元,保存每个人工关节每年75元,但缺货造成收入损失较大,估计为每个每年720元.问每月最优订货量是多少?每年最低总存贮费用是多少?10.一个医院每月需要心脏起博器10个,医院进价是1000元/个,每次订货费用是50元,存贮费用是货价的12%.问你还需要什么信息来计算最优订货量?假如符合基本EOQ模型,最低总存贮费用和最优订货量各是多少?假如订货—到货间隔变成7天,存货为多少时就应该订货?11.医药商店每月售出200台理疗机,生产厂家每月可生产1000台,每台价格1000元.每年存贮费用是平均存货价值的10%,每次订货费用500元,每年365天营业.为了不使顾客失望,在缺货时从临近同类医药商店以每台1060元的价格购进卖给顾客,问最优订货量是多少?最小总存贮费用是多少?12.SARS流行期间,某市防疫站对从疫区归来人员进行监测,被监测人员自愿购买能提高免疫能力的中药煎剂预防SARS.每份煎剂成本10元,售出18元,但如防疫站订购过量,剩余的煎剂第二天作废.疫区归来人员中自愿购买煎剂的人数服从正态分布,平均数500人,标准差100人.问市防疫站订购多少份中药煎剂使经济损失为最小?七、排队1.某诊所只有一名医生,来就诊的患者人数服从泊松分布,平均每小时4人;医生诊断时间服从负指数分布,平均每人需12分钟,求:(1)诊所的各项工作指标;(2)患者不必等待的概率.2.某医院门诊部只有一名医生,病人平均20分钟到达一个,医生对每个病人的诊治时间平均为15分钟,上述两种时间均为负指数分布.若该门诊希望到达的病人90%以上能有座位,则该医院至少应设置多少个座位?3.某牙科诊所只有一位大夫和一个电动连体式牙科综合治疗仪,另备3个供患者排队等待的椅子.若一旦椅子坐满患者,后到的患者立即离开.患者按泊松流每小时到达1人,大夫为每位患者的诊疗时间服从负指数分布,平均为1.25小时.求:(1)患者到达便可看病的概率;(2)诊所里有1位或2位病人的概率;(3)系统其它运行指标.4.设某医院内科危重病房1位护士负责5个床位,病床经常住满.每个病人的需求服从泊松分布,平均每2小时1次,病人每次的护理时间服从负指数分布,平均为20分钟.试求:(1)没有病人需要护理的概率;(2)等待护理的病人平均数;(3)若该护士负责6个病人的护理,其它各项条件不变,则上述(1)(2)的结果又如何?(4)若希望至少45%时间内所有病人都不需要护理,求该护士最多负责护理的病人数.5.某医院机关文书室有3名打字员,每名打字员每小时能打6份文件.若该室平均每小时收到15份要打的文件.假设该室为M/M/C/∞/∞系统.(1)求3名打字员忙于打字的概率;(2)该室主要运行指标;(3)若打字员分工包打不同科室的文件,每名打字员都平均每小时接到5份文件,试计算此情况下该室的各项工作指标,并与(2)比较.6.某电话交换台的呼叫强度服从平均每分钟4次的泊松分布,最多有6条线同时通话,每次通话时间服从平均0.5分钟的负指数分布.呼叫不通时,呼叫自动消失.试求:(1)系统空闲的概率;(2)呼叫不通的概率;(3)平均通话线路数.7.某院一台血液分析仪每份血样检测时间为3分钟,血样按泊松分布平均每小时到达18份.试求主要工作指标和仪器空闲概率.8.某医院有一个取药窗口,患者按泊松分布平均每小时到达10人.药剂员发药时间(小时))~2t.试求该药房空闲的概率和其它运行指标.N(1.0,05.09.到达只有一名医生诊所的病人有两类:急诊病人和普通病人.当急诊病人到达时,医生将暂停正在治疗的普通病人而为其服务.同类型病人按FCFS服务规则进行.已知两类病人到达均服从泊松分布,急诊病人平均每天2人,普通病人每天6人;医生为两类病人治疗时间相同且服从负指数分布,平均每小时2人,若一天按8小时工作时间计算,试求:(1)两类病人分别在系统内的平均等待时间;(2)两类病人分别在系统内的平均队长.10.某工厂设备维修部要求维修的设备按泊松分布到达,平均每天17.5台.维修部工人每人每天平均维修10台,服从负指数分布.已知每名工人工资每天60元,因设备维修而造成的停产损失为每台每天300元.