可调直流稳压电源的设计完整版
可调直流稳压电源设计报告
可调直流稳压电源设计报告I. 设计目的本设计旨在实现一个可调直流稳压电源,能够提供多种输出电压和电流,同时还能稳定地保持输出电压在规定范围内。
II. 设计原理直流稳压电源的基本原理是将变压器输出的交流电转换为直流电,并使用电子元件如二极管、电容器、稳压管等实现对输出电压和电流的稳定。
在本设计中,我们采用如下电路结构实现直流稳压电源。
电路主要由变压器、整流桥、滤波电容、调节电路、稳压管和输出端口等组成。
(1)变压器:变压器主要将交流输入变换为需要的交流输出电压,通常变压器转换后的电压需要经过整流、滤波和稳压等多道处理才能成为稳定的直流电源输出。
因此,本设计中我们采用了含有两只二次线圈的变压器。
(2)整流桥:整流桥主要用来将变压器输出的交流电流转换成直流电流,这里我们采用了四个二极管构成的整流桥,如图所示,其中D1和D2对应于变压器中一只二次线圈所产生的正半交流电流,D3和D4则对应于产生的负半交流电流。
(3)滤波电容:滤波电容主要用来滤除多余的高频成分,以使直流电波尽可能平滑,保证输出电压的稳定性。
(4)调节电路:调节电路用来控制和调整稳压管的工作状态,以实现输出电压的稳定性和调节。
(5)稳压管:稳压管是关键元件之一,其主要作用是在电路中设置一个固定的工作电压,以保证输出电压在一定范围内稳定。
III. 设计过程(1) 变压器设计:根据我们的需求,我们需要将输入的220V交流电转变为24V 的交流电,在此基础上再进行转换为稳定的直流电源输出。
因此,我们需要采用一只含有两只二次线圈的变压器,并且将两只二次线圈采用串联方案,以实现较大的输出电压值。
最终选用的变压器型号为220V/24V/10W,其中10W为变压器最大输出功率。
(2) 整流桥设计:为了将变压器输出的24V交流电转换为直流电源,我们需要采用整流桥电路。
对于整流桥电路中的每个二极管来说,其承受的最大反向电压应该大于所采用变压器的输出电压。
在此基础上,我们选用的整流桥电路中的二极管容量为1N4001,其最大反向电压为50V。
可调直流稳压电源设计
图1 稳压电源工作流程图2.2 可调直流稳压电源的工作原理方框图直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、消振、稳压、保护、可调七个环节来完成的〔如图2所示〕。
图2可调直流稳压电源方框图(1)电源变压器。
电源变压器,是降压变压器,它将市电220V交流电压变换成符合需要的较低的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定〔如图3所示〕。
图3 电源变压器(2)整流电路。
整流电路是利用二极管的单向导电性,把50Hz的正弦交流电变换成脉动的直流电,它由VD1,VD2,VD3,VD4构成单相全波整流电路,电路如图4所示。
在u2的正半周内,二极管VD1、VD3导通,VD2、VD4截止;u2的负半周内,VD2、VD4导通,VD1、VD3截止。
正负半周内部都有电流流过的负载电阻RL,且方向是一致的,电路的输出波形如图5所示。
图4 整流电路图 图5 整流波形图 在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半,即 。
电路中的每只二极管承受的最大反向电压为 (U2是变压器副边电压有效值)。
在设计中,常利用电容器两端的电压不能突变和流过电感器的电流不能突变的特点,将电容器和负载电容并联或电容器与负载电阻串联,以到达使输出波形根本平滑的目的。
选择电容滤波电路后,直流输出电压:Uo=0.9U2,直流输出电流:Io=0.92L U R 〔Io 是变压器副边电流的有效值〕。
(3)滤波电路。
滤波电路它可以将整流电路输出电压中的交流成分大局部加以滤除,从而得到比拟平滑的直流电压,它由1C 等外围元器件构成。
(4) 稳压电路。
三端可调稳压器LM317:三端可调稳压器因具有稳定度高、适应性强、使用方便的优点,得到广泛应用。
稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化,其主要由三段集成稳压块LM317组成〔如图6所示〕。
0-30V可调直流稳压电源设计
学号毕业设计(2016届本科)题目:0-30V可调直流稳压电源设计学院:专业:作者姓名:指导教师:职称:完成日期:年月日二○一六年五月目录摘要1Abstract2第1章绪论31.1 论文研究背景与意义31.2 国内外研究31.3发展趋势41.4 主要内容4第2章硬件设计42.1 主电路设计52.2 整流、滤波、稳压电路设计52.3主电路元器件的选择9本章小结10第3章控制电路设计103.1 LM317芯片及应用电路103.2 控制电路元器件的选择113.3 单片机AT89C51简介123.4芯片方案选择143.5 控制电路图163.6 四位共阳极数码管173.7 S8050三极管作用173.8 采样电路183.9 辅助电源电路19本章小结20第4章软件系统设计及仿真214.1 程序流程图224.2程序234.3仿真结果29本章小结30总结31致谢32 参考文献33 附录34摘要本文设计了一种基于AT89C51单片机为核心控制器的数控直流稳压电源,该电源主要由辅助电源、显示电路、控制电路、数模转换电路、稳压电路和模数转换电路六部分组成。
该系统以AT89C51单片机为控制单元,以数模转换芯片DAC0832输出参考电压,以模数转换芯片TLC1534对釆样值进行转换为数字信号。
辅助电源提供各个芯片、数码管和放大器所需工作电压,显示电路用于显示电源输出电压的大小,输出电压值可通过按键对其进行步进控制(±0.1V),并且在按键长时间按下的时候能连续增加或减小。
关键词:数控直流稳压电源;AT89C51;D/A转换AbstractIn this paper, the design of a based on AT89C51 microcontroller as the core controller of NC DC regulated power supply, the power supply mainly by auxiliary power supply, display circuit, control circuit, digital to analog conversion circuit, a voltage stabilizing circuit and analog digital conversion circuit of six parts composition. The system takes the AT89C51 single chip as the control unit, and the digital analog