幂的运算练习题56757
幂次方练习题
幂次方练习题一、计算下列幂次方的结果:1. $2^3$2. $(-3)^4$3. $5^2$4. $10^0$5. $(-2)^5$二、简化下列幂次方:1. $8^{\frac{1}{3}}$2. $2^0$3. $(-4)^2$4. $(-5)^3$5. $9^{\frac{1}{2}}$三、根据已知幂次方的结果,求解未知数:1. 已知 $2^x = 32$,求解 $x$ 的值。
2. 已知 $4^y = 1$,求解 $y$ 的值。
3. 已知 $(-3)^z = -27$,求解 $z$ 的值。
4. 已知 $8^m = 2$,求解 $m$ 的值。
5. 已知 $16^n = 4$,求解 $n$ 的值。
四、应用幂次方计算问题:1. 若一座城市的人口从2010年的100万人增长至2020年的160万人,求这段时间内平均每年人口增长率。
2. 一辆汽车在2010年的时速为60 km/h,增速为每年增长5%,求到2020年时的时速。
3. 设一项投资每年按1.5%的利率增长,若2010年的投资额为10万元,求到2020年时的投资额。
4. 人口基数为1000万,每年以1.2%的速度增长,求到2025年的人口总数。
5. 一项产品每年的销售额从2015年的100万元递增至2019年的180万元,求该产品在2019年的年销售增长率。
以上是幂次方练习题,通过计算和应用幂次方的知识来解决问题,帮助读者巩固和加深对幂次方的理解。
在解题过程中,需要运用幂次方的性质和计算规则,注意符号和次方数的对应关系。
通过练习这些题目,读者可以提高对幂次方的运算和应用的能力,并加深对幂次方的理解。
希望读者能够通过练习题目,掌握幂次方的基本知识,为解决实际问题提供帮助。
完整版)幂的运算练习题
完整版)幂的运算练习题幂的运算练题(每日一页)基础能力训练】一、同底数幂相乘1.下列语句正确的是()A。
同底数的幂相加,底数不变,指数相乘;B。
同底数的幂相乘,底数合并,指数相加;C。
同底数的幂相乘,指数不变,底数相加;D。
同底数的幂相乘,底数不变,指数相加答案:D2.a4·am·an=()A。
a4m B。
a4(m+n) C。
am+n+4 D。
am+n+4答案:B3.(-x)·(-x)8·(-x)3=()A。
(-x)11 B。
(-x)24 C。
x12 D。
-x12答案:A4.下列运算正确的是()A。
a2·a3=a6 B。
a3+a3=2a6 C。
a3a2=a6 D。
a8-a4=a4答案:C5.a·a3x可以写成()A。
(a3)x+1 B。
(ax)3+1 C。
a3x+1 D。
(ax)2x+1 答案:C6.计算:100×100m-1×100m+1答案:m+17.计算:a5·(-a)2·(-a)3答案:-a108.计算:(x-y)2·(x-y)3-(x-y)4·(y-x)答案:-2(x-y)7二、幂的乘方9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(am)3=_______;(4)(b2m)5=_________;(5)(a4)2·(a3)3=________.答案:(1)a56;(2)10^5m;(3)a3m;(4)b10m;(5)a1410.下列结论正确的是()A。
幂的乘方,指数不变,底数相乘;B。
幂的乘方,底数不变,指数相加;C。
a的m次幂的n次方等于a的m+n次幂;D。
a的m次幂的n次方等于a的mn次幂答案:B11.下列等式成立的是()A。
(102)3=105 B。
(a2)2=a4 C。
(am)2=am+2 答案:B12.下列计算正确的是()A。
(完整版)幂的运算经典习题
一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
完整版)幂的运算练习题及答案
完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299 B。
-2 C。
299 D。
22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。
4个 B。
3个 C。
2个 D。
1个3.下列运算正确的是()A。
2x+3y=5xy B。
(-3x^2y)^3=-9x^6y^3C。
D。
(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXX^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1) D。
a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。
0个 B。
1个 C。
2个 D。
3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。
幂的混合运算50道计算题
幂的混合运算50道计算题幂的混合运算计算题一、不带解析的30道计算题1. a^2 · a^3 div a^42. (b^3)^2 · b^4 div b^53. (-2a^2)^3 div (2a^2)4. 3x^2y · (-2xy^2)^35. (m^3n)^2 · (-m^2n^3)6. (-3a^3b^2)^2 div (-a^2b)^37. a^5 · a^3 - a^4 · a^48. (2x^3)^2 - 3x^3 · x^39. (-a^2)^3 + (-a^3)^210. 4y^2 · (y^3)^2 div 2y^511. (a^4)^3 div a^6 · a^212. (-2x^2y^3)^2 · (xy)^313. 5m^2n · (-3mn^2)^214. (3a^2b^3)^2 div (a^3b^4)15. (-x^3)^2 · (-x^2)^316. 2a^3 · (a^2)^3 div a^517. (4b^3)^2 · b div 2b^718. (-3m^2)^3 div m^319. a^2 · (a^3)^2 div (a^4)^220. (-2x^3y)^3 · (x^2y^2)^221. 3a^4 · a^2 - 2(a^3)^222. (5y^4)^2 · y div 5y^923. (-a^3)^2 · (-a^2)^3 div a^524. 2x^5 · (x^3)^2 div x^1025. (3m^3n^2)^2 · (-mn)26. (-2a^2b^3)^3 div (2a^3b^2)27. a^6 div a^3 · a^2 - a^528. (4x^4)^2 - 2x^3 · x^529. (-m^3)^2 · m · (-m^2)^330. 3y^3 · (y^2)^3 div y^7二、带解析的20道计算题(一)1. 计算:a^2 · a^3 div a^4解析:根据同底数幂相乘,底数不变,指数相加,可得a^2 · a^3=a^2 + 3=a^5;再根据同底数幂相除,底数不变,指数相减,所以a^5div a^4=a^5 - 4=a。
幂的运算测试题
幂的运算测试题
1. 计算题
a) 计算 $2^3$。
b) 计算 $(-3)^4$。
c) 计算 $0.5^2$。
2. 拓展思考题
a) 如果底数为负数,而指数为偶数,结果是正数还是负数?为什么?