试确定该维修部的最佳工人数(停产损失费和工资支付费总和最小).八、决策分析1.某药厂要确定下一计划期内某药品的生产批量,根据经验并通过市场调查,已知药品销路好、一般和较差的概率分别为0.3、0.5和0.2,采用大批量生产可能获得的利润分别为20万元、12万元和8万元,中批量生产可能获得的利润分别为16万元、16万元和10万元,小批量生产可能获得的利润分别为12万元、12万元和12万元.试用最大可能准则和期望值准则进行决策.2.某农场种植了价值10000元的中药材,但目前因害虫的侵袭而受到严重的威胁,场长必须决定是否喷洒农药.喷洒农药将耗费1000元.如果他决定喷洒农药,只要一周内不下雨,就可以挽救全部药材;而如果一周内有雨,就只能挽救50%的药材.反之,如果他决定不喷洒农药,只要一周内不下雨,就将损失全部药材;若一周内有雨,就能自动救活60%的药材.试用最大可能准则和期望值准则进行决策.假设场部气象站估计一周内下雨的概率为0.7.3.某药厂决定某药品的生产批量时,调查了这一药品的销路好、销路差两种自然状态发生的概率,和大、中、小三种批量生产方案的投资金额,以及它们在不同销路状态下的效益值,如表9-8所示.试用决策树法进行决策.表9-8 不同方案在不同状态下的益损值(万元)方案投资金额药品销路2s (销路好) 7.0)(2=s P 3s (销路差) 3.0)(3=s P1a (大批量生产) 10 20 -15 2a (中批量生产) 8 18 -103a (小批量生产) 5 16 -84.某厂在产品开发中经过调查研究,取得如下有关资料:一开始就有引进新产品和不引进新产品两种方案.在决定引进新产品时,估计需投入科研试制费7万元,估计其它企业以相同产品投入市场参与竞争的概率为0.6,无竞争的概率为0.4.在无竞争的情况下,该厂有大规模生产、一般规模生产和小规模生产三种方案,其收益分别为20万元、16万元和12万元.在有竞争的情况下,该厂和竞争企业都有上述三种规模的生产方案,有关数据如表9-9所示.试用决策树法进行决策.表9-9 不同方案在不同状态下的益损值(万元)竞争企业生产规模 大 一般 小5.某地有10万人口,当地卫生机构拟对人群的某种疾病作一次检查.现在,需要就采用哪种检查方式的问题作出决策.有三种方式可供选择:第一,全体人口普查;第二,只检查高危人群;第三,所有的人都不检查.假设人群的疾病分布状况和预期的检查结果以及检查治疗费用的有关资料如表9-10、9-11所示.为了使总费用最少,应选择哪种方案?试用决策树来分析.表9-10 不同人群的检查结果实 际 情 况检查 高 危 险 组 低 危 险 组 结果 阳性 阴性 合计 阳性 阴性 合计阳性 1900 3600 5500 3040 15360 18400 阴性 100 14400 14500 160 61440 61660 合计 2000 18000 20000 3200 76800 80000表9-11 检查和治疗费用(元/人)项目 费用 全人口普查 3 重点检查 4 真阳性病人早期治疗 10 假阳性病人早期治疗 5 晚期治疗 1006.某医院制剂室生产某种药品有三种方案,大批量生产、中批量生产、小批量生产;该药品治疗的疾病情况也有三种:大流行、局部流行、不流行.出现哪种概率全然不知,获利情况如表9-12所示.试用乐观准则、悲观准则、折衷准则(7.0=λ)、后悔值准则进行决策.表9-12 不同方案在不同状态下的益损值(元)方 案自 然 状 态1s (疾病大流行) 2s (局部流行) 3s (不流行)1a (大批量生产) 600 400 -200 2a (中批量生产) 400 250 -1003a (小批量生产) 100 150 507.实施某一卫生服务计划,有4个可供选择的方案1a ,2a ,3a ,4a ,每个方案都面临三种可能的自然状态321,,s s s ,各相应的益损值如表9-13所示,假定不知道各自然状态发生的概率.试用各种准则进行决策.(折衷系数6.0=λ)表9-13 不同方案在不同状态下的益损值(万元)方 案自 然 状 态1s 2s 3s。