converter chip DAC0832 output reference voltage, and the sampling value is converted to digital signal by the analog digital conversion chip TLC1534. Auxiliary power supply to provide each chip, digital tube and amplifier working voltage, display circuit is used to display the size of the output voltage and the output voltage value can be through the buttons on the step control (+ 0.1V), and in the button for a long time pressed can increase or decrease.Keywords: NC DC regulated power supply; AT89C51; D/A conversion第1章绪论1.1 论文研究背景与意义随着电子技术的发展,电子设备在人们的生活和生产中的地位也越来越重要,许多的电子设备对所需的电源也提出了更高的要求。
可调直流稳压电源电路设计
可调直流稳压电源电路设计1.设计目的:设计一个可调直流稳压电源电路,能够输出3~30V、1A的直流电压,稳定性要求高。
2.设计原理:可调直流稳压电源电路主要由变压器、整流桥、滤波电容、电压调节器和负载等组成。
变压器将交流电压变换为低压交流电压,然后通过整流桥将交流转换为脉动直流电压,再通过滤波电容将脉动信号平滑后得到稳定的直流电压,最后通过电压调节器调整直流电压并保持稳定输出。
3.设计步骤:(1)确定变压器参数:变压器的输入电压为AC220V,需要将其转换为低压AC15V,根据变压器公式N1/N2=V1/V2,计算出变压器的匝数比N1/N2=14.7。
(2)选择整流桥:根据输出电流1A选用额定电流为4A的整流桥,如KBP310等。
(3)确定滤波电容:滤波电容的电容值根据负载的需要来选择,一般选用大电容值,如1000uF,以保证低纹波系数。
(4)选择电压调节器:L7805电压调节器能够提供输出电压为5V,稳压能力好、温度漂移小、线性度高,符合本设计要求。
(5)确定负载:负载要根据电源的输出电流能力来选择,如功率光源等选择具有较大输出电流的型号。
4.确定电路图及元器件连接图:5.计算元器件:(1)滤波电容C1:由于负载电流变化较快,需要选用大电容值,一般选用1000uF的电容,如选择电压容涂O50V的电解电容EDLR1000uF。
(2)电功效管Q1:能够提供3A的电流,在这里作为稳定管使用。
常规管主要包括2SC1815、2SC458、2N3055等,如选择2SC1815管。
(3)电压调节器IC1:L7805电压调节器,能够提供输出电压为5V,稳压能力好、温度漂移小、线性度高,如选择7805。
6.实验结果:确认元器件无误后,进行实验验证。
实验过程分两步进行,第一步:测量无负载输出电压;第二步:在输出电压为5V的情况下,接入10Ω负载,在负载电流为0.5A,输出电压5V左右的情况下,使用万用表测量输出电压、输出电流和电源电流。
完整版LM317直流稳压电源课程设计
课题任务设计一个连续可调直流稳压电源功能要求说明① 输出电压可调: Uo=+3V ~+9V ② 输出最大电流: Iomax=800mA ③ 输出电压变化量:△ U ≤5mV ④ 稳压系数: Sv ≤可调直流稳压电源整体方案介绍及工作原理说明直流稳压电源的设计思路① 电网供电电压交流 220V(有效值 )50Hz ,要获得低压直流输出,第一必定采用电源变压器将电网电压降低获得所需要交流电压;② 降压后的交流电压,经过整流电路变成单向直流电,但其幅度变化大;③ 脉动大的直流电压须经过滤波电路变成圆滑,脉动小的直流电,马上交流成份滤掉,保留其直流成份;④ 滤波后的直流电压,再经过稳压电路稳压,即可获得基本不受外界影响的牢固直流电压输出,供给负载。
直流稳压电源的基本源理++电 源U1U2-变压器-U1U2整 流电 路+ 波 + +滤稳压U3 路UI UO电电路---U3 UI UO图直流稳压电源结构图和稳压过程电源变压器:是降压变压器,它的作用是将220V 的交流电压变换成整流滤波电路所需要的交流电压 Ui 。
变压器的变比由变压器的副边按确定,变压器副边与原边 的功率比为 P2/P1=η,式中η是变压器的效率。
整流电路:利用单导游电元件,将 50HZ 的正弦交流电变换成脉动的直流电。
滤波电路:可以将整流电路输出电压中的交流成分大部分滤除。
滤波电路滤除较大的涟漪成分,输出涟漪较小的直流电压UI。
常用的整流滤波电路有全波整流滤波、桥式整流滤波等。
稳压电路 : 稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,经过调治与稳压管串通的限流电阻上的压降来达到牢固输出电压的目的。
直流稳压电源的工作原理交流电网 220V 的电压经过变压器降压此后,经过整流、滤波、稳压此后才可以送到负载,设变压器副边电压为:其中为有效值。
变压此后,利用单导游电元件二极管,把50Hz 的正弦交流电变换成脉动的直流电。
0~12V可调直流稳压电源设计
图14
电源部分包括:+5V、±15V两大部分:
+5V电源只要供单片机部分使用,
对于滤波电容的选择,需要注意整流管的压降;7805的最小允许压降波动
10%,所以允许的最大纹波的峰峰值⊿U=9×√2(1-10%)-1.4-5=2.76V
C=I×⊿T/⊿U=1×1/100/2.76=3600uf
1.2.4防掉电存储器
EEPROM24C02C是采用IIC接口的一种常见2Kbit(256×8bit)的存储器。
图9
由于本数控电源要实现保存最近10个电压的功能,当打开电源时,它显示和输出的必须是上次使用的电压大小,所以在EEPROM中使用11个地址保存数据,第一个地址保存当前电压,第2~11个地址连续保存10个电压大小数据。
方案完全脱离单片机,完全采用硬件控制,因此响应速度更高,又因采用FPGAIC,不仅可以满足用户对系统的单片集成要求,而且由于FPGA可加重加载性,因而易于扩展。
原理图:
+15V +5V—15V
至各单元电路
BCD计数
+—识别
键盘扫描
FPGA IC
图3
方案比较:
三个方案均是可行的。方案一采用继电器控制为机械式。基本原理简单,实现比较方便,电源电压也可以调整到较精确的数值,但是它需要较大的工作电流,原器件价格较贵,而且继电器会产生噪声污染。方案二采用单片机作为控制器,通过DAC来调节输出电源电压,速度较快,元器件常见且相对便宜,可以较为方便的实现对直流稳压源的编程控制。方案三采用FPGA,由硬件控制,响应速度快,易于扩展,但是相对于单片机来说,FPGA方案使用成本较高。
