氢谱谱图解析步骤

合集下载

氢谱谱图解析步骤解读

氢谱谱图解析步骤解读

谱图的解析NMR谱法一般经历如下的步骤进行谱图的解析:★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;通过元素分析获得化合物的化学式,计算不饱和度Ω;★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。

从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等;★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。

先解析一级光谱,然后复杂光谱。

进行复杂光谱解析时,应先进行简化;★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。

然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。

例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。

解:有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性;IR显示~1750cm-1有一强峰,应有存在,且分子中有4个O,则可能有2个;处有一组三重峰,可能为-CH,且受裂分,而3处有一组四重峰,与是典型的组分;而δ较大,可能为的组分;处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不偶合)的,可能为所以可能有的结合。

而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。

因此可以推测出整个分子的中间C原子为对称的结构,可能为验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。

核磁共振波谱法之氢谱解析

核磁共振波谱法之氢谱解析

1.6 a峰的氢数 3H 1.6 1.0 0.5 0.6 1.0 b峰的氢数 2H 1.6 1.0 0.5 0.6
同理计算c峰和d峰各相当于1H。
依已知含氢数目的峰的积分值为准,求出一个氢相当的 积分值,而后求出氢分布。 本题中δd10.70很容易认定为羧基氢的共振峰,因而 0.60cm相当于1个氢,因此:
a b O c CH2CH2 O C CH3
3 2
化合物 C10H12O2
2 5
8
7
6
5
4
3
2
1
0
例1 计算下图中a、b、c、d各峰的氢核数目。
C4H7BrO2的核磁共振氢谱
测量各峰的积分高度,a为1.6cm,b为1.0cm,c为0.5cm,d 为0.6cm。氢分布可采用下面两种方法求出。 (1)由每个(或每组)峰面积的积分值在总积分之中所占 的比例求出:
②氢分布:
③ a 2.42 单峰 3H CH 3 CO 而不是与氧相连(CH3-O-的δ 为3.5~3.8)
d 7.35 单峰 5H 单取代苯,与烃基直接 相连
④由分子式中扣除CH3-CO-及C6H5-,余C2H2Br2而c、d皆 为二重峰,而化学位移δb4.91、 δc5.33,说明存在着-CHBrCHBr-基团。 ⑤结构式: 综上所述,未知物结构式为:
第五节
核磁共振氢谱的解析
要求:
1、掌握核磁共振氢谱中峰面积与氢核数目的 关系; 2、掌握核磁共振氢谱的解析步骤; 3、熟悉并会解析一些简单的核磁共振氢谱。
一、谱图中化合物的结构信息 1、核磁共振氢谱提供的信息:由化学位移、偶合常数 及峰面积积分曲线分别提供含氢官能团、核间关系及氢 分布等三方面的信息。具体如下: (1)峰的数目:标志分子中磁不等价质子的种类,多少种;