运筹学名词解释

运筹学名词解释

运筹学名词解释1运筹学2定性决策3定量决策4混合性决策5预测6宏观经济7微观经济预测8定性预测9定量预测10时间序列预测法11回归分析法12最小二乘法13决策14自然状态15现实或乐观主义16条件利润17存货台套法18经济订货量(EOQ)19前置时间内的需求量20安全库存量21规划22线性规划23变量24目标函数25约束条件26单纯形法27可行解区28松弛变量29运输问题30网络计划技术31计划评核技术(PERT) 32关键路线法(CPM) 33网络图34箭线式网络图35节点式网络图36活动37虚活动38结点39线路40关键线路41路长42任务的分解43作业时间44单一时间估计法45三种时间估计法46最早开始时间47最早完成时间48最迟完成时间49最迟开始时间50线段时差51线路52优化53时间优化54时间与资源优化55时间与成本优化56直接费用57间接费用58正常时间59极限时间60马尔柯夫分析61盈亏分析62盈亏平衡点63固定成本64可变成本65马尔柯夫过程66预付成本67计划成本68线性盈亏分析模型69边际收益70边际收益率71生产能力百分率72模拟73分析解74蒙特卡洛方法75随机数76均匀随机数77随机变量78 ABC分析法79 控制性决策80 最大最大决策标准81 再订货点82 改进路线83 概率向量84 专家小组法85 现实主义决策标准86 常规性决策87 最小最大遗憾值决策标准88 箭线式网络网的活动89 概率矩阵90 最大最大决策标准91盈亏平衡分析92改进路线93阶石法94改进指数95因果法96多元线性回归97闭合回路法98技术预测99不确定条件下的决策100后悔值101阶石法中的改进指数102计划性决策103树104单渠道随机排队法105订货费用106工装调整费107保管费用108最短路线109修正分配法110缺货111可行基解112关键结点113网络的流量问题114网络的路线问题115离散随机变量116特殊性决策117线性规划问题的最优解118平衡概率矩阵:119一元线性回归120表上作业法:121活动的极限费用:122社会预测123订货的前置时间:124可行性研究:125线性规划模型的约束条件:126风险条件下的决策127直接费用增长率128相关关系129单纯形法的判别指数:130转移概率131科学预测132函数关系133置信区间134相关检验135最大最小决策标准136最大期望收益值标准:137最小期望损失值标准:138多阶段决策139A类存货台套140B类存货单元141C类存货单元142平均库存量:143平均库存额:144表格计算法(或称列表法)145图解法:146数学方法:147结点时差:148活动时差(工序时差):149线路时差:150计划性能法:151系统模拟的过程152状态153状态转移过程154状态转移概率155标准概率矩阵156终极状态概率157总偏差158回归偏差159剩余偏差1运筹学:运筹学利用计划方法和有关多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据。

运筹学知识点总结

运筹学知识点总结

运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。

线性规划的三要素:变量或决策变量、目标函数、约束条件。

目标函数:是变量的线性函数。

约束条件:变量的线性等式或不等式。

可行解:满足所有约束条件的解称为该线性规划的可行解。

可行域:可行解的集合称为可行域。

最优解:使得目标函数值最大的可行解称为该线性规划的最优解。

唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。

凸集:要求集合中任意两点的连线段落在这个集合中。

等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。

松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。

剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。

2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。

4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。

5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。

当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。

第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。

2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。

4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。

运筹学基础复习资料

运筹学基础复习资料

第一章导论(领会)P1概述P1一、运筹学与管理决策P11.分析程序有两种基本形式:定性的和定量的定性——经验或单凭个人的判断就可解决时,定性方法定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。

2.运筹学定义:利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据二、计算机与运筹学P2三、决策方法的分类P21.决策方法的分类:P2定性决策:主观经验或感受到的感觉或知识而制定的决策定量决策:借助于某些正规的计量方法而做出的决策,称为定量决策。