稳压输出、过流保护等几部分组成,电路图如图13所示
输出可调直流稳压电源的设计
输出可调直流稳压电源的设计一、任务设计并制作如图1所示虚线框内的可调直流稳压电源,输入交流电压AC175~235V,输出电压可调,具有输出恒流限制功能,且限制电流可调。
图1可调直流稳压电源框图二、要求在电阻负载条件下,使电源满足下述要求:1.基本要求(1)输出电压V O:DC0~30V可调;(2)输出恒流限制:0~3A可调;(3)输出噪声纹波电压峰-峰值V OPP≤1V(u1=AC220V,V O=30V,I O=3A);(4)D C-DC变换器的效率η≥70%(u1=AC220V,V O=30V,I O=3A);2.发挥部分(1)进一步提高效率,使η≥85%(u1=AC220V,V O=30V,I O=3A);(2)具有输出电压、电流步进调节功能,电压步进0.1V,输出电流限制步进0.1A;(3)具有输出电压、电流的测量和数字显示功能。
(4)其他。
三、说明(1)由于输入电压较高,调试与测试时一定要注意安全!(2)D C-DC变换器不允许使用成品模块,但可使用开关电源控制芯片。
(3)u1可由自耦调压器调节,DC-DC变换器(含控制电路)只能由Udc 端口供电,不得另加辅助电源。
(4)本题中的输出噪声纹波电压是指输出电压中的所有非直流成分,要求用带宽不小于20MHz模拟示波器(AC耦合、扫描速度20ms/div)测量V OPP。
(5)D C-DC变换器效率 =P O/ P IN,其中P O=U O I O,P IN=U DC I DC。
(6)电源在最大输出功率下应能连续安全工作足够长的时间(测试期间,不能出现过热等故障)。
(7)制作时应考虑方便测试,合理设置测试点。
(8)设计报告正文中应包括系统总体框图、主要元器件的参数计算与选型,核心电路原理图、主要流程图、主要的测试结果。
完整的电路原理图、重要的源程序和完整的测试结果用附件给出。
四、评分标准。
可调直流稳压电源的设计完整版
可调直流稳压电源的设计直流稳压电源的设计设计要求基本要求:短路保护,电压可调。
若用集成电路制作,要求具有扩流电路。
基本指标:输出电压调节范围:0-6V,或0-8V,或0-9V,或0—12V;最大输出电流:在0.3A-1.5A 区间选一个值来设计;输出电阻Ro:小于1欧姆。
其他:纹波系数越小越好(5%V0,电网电压允许波动范围+ -10%。
设计步骤1.电路图设计(1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。
(2)系统分析:根据系统功能,选择各模块所用电路形式。
(3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。
(4)总电路图:连接各模块电路。
2. 设计思想(1)电网供电电压交流220V(有效值)频率为50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。
(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。
(3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。
(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载R L。
电路设计(一)直流稳压电源的基本组成直流稳压电源是将频率为50Hz 、有效值为220V 的单相交流电压转换为幅值 稳定、输出电流为几十安以下的直流电源,其基本组成如图(1所示:直流稳压电源的输入为220V 的电网电压,一般情况下,所需直流电压的数 值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电 压进行处理。
变压器副边电压有效值决定于后面电路的需要。
变压器副边电压通过整流电路从交流电压转换为直流电压,即正弦波电压转换为单一方向的脉动电压,半波整流电路和全波整流电路的输出波形如图所示。
可以看出,他们均含有较大的交流分量,会影响负载电路的正常工作。
为了减小电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。
可调直流稳压电源设计报告.doc
可调直流稳压电源设计报告.doc本系统说明书针对可调直流稳压电源设计,具体有下面几个部分:一是概述;二是电源级特性;三是系统设计;四是控制级设计;五是整体控制系统;六是总结与展望。
一、概述此可调直流稳压电源设计主要应用在数据采集系统,采用负载传感技术来检测,以精确控制系统的电压输入。
使用多发阳极交流器(PFC)来预充电技术,保证系统恒定的电压和电流,进而达到持续稳定的电源输出,通过相应电气参数(I/P、O/P、F/R)来调整电源,最终确保系统稳定和精确的电压、电流及其它参数的输出无差错的控制。
二、电源级特性本次设计的电源级特性要求输入直流、输出直流,稳压电源根据负载的所需,能够调节输出的电压、电流,可调节电压范围为1-3V,可调节电流范围为0.3-3A,可调节精度在±1 mV和±2 mA之间。
三、系统设计本次设计系统主要采用半桥双向拓扑形式,利用PFC预充电、放大技术,结合高压变压器、高压MOS管、电容屏蔽和IBGT等元件构成稳压电源系统;控制部分采用MCU的PID 算法调节电压、电流,并进行智能控制,采用对数运算技术提高调节精度。
四、控制级设计本系统控制部分采用MSP 430 MCU,应用单片机实现PID算法控制,使用模拟量输入信号及其他主机控制信息,得到电压、电流控制、负载变换及相应报警信号,实现电源级精确稳定控制。
五、整体控制系统系统采用主机控制系统,由单片机处理器控制输出电压、电流,内置报警系统;当系统电源出现问题或者负载变化时,报警系统会发出相应报警,实现及时调节,保证数据采集系统运行稳定。
六、总结与展望本次设计采用负载传感技术来实现电源级和控制级的定向调节,严格按照电源设计规范进行设计,实现稳定的电压电流输出,为数据采集系统提供更稳定的电源输出,提高其数据采集的准确性和可靠性。
可调直流稳压电源的设计
。
引言
能 量 的 功能 直 流 电 压 经 过 电容 滤 波 后 得到 的 电压 并 7 系 列集 成 稳 压 器 实 现 不 稳定 为 此 选择 常 用 的 L M 3 1 电压 的 稳 定
,
。
。
,
表
编号
T v D
I
、
1
器 件 名称 及 型号
型号
,
名称
电源变压器 器
数量
1
。
,
,
T D A 20 26
,
v D:
u
:
n
3
u u
姗
,
,
:
:
一
:
一
,
。
,
,
。
。
表
R p (K
.