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱剖析图谱的步调之阳早格格创做核磁共振氢谱核磁共振技能死少较早,20世纪70年代往日,主假如核磁共振氢谱的钻研战应用.70年代以去,随着傅里叶变更波谱仪的诞死,13C—NMR的钻研赶快启展.由于1H—NMR的敏捷度下,而且聚集的钻研资料歉富,果此正在结构剖析圆里1H—NMR的要害性仍强于13C—NMR.剖析图谱的步调 1.先瞅察图谱是可切合央供;①四甲基硅烷的旗号是可仄常;②杂音大不大;③基线是可仄;④积分直线中不吸支旗号的场合是可仄坦.如果有问题,剖析时要引起注意,最佳沉新尝试图谱. 2.区别杂量峰、溶剂峰、转动边峰(spinning side bands)、13C卫星峰(13C satellite peaks)(1)杂量峰:杂量含量相对付样品比率很小,果此杂量峰的峰里积很小,且杂量峰与样品峰之间不简朴整数比的闭系,简单辨别.(2)溶剂峰:氘代试剂不可能达到100%的共位素杂度(大部分试剂的氘代率为99-99.8%),果此谱图中往往浮现相映的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处.(3)转动边峰:正在尝试样品时,样品管正在1H-NMR仪中赶快转动,当仪器安排已达到良佳处事状态时,会出现转动边戴,即以强谱线为核心,浮现出一对付对付称的强峰,称为转动边峰.(4)13C卫星峰:13C具备磁距,不妨与1H奇合爆收裂分,称之为13C卫星峰,但是由13C的天然歉度只为1.1%,惟有氢的强峰才搞瞅察到,普遍不会对付氢的谱图制成搞扰. 3.根据积分直线,瞅察各旗号的相对付下度,估计样品化合物分子式中的氢本子数目.可利用稳当的甲基旗号或者孤坐的次甲基旗号为尺度估计各旗号峰的量子数目. 4.先剖析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤坐的甲基量子旗号,而后再剖析奇合的甲基量子旗号. 5.剖析羧基、醛基、分子内氢键等矮磁场的量子旗号. 6.剖析芳香核上的量子旗号.7.比较滴加沉火前后测定的图谱,瞅察有无旗号峰消得的局里,相识分子结构中所连活泼氢官能团.8.根据图谱提供旗号峰数目、化教位移战奇合常数,剖析一级典型图谱.9.剖析下档典型图谱峰旗号,如黄酮类化合物B环仅4,-位与代时,浮现AA,BB,系统峰旗号,二氢黄酮则浮现ABX系统峰旗号.10. 如果一维1H-NMR易以剖析分子结构,可思量尝试二维核磁共振谱协共剖析结构.11. 拉拢大概的结构式,根据图谱的剖析,拉拢几种大概的结构式.12. 对付推出的结构举止指认,即每个官能团上的氢正在图谱中皆应有相映的归属旗号.四. 核磁共振碳谱(13C—(1)溶剂峰:虽然碳谱不受溶剂中氢的搞扰,但是为兼瞅氢谱的测定及磁场需要,仍常采与氘代试剂动做溶剂,氘代试剂中的碳本子均有相映的峰.(2)杂量峰:杂量含量相对付于样品少得多,其峰里主动小,与样品化合物中的碳浮现的峰不可比率.(3)尝试条件的做用:尝试条件会对付所测谱图有较大做用.如脉冲倾斜角较大而脉冲隔断不敷万古,往往引导季碳不出峰;扫描宽度不敷大时,扫描宽度以中的谱线会合叠到图谱中去;等等,均制成剖析图谱的艰易.根据分子式估计的不鼓战度,推测图谱烯碳的情况.若谱线数目等于分子式中碳本子数目,证明分子结构无对付称性;若谱线数目小于分子式中碳本子数目,证明分子结构有一定的对付称性.别的,化合物中碳本子数目较多时,有些核的化教环境相似,大概δ值爆收沉叠局里,应给予注意.δ值的分区碳本子大概可分为三个区(1)下δ值区δ>165ppm,属于羰基战叠烯区:①分子结构中,如存留叠峰,除叠烯中有下δ值旗号峰中,叠烯二端碳正在单键天区还应有旗号峰,二种峰共时存留才证明叠烯存留;②δ>200 ppm的旗号,只可属于醛、酮类化合物;③160-180ppm的旗号峰,则归属于酸、酯、酸酐等类化合物的羰基.(2)中δ值区δ90-160ppm(普遍情况δ为100-150ppm)烯、芳环、除叠烯中央碳本子中的其余SP2杂化碳本子、碳氮三键碳本子皆正在那个天区出峰.(3)矮δ值区δ<100ppm,主要脂肪链碳本子区:①不与氧、氮、氟等杂本子贯串的鼓战的δ值小于55ppm;②炔碳本子δ值正在 70-100ppm,那是不鼓战碳本子的惯例.由矮核磁共振或者APT(attached proton test)、DEPT(distortionless enhancement by polarization transfer)等技能可决定碳本子的级数,由此可估计化合物中与碳本子贯串的氢本子数.若此数目小于分子式中的氢本子数,二者之好值为化合物中活泼氢的本子数.先推导出结构单元,并进一步拉拢成若搞大概的结构式.将核磁共振碳谱中各旗号峰正在推出的大概结构式上举止指认,找出各碳谱旗号相映的归属,进而正在被推导的大概结构式中找出最合理的结构式,即精确的结构式.。