混合性决策:必须运用定性和定量两种方法才能制定的决策,称为混合性决策2.决策人员采用计量方法的4种情况P2应用运筹学进行决策过程的六个步骤P3一、观察待决策问题所处的环境P3内部环境和外部环境二、分析和定义待决策的问题P3拟定研究目标,即确定问题的类型及解答方式;汇报情况,指出问题所在和成本/效益分析三、拟定模型P3建立一个从数学上表示的模型,然后对问题的解决提出一种预测某些决定性因素与效果的模型方程式一般是适用于运筹学中的数学模型上年的损益表和下一年的预算是两个符号式模型四、选择输入资料P4数据收集能够有效地影响模型的输出五、提出解并验证它的合理性P4有了模型的解答就试图改变模型及其输入,并注视将要发生什么样的输出,此过程叫敏感度试验模型的探讨结果。

限制范围,在此范围内,模型所取得的结果是有效的六、实施最优解P5例如:在某公司的预算模型中,收益表是显示公司在整个过程中效能的模型,平衡表是显示公司财务情况的模型第二章预测P6一定特点指具有一定的因果关系或具有一定的历史发展趋势预测的概念与程序(领会)P6一、预测的概念和作用P6预测:就是对未来的不确定的事件进行估计或判断企业价格预测:就是在调查研究的基础上,掌握各种可靠的信息,采用科学的预测方法,对未来一定时期内企业生产、经营的商品或劳务的价格作出估计或判断。

运筹学案例集

运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示.又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2—25)、某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间.甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。