2
可 调 稳 压 直 流电 源 电 路 实验 测试 数据
。
)
,
。
,பைடு நூலகம்
0 0
.
。
0 62
.
1 43
.
。
2
.
19
} } } } } }
( o V V
.
)
1
.
2
.
。 0
10 0
.
) } 即 理 论值 (K 0 0 } 0 6 }
. . .
1 4
摘
,
,
.
。
,
,
,
。
0
,
生活 中常 用 的 电 气 电 子 设 备 都必 须在 电 源 电 路 的 支 持下 才能 满 足人 们 的需 求 进 行 正 常 的 工 作 现在 的 电子 设备 对 电 源 电 路 的 基本 需 求就 是 能 够 持 续不 断地 提 供满 足 负 载 要 求 的 电 能 直 流 稳压 电 源 的 出 现满 足 了 这 些 需 求 直 流 稳压 电源 的 优 点 很多 譬如 性 能 稳 定 构 造简 单 调 节 方便 电 压指 标精 度 高 其 在 电 源 技术 中 扮演 着 十分 重 要 的角 色 1 直 流 稳 压 电 源 的技 术 指标 直流 稳 压 电源 电 路 的 形 式多 种 多 样 有 串 联 型 开 关 型 以单 片机 为 基础 的 以及 集 成 电 路型 的 直 流 稳压 电 源 电 路 等 无论 形 式如 何多 样 其 基本 技 术指 标 是一 致 的 主 要 包括 (l ) 稳定性 好 输 人 电压 U l 经过 整 流 电路 滤 波 电路 之 后得 到 新 的 输 出 电 压 U Z U l 在一 定 范 围 内发 生 起 伏 时 U Z 的 波 动 的大 小被 称做 稳 定 度 指 标 ( 即 输 人 引 起 输 出 的 变 化 程度 ) 一般 用 稳 压 系 数 S 来 表 示 ( S 的 数 值 大 小 代 表 了 稳 压 电 源 对 输 人 电压 波 动 的 抑 制 能 力) 当输 人 电 压 的 变 化是 相 同 的 时 电 源是 否 稳定 取 决于 稳压 系 数 S 的大 小 稳压 系 数越 小 则 电 源 更 稳定 (2 ) 输 出 电 阻 小 当负 载 发 生 改变 时 U Z 应 该 基 本 不 变 稳 压 电 源 的指 标 可 以 用 输 出 电 阻 R n ( 输 出 电 压变 化 量 与 负 载 电 流 变 化 量 之 比 ) 表示 它 表 示 负 载有 变 化 时 输 出 电压 保 持 稳 定 的能 力 R n 越 小 说 明 输 出 电 压 随着 负载 电 流 变 化 的幅 度 就 越 小 (3 ) 输 出 电压 波 动 小且 稳定 ( 即 输 出 电 压波 纹 小 ) 2 三 端集 成 可 调直 流稳 压 电源 的设 计 三 端 集 成 稳压 电 源 的 输 出 电压 可 调 且 调 节范 围 比 较大 内部 带有 过 载 保 护 该 电源 用于 电 子 元 件 经 济 实用 且 安全 可 靠 本文 设计 的三 端 集 成 可 调 直 流 稳压 电 源 电 路 由 降 压 电路 整 流 电 路 电 容滤 波 和 稳 压 电路 四 部分 组 合 而 成 原理 图 如 图 1 所 示 其 中 1 C 是三端集 ; ; 成 稳压 器 电 阻 R l 和 电 容 C 3 共 同 组 成 软 启 动 电路 V D I 和 V D Z 是 保 护 管 ; 各元 件 型 号及 参 数设计 见 表 1
可调直流稳压电源设计
可调直流稳压电源设计一、可调直流稳压电源设计原理1.变压器:变压器主要用于将交流电源转化为所需的低压直流电源。
变压器通过绝缘和耦合来改变交流电压的比例。
在设计变压器时,需要考虑到输出电流和输入电压的比例关系,以及变压器的容量和效率等因素。
2.整流电路:整流电路用于将交流电源转化为直流电源。
一般情况下,整流电路采用整流二极管桥的形式,将交流电源的正负半周分别导通,以获得经过正弦波滤波后的直流电压。
3.稳压电路:稳压电路用于调节输出直流电压的波动范围,确保电压的稳定性。
常见的稳压电路有线性稳压电路和开关稳压电路。
线性稳压电路通过调节电流流过稳流二极管或控制晶体管的导通状态来实现电压稳定。
开关稳压电路采用开关元件和反馈控制电路来实现电压的调节和稳定。
二、可调直流稳压电源设计步骤1.确定输出电压范围和电流要求:根据实际需求确定需要设计的可调直流稳压电源的输出电压范围和最大输出电流。
2.计算变压器参数:根据输出电压和电流的要求计算需要的变压器参数,包括变比、容量和效率等。
变压器的容量要能满足最大输出电流的需求,效率要尽可能高以减少功耗。
3.设计整流电路:根据变压器输出的交流电压设计整流电路。
一般情况下,采用整流二极管桥来实现整流,同时需要添加滤波电容来平滑输出直流电压。
4.设计稳压电路:根据输出电压的波动要求选择合适的稳压电路。
线性稳压电路成本较低,但功耗较大;开关稳压电路成本较高,但效率较高。
选择适当的稳压电路后根据所选方案进行具体电路设计。
5.进行实际电路布局和PCB设计:根据设计的稳压电路进行实际电路布局和PCB设计。
电路布局要合理,考虑到电子元件之间的距离、优化导线布局以减少杂散电磁干扰等。
6.进行电路测试和调试:完成电路布局和PCB设计后,进行电路测试和调试。
通过实际测试,验证设计的稳压电路的可开关稳定性和稳压性能。
7.验证电源性能:通过测试,对设计的可调直流稳压电源进行性能验证,包括输出电压的稳定性、负载能力、纹波等。
可调直流稳压电源设计
可调直流稳压电源设计(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--前言此课程设计是做一个集成稳压可调电源,通常,很多参考书上都有类似的电路设计图,在我们需要用时常常面临一个选择困难的问题,而且在选择完成之后,具体的制作过程中总是有很多问题,而参考书上又没有具体的解决办法。
另外,大多电路图所给的实物结果都是理想情况下的,和实际运用中总会有所不同,为了给具体设计制作做出一个参考,特作此课程设计,以期在运用会有所帮助。
集成稳压可调电源的运用非常广泛,不可能逐一列举。