核磁共振氢谱解析步骤

核磁共振氢谱解析步骤

核磁共振氢谱解析步骤
核磁共振氢谱解析步骤如下:
1.观察图谱是否符合要求:如四甲基硅烷的信号是否正常、杂音大
不大、基线是否平、积分曲线中没有吸收信号的地方是否平整。

如果存在问题,需要重新测试图谱。

2.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式
中的氢原子数目:可以利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。

3.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤
立的甲基质子信号,然后再解析偶合的甲基质子信号。

4.解析羧基、醛基、分子内氢键等低磁场的质子信号。

5.解析芳香核上的质子信号。

氢谱谱图解析步骤

氢谱谱图解析步骤

谱图的解析NMR谱法一般经历如下的步骤进行谱图的解析:★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;通过元素分析获得化合物的化学式,计算不饱和度Ω;★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。

从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等;★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。

先解析一级光谱,然后复杂光谱。

进行复杂光谱解析时,应先进行简化;★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。

然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。

例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。

解:有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性;????IR显示~1750cm-1有一强峰,应有存在,且分子中有4个O,则可能有2个;处有一组三重峰,可能为-CH,且受裂分,而处有一组四重峰,与是典型的3组分;而δ较大,可能为的组分;?处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不偶合)的,可能为所以可能有的结合。

而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。

因此可以推测出整个分子的中间C原子为对称的结构,可能为验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。

氢谱谱图解析步骤

氢谱谱图解析步骤

谱图的解析(一)NMR谱法一般经历如下的步骤进行谱图的解析:★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;通过元素分析获得化合物的化学式,计算不饱和度Ω;★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。

从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等;★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。

先解析一级光谱,然后复杂光谱。

进行复杂光谱解析时,应先进行简化;★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。

然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。

例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。

解:有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性;IR显示~1750cm-1有一强峰,应有存在,且分子中有4个O,则可能有2个;处有一组三重峰,可能为-CH,且受裂分,而处有一组四重峰,与3是典型的组分;而δ较大,可能为的组分;处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不偶合)的,可能为所以可能有的结合。

而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。

因此可以推测出整个分子的中间C原子为对称的结构,可能为验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。

氢谱谱图解析步骤修订稿

氢谱谱图解析步骤修订稿

氢谱谱图解析步骤公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]谱图的解析NMR谱法一般经历如下的步骤进行谱图的解析:★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;通过元素分析获得化合物的化学式,计算不饱和度Ω;★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。

从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等;★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。

先解析一级光谱,然后复杂光谱。

进行复杂光谱解析时,应先进行简化;★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。

然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。

例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。

解:有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性;IR显示~1750cm-1有一强峰,应有存在,且分子中有4个O,则可能,且受裂分,而有2个;处有一组三重峰,可能为-CH3处有一组四重峰,与是典型的组分;而δ较大,可能为的组分;处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不偶合)的,可能为所以可能有的结合。

而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。

因此可以推测出整个分子的中间C原子为对称的结构,可能为验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。