问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。

设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B 工序。

Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。

问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表2-8中,b列数字全为非负,检验数全为非正,故问题的最 优解为
X*=(11/5,2/5,0,0,0)T 若对应两个约束条件的对偶变量分别为y1和y2, 则对偶问题的最优解为
对偶单纯形法的计算步骤如下:
(1) 根据线性规划问题,列出初始单纯形表。 检查b列的数字,若都为非负,检验数都为非正,则已
得到最优解。停止计算。 若检查b列的数字时,至少还有一个负分量,检验数保
持非正,那么进行以下计算。
(2) 确定换出变量
• 按min{(B-1b)i|(B-1b)i<0=(B-1b)l对应的基变量xl为换出变量 (3) 确定换入变量 • 在单纯形表中检查xl所在行的各系数α lj(j=1,2,…,n)。若所有
cj-zj
0
-4 -1
θ
8/5 -
00
x4
x5
10
01
00
x4
x5
1 -1/2
0 -1/2
0 -1
-2
表 2-8
cj→
-2
CB
XB
b
x1
-3 x2 2/5 0
-2 x1 11/5 1
cj-zj
0
-3 -4 0 0
x2
x3
பைடு நூலகம்x4
x5
1 -1/5 -2/5 1/5
0 7/2 -1/5 -2/5
0 -9/5 -8/5 -1/5
第6节 偶单纯形法
• 前节讲到原问题与对偶问题的解之间的对应关系时指出: 在单纯形表中进行迭代时,在b列中得到的是原问题的基 可行解,而在检验数行得到的是对偶问题的基解。
• 通过逐步迭代,当在检验数行得到对偶问题的解也是基可 行解时,根据性质(2)、(3)可知,已得到最优解。即原问 题与对偶问题都是最优解。
• (2) 对应非基变量xm+1,…,xn的检验数是 σ j=cj-zj=cj-CBB-1Pj≤0,j=m+1,…,n
• 每次迭代是将基变量中的负分量xl取出,去替换非 基变量中的xk,经基变换,所有检验数仍保持非 正。从原问题来看,经过每次迭代,原问题由非 可行解往可行解靠近。当原问题得到可行解时, 便得到了最优解。
b1: 8 b2:16 b3:12
9 Q2’(4,2.5)
z*’ = 15.5
Δ z* = z*’- z* = 3/2 = y1*
17 Q2”(4.25,1.875) z*” = 14.125
Δ z* = z*”- z* = 1/8 = y2*
13 Δ z* = 0 = y3*
yi*的值代表对第i种资源的估价-影子价格。
• 这种估价是针对具体工厂的具体产品而存在的一种特殊价格, 称它为“影子价格”。
• 在该厂现有资源和现有生产方案的条件下,设备的每小时租费 为1.5元,1kg原材料A的出让费为除成本外再附加0.125元,1kg 原材料B可按原成本出让,这时该厂的收入与自己组织生产时获 利相等。
• 影子价格随具体情况而异,在完全市场经济的条件下,当某种 资源的市场价低于影子价格时,企业应买进该资源用于扩大生 产;而当某种资源的市场价高于企业影子价格时,则企业的决 策者应把已有资源卖掉。可见影子价格对市场有调节作用。
2 x1 4 1 0 x5 4 0 3 x2 2 0
-z -14 0
0 0 1/4 0 0 -2 1/2 1 1 1/2 -1/8 0 0 -3/2 -1/8 0
y1*=1.5,y2*=0.125,y3*=0。
这说明是其他条件不变的情 况下,若设备增加一台时, 该厂按最优计划安排生产可 多获利1.5元;原材料A增加 1kg,可多获利0.125元;原 材料B增加1kg,对获利无影 响。
第5节 对偶问题的经济解释 ——影子价格
在单纯形法的每步迭代中,目标函数取值z=CBB-1b,和检验数 CN-CBB-1N中都有乘子Y=CBB-1,那么Y的经济意义是什么?
设B是{max z=CX|AX≤b,X≥0}的最优基,
由-Yb= -CB B-1b可知 z*=CBB-1b=Y*b 。
对z求偏导数,得
• 当非基变量都为零时,可以得到XB=B-1b。若在B-1b中至少有 一个负分量,设(B-1b)i<0,并且在单纯形表的检验数行中的 检验数都为非正,即对偶问题保持可行解,它的各分量是
• (1) 对应基变量x1,x2,…,xm的检验数是 σ i=ci-zi=ci-CBB-1Pj=0,i=1,2,…,m
+x5=-4
xj≥0,j=1,2,…,5
初始单纯形表,见表2-6。
cj→
-2 -3 -4
CB
XB
b
x1
x2
x3
0 x4 -3 -1 -2 -1
0 x5 -4 [-2] 1 -3
cj-zj
-2 -3 -4
θ
1 - 4/3
CB
XB
b
x1
x2
x3
0 x4 -1 0 [-5/2] 1/2
-2 x1 2 1 -1/2 3/2
z* b
CB B1
Y*
由上式可知,变量yi*的经济意义是在其他条件不变的情况下, 单位资源变化所引起的目标函的最优值的变化。
[eg.7]max z = 2x1 + 3x2
x1 + 2x2 ≤ 8
4x1
≤ 16
4x2 ≤ 12
x1,x2 ≥ 0
cj
23000
θ
CB XB b x1 x2 x3 x4 x5
• 重复步骤(1)~(4)。
例6 用对偶单纯形法求解
min ω =2x1+3x2+4x3 x1+2x2+x3≥3 2x1-x2+3x3≥4 x1,x2,x3≥0
解 先将此问题化成下列形式,以便得到对偶问题的初始
可行基
max z=-2x1-3x2-4x3
-x1-2x2-x3+x4
=-3
-2x1+x2-3x3
α lj≥0,则无可行解,停止 计算。 若存在α lj<0 (j=1,2,…,n), 计算


mjin
c
j
alj
z
j
alj

0

ck zk alk
按θ 规则所对应的列的非基变量xk为换入变量,这样才能保 持得到的对偶问题解仍为可行解。
(4) 以α lk为主元素,按原单纯形法在表中进行迭代运算, 得到新的计算表。
根据对偶问题的对称性 • 可C代B以达B-这到1P样基j≤0考可,虑行而:解原若,问保这题持样在对也非偶得可问到行题了解的最的解优基是解础基。上可,行通解过,逐即步c迭j• 其优点是原问题的初始解不一定是基可行解,可从非基可
行解开始迭代。
设原问题 max z=CX
AX=b X≥0
• 又设B是一个基。不失一般性,令B=(P1,P2,…,Pm),它对 应的变量为 XB=(x1,x2,…,xm)
相关文档
最新文档