本次课程设计把重点放在电路的设计、制作和调试上。
大家都知道,在电路运用日趋广泛的情况下,独立运用一个集成电路中的某一部分的元件运用逐渐减少,因此本设计的主要在于桥式整流电路、滤波电路、稳压电路的运用和选择上,再设计和运用的过程中有着一定的局限性。
本课程设计中为了能够使所用的元件参数有根有据,有相应的计算公式代入进行理想计算。
也有一部分是从参考书目得来。
本课程实际的目的是给具体的设计制作调试提供一个参考,共同进行讨论。
所用方法并不是唯一的,一起讨论一起实践,以期赢得共同进步。
本次课程设计在设计和制作时以《电子技术基础》、《电路》、《模拟电子技术基础》、《常用电子元件手册》、《实用电子技术基础设计和调试》、《电工技术》等课程知识为基础。
为方便讨论参考,设计当中不乏简单通俗易懂,是一个很简单的电路。
参加设计的有本小组所有成员,分别是张俊君、陆艳猛、雷磊、龚祝文。
其中大部分是一起完成的。
由于我们水平有限,错误性和局限性在所难免,恳请老师同学们指导更正。
目录第一章设计任务、要求、目标设计目的 (3)设计任务及要求 (3)第二章电路设计原理分析总体原理框图 (4)各具体电路设计分析 (4)整体总电路分析 (10)第三章设计制作与调试材料清单 (11)3.2制作与调试 (12)第四章小结小结 (13)第五章心得体会5.1心得体会 (14)第六章参考书目、网站参考书目、网站 (15)第一章设计任务、要求、目标可调直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成。
可调直流稳压电源设计(修改版)
稳压电源设计报告作者:学号:学院:一.设计要求(1)输出±3V~±10V可调(2)最大输出电流为500mA(3)使用LM317、LM377等元器件(4)标明选择原器件的参数二. 直流稳压电源设计思路图2.1稳压电源组成框图(1)电网供电电压为单相交流220V(有效值)/50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。
其主要元器件是电源变压器。
(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大。
该部分组成主要元器件是二极管。
(3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。
主要采用电容滤波电路。
(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载R L。
主要器件采用集成稳压器。
因此,直流稳压电源系统一般由四部分组成,它们分别是电源变压器、整流电路、滤波电路、稳压电路。
三. 主要元器件说明及典型电路LM317的输出电压可以从1.25V连续调节到37V。
其输出电压可以由下式算出:输出电压=1.25×(1+R2/R1)。
LM337的输出电压可以从-1.25V连续调节到-37V。
其输出电压可以由下式算出:输出电压=—1.25×(1+R2/R1)。
图3.1 LM317的外形及管脚和典型的电路图3.2 LM337的外形及管脚和典型的电路为了减小电位器上的纹波电压,可在其上并联了一个10u F的电容,由于电容容量较大,一旦输入端断开,电容将从稳压器输出端向稳压器放电,易使稳压器损坏,因此在稳压器的输入端和输出端之间跨接一个二极管,并且在输出短路时,电容将向稳压器调整端放电,并使调整管发射结反偏,为了保护稳压器,故加一个二极管。
四.主要硬件的选择1. 正负可调稳压器的选择LM317、LM337的电压输出范围是±1.25V ~±37V ,负载电流最大为1.5A,仅需两个外接电阻来设置输出电压,连续可调。
可调直流稳压电源的设计完整版
可调直流稳压电源的设计完整版
可调直流稳压电源的设计完整版:
1、电路原理。
采用的是普通的正弦波变频技术,将交流电转换成直流电,然后利用高效率稳压芯片进行稳压,以保证负载的稳定工作。
2、电源部件。
根据不同的应用场合,使用不同的元件,如电感、电容、变压器、稳压芯片等。
3、整流环节。
采用三端整流结构,将交流电转换成直流电,然后由稳压芯片进行稳压,从而确保负载的稳定工作。
4、变频环节。
根据不同的应用,可以采用PWM(脉宽调制)、发声技术或者正弦波变频技术等多种方式来实现可调节的输出电压。
5、电压稳定环节。
采用高效稳压芯片,可以对输出电压进行精确的控制,使得输出的电压稳定在一定的范围内。
6、过流、过压和温度保护功能。
保证电源能够在过载、过压和过热的情况下自动断电,保护整个系统免受损伤。
7、调节环节。
采用可调节电阻和精密电位计,实现手动或自动调节功能,使得输出电压能够随着外界环境变化进行适当调整。
8、外壳结构。
电源外壳采用优质的金属材料,具有良好的绝缘性能、焊接性能、耐热性能和耐腐蚀性能,能够有效的保护内部的电路元件,并且外形美观耐看。
可调直流稳压电源的设计完整版
可调直流稳压电源的设计完整版首先,电源输入部分是设计可调直流稳压电源的基础。
一般来说,电源输入应使用交流电源,通过整流和滤波电路将交流电转换为直流电。
整流电路可以采用单相或三相整流桥等常见结构,滤波电路则使用电容和电感组成的滤波器,以削弱或消除输入直流电中的纹波和噪声。
接下来是稳压原理的选择。
常用的稳压原理有线性稳压和开关稳压两种。
线性稳压的特点是稳定性好、响应快,但效率相对低。
开关稳压则具有高效率、小尺寸和低成本等优点,但需要采用开关元件和功率开关调整电压输出。
在稳压原理选择确定后,需要设计功率放大部分。
功率放大部分通常采用功率管或功率模块实现。
如果选择线性稳压,功率管可以是普通的二极管,通过调节通断时间来调整电压输出。
如果选择开关稳压,可以采用MOS管或IGBT作为开关元件,通过PWM控制开关管的导通时间占空比来调整电压输出。
最后是保护电路的设计。
保护电路通常包括过压保护、过流保护和过热保护等功能。
在过压保护方面,可以采用过压检测电路,当输出电压超过设定值时,保护电路自动断开电源输入。