核磁共振氢谱解析

核磁共振氢谱解析

核磁共振氢谱解析
核磁共振氢谱(NMR)是一种分析有机分子结构的技术。

在该技术中,核磁共振仪会对样品中的氢原子进行激发,使其产生共振信号,然后测量该信号的频率和强度。

利用核磁共振氢谱技术可以确定分子中不同类型氢原子的相对数量和结构。

每种氢原子所产生的信号的位置、强度和形状均有所不同,可以通过与已知的标准进行比较,从而确定分子结构中每个氢原子的位置和数目。

在解析核磁共振氢谱时,可以通过以下步骤进行:
1. 确定信号的化学位移:信号的化学位移是指共振信号在谱图中所处位置的数值。

该数值可以通过将信号的频率与参考化合物的信号频率进行比较得出。

2. 确定信号的数量:每种不同类型的氢原子所产生的信号数量是确定的,可以通过比较谱图中各个信号的峰的面积或积分来确定每种氢原子的相对数量。

3. 确定信号的形状:不同类型氢原子产生的信号的形状可以有所不同,可能是单峰、双峰或多峰。

该信号形状可以提供分子结构的信息。

4. 确定化合物的结构:通过确定化学位移、数量和形状,可以确定化合物中氢原子的位置和数目,从而确定化合物的结构。

总之,核磁共振氢谱解析是一种能够确定有机分子结构的技术,对有机化学和药物化学等领域具有重要的应用价值。

[整理版]核磁共振氢、碳普解析的步骤

[整理版]核磁共振氢、碳普解析的步骤

三. 核磁共振氢谱核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。

70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。

由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。

解析图谱的步骤1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。

如果有问题,解析时要引起注意,最好重新测试图谱。

2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。

(2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。

(3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C 的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。

3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。

可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。

4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。

5.解析羧基、醛基、分子内氢键等低磁场的质子信号。

6.解析芳香核上的质子信号。

7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。

核磁共振氢谱图谱解析

核磁共振氢谱图谱解析

核磁共振氢谱图谱解析1. 引言核磁共振氢谱是一种利用核磁共振技术研究物质中氢原子的化学环境和结构的方法。

氢是最常见的元素之一,广泛存在于化学化工、生物医药等领域。

通过核磁共振氢谱图谱的解析,可以了解样品的分子结构、官能团和化学环境等信息,对于化学合成、物质性质研究、质量控制等具有重要意义。

本文将介绍核磁共振氢谱图谱的基本原理、谱峰解析步骤和谱峰解析的应用实例,帮助读者更好地理解和应用核磁共振氢谱图谱解析技术。

2. 核磁共振氢谱基本原理核磁共振(Nuclear Magnetic Resonance, NMR)基于原子核的磁性和电磁波的相互作用,通过施加磁场和射频脉冲来激发样品中的氢原子核,根据吸收或发射电磁波的频率差异来获得谱图信息。

核磁共振氢谱图谱的横坐标表示化学位移或称为化学位移标尺(Chemical Shift, δ),单位为ppm(parts per million)。

纵坐标表示吸收强度或强度积分。

3. 核磁共振氢谱图谱解析步骤3.1 样品准备样品是进行核磁共振氢谱图谱解析的基础,需要制备纯度高、浓度适宜的样品。

样品制备时要注意避免杂质的干扰,需选用适合的溶剂,并校正溶剂的化学位移标尺。

3.2 光谱仪参数设置在进行核磁共振实验前,需要根据样品的特点和要研究的问题来调整光谱仪的参数。

如调节磁场强度、扫描速度、脉冲宽度和接收增益等。

3.3 谱峰解析核磁共振谱峰的位置、形状和峰面积等参数与样品的结构和环境密切相关,通过分析谱峰的特征来推断样品的化学结构。

谱峰解析通常包括以下几个方面的内容:3.3.1 化学位移解析化学位移是谱图上谱峰的位置信息,表示了不同原子在化学环境中所受到的磁场强度的差异。

通过与参考物质的化学位移进行比较,可以推断样品中含有的官能团和化学结构。

3.3.2 耦合常数解析耦合常数是指谱图上峰之间的距离信息,用于描述不同耦合离子对之间的相互作用。

通过分析谱峰之间的相对位置和大小关系,可以预测样品中的化学键和官能团。

氢谱谱图解析步骤

氢谱谱图解析步骤

谱图的解析NMR谱法一般经历如下的步骤进行谱图的解析:★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;通过元素分析获得化合物的化学式,计算不饱与度Ω;★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。

从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等;★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。

先解析一级光谱,然后复杂光谱。

进行复杂光谱解析时,应先进行简化;★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。

然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,瞧其就是否符合,从而可以推断出某种最可能的结构式。

例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。

解:有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性;IR显示~1750cm-1有一强峰,应有存在,且分子中有4个O,则可能有2个;处有一组三重峰,可能为-CH,且受裂分,而处有3一组四重峰,与就是典型的组分;而δ较大,可能为的组分; 处有一单峰,相对面积为1,则就是一个与碳基相连的孤立(不偶合)的,可能为所以可能有的结合。