过流保护可以通过电流检测电路实现,如果输出电流超过设定值,保护电路自动断开电源输入。
过热保护可以采用温度传感器检测电源温度,当温度超过一定阈值时,保护电路自动断开电源输入。
除了上述基本设计要素,还可以考虑添加其他功能,如电压和电流显示、电流限制和恒流输出等。
电压和电流显示可以通过数码管或LCD显示模块实现,可以实时显示输出电压和电流数值。
电流限制可以设置一个最大输出电流值,当输出电流超过设定值时,电源自动调整输出电压来限制输出电流。
恒流输出可以保持输出电流不变,当负载变化时,电源会调整输出电压来保持输出电流恒定。
总之,设计一个完整的可调直流稳压电源需要考虑电源输入、稳压原理、功率放大和保护等多个方面。
通过合理选择电路结构和元器件,可以设计出性能稳定、功能强大的可调直流稳压电源,以满足不同电子设备的需求。
项目一+可调直流稳压电源设计.pdf
项目一 可调直流稳压电源一、设计任务与要求 1、设计任务设计并制作有一定输出电压调节范围的直流稳压电源。
2、基本要求(1)输出直流电压(Uo )调节范围6~9V 。
(输入电压Ui~13V ) (2)纹波小于40mV 。
(Vpp ) (3)稳压系数2210v S −≤×(4)输出电流0~200mA 。
(5)具有过电流保护功能,动作电流200~230mA 。
(6)利用通用板制作电路。
(7)给出电路的Multisim 软件仿真。
二、基本工作原理与设计要点简化的可调直流稳压电源原理见下图,电路由电源变压器、整流电路、滤波电路和稳压电路四个部分构成。
稳压电路为较常用的串联型线性稳压电路,它具有结构简单、调节方便、输出电压稳定性强、纹波电压小等优点示。
输入电压Ui 为整流滤波电路的输出电压。
稳压电路的输出电压为:422234()O Z R R U U R R R ′+=+++BE U由上式可知输出电压与R4的分压呈线性关系,当改变R4抽头位置的大小,则输出电压也将发生变化。
电路中,R1为Q1、Q2、D2提供静态电流;C2为滤波电容,使Q1的基级电位稳定,一般C2去几十uF ;C3为输出滤波电容,以减小纹波输出;Q1是调整管,应具有足够的电流放大倍数和P CM 。
限流型过流保护电路如图示,当Io 较小,U BE2<U ON 时,T2截止。
随Io 增加T2导通,I 被I C2分流,从而限制了Io 的进一步增加。
限流型保护电路输出特性如下图,动作电流为:207max .BE O O OU VI R R ==流过R2、3、4的电流应比Q2基级电流大很多,一般应有10倍以上。
D2可以选取0.5W 的稳压管,如:BZV55-B5V1,工作电流通常选取5~10mA 。
调整管Q1的安全工作是电路正常工作的保证,它的选用主要考虑其极限参数I CM ,U (BR )CEO 和P CM 。
调整管极限参数的确定,必须考虑到输入电压U I 由于电网电压波动而产生的变化,以及输出电压的调节和负载电流的变化所产生的影响。
可调直流稳压电源的设计完整版
可调直流稳压电源的设计直流稳压电源的设计设计要求基本要求:短路保护,电压可调。
若用集成电路制作,要求具有扩流电路。
基本指标:输出电压调节范围:0-6V,或0-8V,或0-9V,或0—12V;最大输出电流:在0.3A-1.5A区间选一个值来设计;输出电阻Ro:小于1欧姆。
其他:纹波系数越小越好(5%Vo),电网电压允许波动范围 + -10%。
设计步骤1.电路图设计(1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。
(2)系统分析:根据系统功能,选择各模块所用电路形式。
(3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。
(4)总电路图:连接各模块电路。
2. 设计思想(1)电网供电电压交流220V(有效值)频率为50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。
(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。
(3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。
(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响。
的稳定直流电压输出,供给负载RL电路设计(一)直流稳压电源的基本组成直流稳压电源是将频率为50Hz 、有效值为220V 的单相交流电压转换为幅值稳定、输出电流为几十安以下的直流电源,其基本组成如图(1)所示:图(1) 直流稳压电源的方框图 直流稳压电源的输入为220V 的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。
变压器副边电压有效值决定于后面电路的需要。
变压器副边电压通过整流电路从交流电压转换为直流电压,即正弦波电压转换为单一方向的脉动电压,半波整流电路和全波整流电路的输出波形如图所示。
可以看出,他们均含有较大的交流分量,会影响负载电路的正常工作。
「可调直流稳压电源的设计完整版」
「可调直流稳压电源的设计完整版」设计一个可调直流稳压电源需要考虑多个因素,包括输入电压、输出电压范围、输出电流、稳定性等。
以下是一个可调直流稳压电源的设计完整版,详细介绍了各个环节的设计要点。
1.输入电路设计:输入电路主要包括电源输入和滤波电路。
电源输入可以选择交流输入,需要使用桥式整流电路将交流电转化为直流电。
滤波电路使用电容和电感来滤除交流干扰和高频噪声。
2.整流设计:使用桥式整流电路将交流电转化为直流电。
桥式整流电路由四个二极管组成,能够将交流电的正负半周均转化为正向电流,实现整流目的。
3.平滑滤波设计:整流后的直流电需要通过平滑滤波电路进一步滤波,以减小电压波动。
平滑滤波电路通常由电容和电阻组成,电容能够存储电荷并平滑电压,电阻用于限制电感器电流。
4.电压调节器设计:为了实现可调的输出电压,可以采用稳压器来调节电压。