而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。

因此可以推测出整个分子的中间C原子为对称的结构,可能为验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。

氢谱谱图解析步骤

氢谱谱图解析步骤

谱图的解析NMR谱法一般经历如下的步骤进行谱图的解析:★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;通过元素分析获得化合物的化学式,计算不饱和度Ω;★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。

从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等;★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。

先解析一级光谱,然后复杂光谱。

进行复杂光谱解析时,应先进行简化;★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。

然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。

例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。

解:有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性;IR显示~1750cm-1有一强峰,应有存在,且分子中有4个O,则可能有2个;处有一组三重峰,可能为-CH,且受裂分,而处3有一组四重峰,与是典型的组分;而δ较大,可能为的组分;处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不偶合)的,可能为所以可能有的结合。

而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。

因此可以推测出整个分子的中间C原子为对称的结构,可能为验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。

氢谱谱图解析步骤

氢谱谱图解析步骤

氢谱谱图解析步骤-CAL-FENGHAI.-(YICAI)-Company One1谱图的解析NMR谱法一般经历如下的步骤进行谱图的解析:★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;通过元素分析获得化合物的化学式,计算不饱和度Ω;★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。

从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等;★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。

先解析一级光谱,然后复杂光谱。

进行复杂光谱解析时,应先进行简化;★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。

然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。

例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。

解:有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性;IR显示~1750cm-1有一强峰,应有存在,且分子中有4个O,则可能有2个;处有一组三重峰,可能为-CH3,且受裂分,而处有一组四重峰,与是典型的组分;而δ较大,可能为的组分;处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不偶合)的,可能为所以可能有的结合。

而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。

因此可以推测出整个分子的中间C原子为对称的结构,可能为验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谱图的解析
NMRf法一般经历如下的步骤进行谱图的解析:
★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;
通过元素分析获得化合物的化学式,计算不饱和度Ω;
★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同
基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醞JrJJ 一二J
O 耳
甲基酮(一「一)、甲基叔胺(:L Jr)、甲基取代的苯等中的甲基质子及苯环上
I
的质子,活泼氢为一—H, 曲一,-SH等;然后再确认偶合的基团。

从有关图或表中的δ
可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导
效应、共轭效应、磁的各向异性效应及形成氢键的影响等;
★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。

先解析一级光谱,然后复杂光谱。

进行复杂光谱解析时,应先进行简化;
★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;
★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。

然后,反过来,从可能
的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以
推断出某种最可能的结构式。

例某化合物的化学式为 '厂l,lR谱表明I l'l∙∙1有一很强的吸收峰,
有三组峰,相对面积为2:1:3 ,若分别为2、1、3个■-,则总数为6,为 分子式12个―的一半,因此分子可能有对称性;
IR 显示〜175OCm I 有一强峰,应有;--存在,且分子中有4个O,则可
能有2个; 二处有一组三重峰,可能为—CH,且受裂分,而’: 处有一组四重峰,与’二:是典型的组分;而δ较大,可能为….…-一 的组分;” 「处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不
Q H
Ii r L -C-C-
所以可能有
的结合。

而此结合的 匚、O 的数目为分子式的一半,而C 原子数一半多半个原子。

因此可以推测出整个分子的中间 C 原子为对称的结构,可能为
Ij )HP
CH 3 CH 2 0 -C- C-C-C¾C ⅝
H
验证:以炔可能结构,推测其 NMF 谱,与实验谱图比较,结果相符合。

是否可
能为
OHO
CH 3CH 3O-C-C-C-CH 2CH 5
I
(请思考)
(二)定量分析
NMR 图谱中积分曲线的高度与引起该共振峰的氢核数成正比,
这不仅是
结构分析的重要参数,而且是定量分析的依据。