常见的稳压器有线性稳压器和开关稳压器。
线性稳压器简单可靠,但效率较低。
开关稳压器效率较高,但设计较为复杂。
根据需求选择适合的稳压器。
5.输出电路设计:输出电路主要包括电流保护电路和滤波电路。
电流保护电路可以保护电源以及被供电设备免受过电流损坏。
滤波电路用于滤除输出电压中的杂散噪声。
6.稳定性设计:为了保证电压的稳定性,可以使用反馈控制电路来调整稳压器的输出电压。
反馈控制电路根据输出电压与设定电压之间的差异来调整稳压器的输出,使其达到设定值。
7.保护电路设计:为了保护电源和被供电设备,可以在电源中加入过载保护、过热保护、短路保护等保护电路。
这些保护电路能够在异常情况下自动切断电源,以避免损坏设备和电源本身。
8.辅助功能设计:可以根据需求添加辅助功能,如过压保护、欠压保护、温度显示等。
这些辅助功能能够提升电源的灵活性和安全性。
以上是一个可调直流稳压电源的设计完整版,主要包括输入电路设计、整流设计、平滑滤波设计、电压调节器设计、输出电路设计、稳定性设计、保护电路设计和辅助功能设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可调直流稳压电源的设计直流稳压电源的设计设计要求基本要求:短路保护,电压可调。
若用集成电路制作,要求具有扩流电路。
基本指标:输出电压调节范围:0-6V,或0-8V,或0-9V,或0—12V;最大输出电流:在0.3A-1.5A区间选一个值来设计;输出电阻Ro:小于1欧姆。
其他:纹波系数越小越好(5%Vo),电网电压允许波动范围 + -10%。
设计步骤1.电路图设计(1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。
(2)系统分析:根据系统功能,选择各模块所用电路形式。
(3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。
(4)总电路图:连接各模块电路。
2. 设计思想(1)电网供电电压交流220V(有效值)频率为50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。
(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。
(3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。
(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响。
的稳定直流电压输出,供给负载RL电路设计(一)直流稳压电源的基本组成直流稳压电源是将频率为50Hz 、有效值为220V 的单相交流电压转换为幅值稳定、输出电流为几十安以下的直流电源,其基本组成如图(1)所示:图(1) 直流稳压电源的方框图 直流稳压电源的输入为220V 的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。
变压器副边电压有效值决定于后面电路的需要。
变压器副边电压通过整流电路从交流电压转换为直流电压,即正弦波电压转换为单一方向的脉动电压,半波整流电路和全波整流电路的输出波形如图所示。
可以看出,他们均含有较大的交流分量,会影响负载电路的正常工作。
为了减小电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。
理想情况下,应将交流分量全部滤掉,使滤波电路的输出电压仅为直流电压。
然而,由于滤波电路为无源电路,所以接入负载后势必影响其滤波效果。
对于稳定性要求不高的电子电路,整流、滤波后的直流电压可以作为供电电源。
交流电压通过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或者负载变化时,其平均值也将随之变化。
稳压电路的功能是使输出直流电压基本不受电网电压波动和负载电阻变化的影响,从而获得足够高的稳定性。
(二)各电路的选择1.电源变压器电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压U i 。
实际上,理想变压器满足I 1/I 2=U 2/U 1=N 2/N 1=1/n ,因此有P 1=P 2=U 1I 1=U 2I 2。
变压器副边与原边的功率比为P 2/ P 1=η,式中η是变压器的效率。
根据输出电压的范围,可以令变压器副边电压为22V ,即变压系数为0.1。
2.整流电路T负 载(1)半波整流错误!不能通过编辑域代码创建对象。
图(2) 半波整流电路 图(3) 半波整流电路的波形图整流电路如图(2)所示,其输出电压平均值就是负载电阻上电压的平均值U o(AV)。
从图(3)所示波形图可知,当ωt=0~π时,U o =2U 2sin ωt;当ωt=π~2π时,U o =0。
所以,求解U o 的平均值U o(AV),就是将0~π的电压平均在0~2π时间间隔之中,如图(3)所示,写成表达式为:U o(AV)=1/2πU 2sin ωtd(ωt) 解得: U o(AV)=U 2/π≈0.45U 2负载电流的平均值:I o(AV)= U o(AV)/R L半波整流电路中的二极管安全工作条件为:a )二极管的最大整流电流必须大于实际流过二极管平均电流,即I F >I DO =U LO /R L =0.45U 2/R Lb )二极管的最大反向工作电压UR 必须大于二极管实际所承受的最大反向峰值电压URM ,即U R >U RM =2U 2单相半波整流电路简单易行,所用二极管数量少。
但是由于它只是利用了交流电压的半个周期,所以输出电压低,交流分量大,效率低。
因此,这种电路仅适用于整流电流较小,对脉动要求不高的场合。
(2)全波桥式整流电路为了克服单相半波整流电路的特点,在使用电路中多采用单相全波整流电路,最常用的是单相桥式整流电路。
如图(4)所示图(4) 全波桥式整流电路设变压器次级电压U 2=U 2m sin ωt=2U 2sin ωt ,其中U 2m 为其幅值,U 2为有效值,负载电阻为100Ω。
在电压U 2的正半周期时,二极管D1、D3因受正向偏压而导通,D2、D4因承受反向电压而截止;在电压U 2的负半周期时,二极管因受D2、D4正向偏压而导通,D1、D3因承受反向电压而截止。
U 2和U L 的波形如图(5)所示,显然,输入电压是双极性,而输出电压是单极性,且是全波波形,输出电压与输入电压的幅值基本相等。
由理论分析可得,输出全波单向脉冲电压的平均值即直流分量为 ωtU 2o U Lωto图(5) 全波整流电路的波形U OL =2U 2m /π=π22U 2≈0.9U 2=0.9×22≈20V 全波整流电路中的二极管安全工作条件为:a )二极管的最大整流电流必须大于实际流过二极管平均电。
由于4个二极管是两两轮流导通的,因此有I F >I DO =0.5U LO /R L =0.45U 2/R L =0.45×20/100≈90mAb)二极管的最大反向工作电压U R必须大于二极管实际所承受的最大反向峰值电压URM,即U R>U RM =2U2=1.4×20=28V单相桥式整流电路与半波整流电路相比,在相同的变压器副边电压下,对二极管的参数要求是一样的,并且还具有输出电压高、变压器利用高、脉动小等优点,因此得到广泛的应用。
它的主要缺点是所需二极管的数量比较多,由于实际上二极管的正向电阻不为零,必然使得整流电路内阻较大,当然损耗也就比较大。
3.滤波电路电容滤波电路是最常见的也是最简单的滤波电路,在整流电路的输出端并联一个电容即构成电容滤波电路,如图(6)所示:图(6)单相桥式整流电容滤波电路该电路工作原理:设U2= U2m sinωt=2U2sinωt,由于是全波整流,因此不管是在正半周期还是在负半周期,电源电压U2一方面向R L供电,另一方面对电容C进行充电,由于充电时间常数很小(二极管导通电阻和变压器内阻很小),所以,很快充满电荷,使电容两端电压U C基本接近U2m,而电容上的电压是不会突变的。
现假设某一时刻U2的正半周期由零开始上升,因为此时电容上电压U C 基本接近U2m,因此U2<U C,D1、D2、D3、D4管均截止,电容C通过R L放电,由于放电时常数τd=R L C很大(R L较大时),因此放电速度很慢,U C下降很少。
与此同时,U2仍按2 U2sinωt的规律上升,一旦当U2>U C时,D1、D3导通,U2对C 充电。
然后,U2又按2 U2sinωt的规律下降,当U2<U C时,二极管均截止,故C又经R L放电。
同样,在U2的负半周期也会出现与上述基本相同的结果。
这样在U2的不断作用下,电容上的电压不断进行充放电,周而复始,从而得到一近似于锯齿波的电压U L= U C,使负载电压的纹波大为减小。
由以上分析可知,电容滤波电路有如下特点:a)R L C越大,电容放电速度越慢,负载电压中的纹波成分越小,负载平均电压越高。
为了得到平滑的负载电压,一般取 R L C≥(3~5)T/2 式中,T为交流电源电压的周期。
由上式可以解得 C =(3~5)T/2 R L≈400μFb)RL 越小输出电压越小。
若C值一定,当R L→∞,即空载时有ULO=2 U2≈1.4 U2。
当C=0,即无电容时有U LO≈0.9 U2。
当整流电路的内阻不太大(几Ω)和电阻RL电容C取值满足上式时,有U LO≈(1.1~1.2) U2总之,电容滤波适用于负载电压较高、负载变化不大的场合4.稳压电路虽然整流滤波电路能将正弦交流电压变换为较为平滑的直流电压,但是,一方面,由于输出电压平均值取决于变压器副边电压有效值,所以当电网电压波动时,输出电压平均值将随之产生相应的波动;另一方面,由于整流滤波电路内阻的存在,当负载变化时,内阻上的电压将产生相反的变化,于是输出电压平均值也将随之产生相反的变化。
因此,整流滤波电路输出电压会随着电网电压的波动而波动,随着负载电阻的变化而变化。
为了获得稳定性好的直流电压,必须采取稳压措施。
(1)简单稳压电源稳压二极管组成的稳压电路如图(7)所示:图(7)稳压二极管组成的稳压电路稳压管稳压的原理实际上是利用稳压管在反向击穿时电流可在较大范围内变动但击穿电压却基本不变的特点而实现的。
当输入电压变化时,输入电流将随之变化,稳压管中的电流也将随之同步变化,结果输出电压基本不变;当负载电阻变化时,输出电流将随之变化,但稳压管中的电流却随之作反向变化,结果仍是输出电压基本不变。
显然,稳压管反向击穿特性曲线越陡峭,稳压特性越好。
下面讨论R 的取值范围。
参见图(7),设为保证稳压作用的所需的流过稳压二极管的最小电流为I zmin ,为防止电流过大从而造成损坏所容许的流过稳压二极管的最大电流为I zmax ,即要求I zmin <Iz <I 2max 。
当U I 最大和R L 开路时,流过稳压二极管的电流最大,此时应有zmax zmax I I U U R -≥;当U I 最小(不小于U z )和R L 最小(不允许短路)时,流过稳压二极管的电流最小,此时应有min L z zmin z min I /R U I U U R +-≤。
即 minL z zmin z min I zmax zmax I /R U I U U R I U U +-≤≤- 一般来说,在稳压二极管安全工作的条件下,R 应尽可能小,从而使输出电流范围增大。
稳压管稳压电路的优点是电路简单,所用元器件少;但是,因为受稳压管自身参数的限制,其输出电流较小,输出电压不可调,因此只适用于负载电流较小,负载电压不变的场合。
(2)三端集成稳压器电路集成稳压器与简单稳压电路相比其电路结构简单,它可以通过外接元件使输出电压得到很宽的调节范围。
并且内部有过热保护、过流保护等保护电路,可以很安全的保护电路的正常工作。
图(8)时由LM317组成的基准电压源电路,电容C o 用于消除输出电压中的高频噪音,可取小于1μF 的电容。
输入端和调整端之间的电压时非常稳定的电压,其值为1.25V 。
输出电流可达1.5A 。