用NMR 技术进行定量分析的最大优点是,不需要有被测物质的纯物质作标 准,也不必绘制校准曲线或引入校准因子, 而只要与适当的标准参照物(不必是 被测物质的纯物质)相对照就可得到被测物质的量,对标准物的基本要求是其 NMR 谱的共振峰不会与试样峰重叠。

常用的标准物为有机硅化合物,其质子峰大多在高场,便于比较,为六用基 环三硅氧烷和六甲基环三
CH r CH 2-C
硅胺等。

标准参物和试样的分析物的各参数如下表示。

由标准参比物分析峰求得每mol质子的相对峰面积网:为
A H 直E ME
3超Q臥盂
M R R
同样试样分析物每mol质子的相对峰面积」■"为
m5.n s
A R∙M R AS M S
H .冃
因为,■ 所以'i^ '■- ■
A
m s - τ-T7 ---------- π⅛
则分析物的量一为
分析方法上可以有两种方法-——内标准和外标准
内标法
把标准参比物与试样混合在一起,以合适的属剂配制适宜浓度的属液,绘制NMR谱, 按上式进行计算。

这种方法准确度高,操作方便,较常应用,尤其是一些较简单试样的分析更常用。

外标法
当分分析较复杂的试样时,难以找到合适的内标,可用外标准参比物和试样在同样
条件下分别绘制NMR谱。

计算方法一样。

而外标准物可以用分析物的纯物质,此时计算试简
AS
∏ιs= -—m R
化为I-
基于常规(一维)核磁共振谱推导有机化合物结构
对于结构较简单的有机化合物,利用其氢谱、碳谱、再结合其分子式(甚至仅知低分辨的分子量)便可推导
出结构。

对于结构相当简单的有机化合物,仅利用氢谱和其分子式,便可能推出其结构。

分析氢谱有如下的步骤。

(1) 区分出杂质峰、溶剂峰、旋转边带。

杂质含量较低,其峰面积较样品峰小很多,样品和杂质峰面积之间也无简单的整数比关系。

据此可将杂质峰区别出来。

氘代试剂不可能100%氘代,其微量氢会有相应的峰,如CDC3中的微量CHCb在约7.27PPm处出峰。

边带峰
的区别请阅6.2.1。

(2) 计算不饱和度。

不饱和度即环加双键数。

当不饱和度大于等于4时,应考虑到该化合物可能存在一个苯环(或吡啶环)。

(3) 确定谱图中各峰组所对应的氢原子数目,对氢原子进行分配。

根据积分曲线,找出各峰组之间氢原子数的简单整数比,再根据分子式中氢的数目,对各峰组的氢原子数进行分配。

(4) 对每个峰的δ' J都进行分析。

根据每个峰组氢原子数目及δ值,可对该基团进行推断,并估计其相邻基团。

对每个峰组的峰形应仔细地分析。

分析时最关键之处为寻找峰组中的等间距。

每一种间距相应于一个耦合关系。

一般情况下,某一峰组内的间距会在另一峰组中反映出来。

通过此途径可找出邻碳氢原子的数目。

当从裂分间距计算J值时,应注意谱图是多少兆周的仪器作出的,有了仪器的工作频率才能从化学位移之差
Δδ(PPm)算出Δ V (HZ)。

当谱图显示烷基链3J耦合裂分时,其间距(相应6—7Hz)也可以作为计算其它裂分间
距所对应的赫兹数的基准。

(5) 根据对各峰组化学位移和耦合常数的分析,推出若干结构单元,最后组合为几种可能的结构式。

每一可能的结构式不能和谱图有大的矛盾。

(6) 对推出的结构进行指认。

每个官能团均应在谱图上找到相应的峰组,峰组的δ值及耦合裂分(峰形和J值大小)都应该和结构式相符。

如存在较大矛盾,则说明所设结构式是不合理的,应予以去除。

通过指认校核所有可能的结构式,进而找出最合理的结构式。

必须强调:指认是推结构的一个必不可少的环节。

如果未知物的结构稍复杂,在推导其结构时就需应用碳谱。

在一般情况下,解析碳谱和解析氢谱应结合进行。

从碳谱本身来说,有一套解析步骤和方法。

相关文档
最新文档