b) 如果底数为零,而指数为正数,结果是什么?为什么?
c) 如果底数为正数,而指数为零,结果是什么?为什么?
d) 如果底数和指数都为零,结果是什么?为什么?
3. 简答题
a) 什么是幂?
b) 幂运算的性质有哪些?
c) 如何进行幂运算的乘法?
d) 如何进行幂运算的除法?
4. 实际应用题
a) 一辆车以每小时60公里的速度行驶,计算4小时后车子行驶的总路程。
以幂运算的形式给出答案。
b) 一笔存款以年利率5%计算利息,计算5年后的本金和利息总和。
以幂运算的形式给出答案。
5. 推理题
根据已知条件,完成以下推理:
a) 如果 $a^2 = 25$,那么 $a$ 的值是多少?
b) 如果 $b^3 = 27$,那么 $b$ 的值是多少?
c) 如果 $c^4 = 81$,那么 $c$ 的值是多少?
6. 计算题
a) 计算 $(2^2)^3$。
b) 计算 $2^{2^3}$。
以上是幂的运算测试题目,请根据每个小题给出答案,并标明是否使用了幂的运算。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
(完整版)幂的运算练习题
8.计算:(x -y )2·(x -y )3-(x -y )4·(y -x )幂的运算练习题(每日一页)基础能力训练】 、同底数幂相乘1.下列语句正确的是( )A .同底数的幂相加,底数不变,指数相乘;B .同底数的幂相乘,底数合并,指数相加;C .同底数的幂相乘,指数不变,底数相加;D .同底数的幂相乘,底数不变,指数相加 2. a 4·a m ·a n =( )A .a4mB . a4(m+n )C . a m+n+4D .am+n+47.计算: a 5·(- a )2·(-a )33.(- x )·(-x )8·(- x )3=( ) A .(- x )11 B .(- x )24 C .x 12 4.下列运算正确的是( ) A .a 2· a 3=a 6 B . a 3+a 3=2a 6 C .a 3a 2=a 65.a ·a 3x 可以写成( ) A .( a 3)x+1 B .(a x )3+1 C .a 3x+16.计算: 100×100m -1×100m+1D.D .-x 12a8-a 4=a D .(a x )2x+1、幂的乘方9.填空:(1)(a8)7= ____ ;(2)(105)m= ___ ;(3)(a m)3= ___ ;(4)(b2m)5= _______ ;(5)(a4)2·(a3)3= ____ .10.下列结论正确的是()A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a 的m 次幂的n 次方等于 a 的m+n 次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是()A.(102)3=105B.(a2)2=a4C.(a m)2=a m+2D.(x n)2=x2n 12.下列计算正确的是()A.(a2)3·(a3)2=a6·a6=2a6 B.(-a3)4·a7=a7·a2=a9 2 3 3 2 6 6 12C.(-a )·(-a )=(-a )·(-a )=aD.-(-a3)3·(-a2)2=-(-a9)·a4=a1313.计算:若642×83=2x,求x 的值.、积的乘方14.判断正误:(1)积的乘方,等于把其中一个因式乘方,把幂相乘()(2)(xy)n=x· y n()(3)(3xy)n=3(xy )n()(4)(ab)nm=a m b n()(5)(-abc)n=(-1)n a n b n c n()15.(ab3)4=()A.ab12B.a4b7C.a5b7D.a4b1222.已知 2×8n ×16n =222,求 n 的值.16.(- a 2b 3c )3=( )A .a 6b 9c 3B .-a 5b 6c 3C .-a 6b 9c 3D .- a 2b 3c 317.(- a m+1b 2n )3=( ) A .a 3m+3b 6nB .- a 3m +b 6nC .-a 3m+3b 6nD .-a 3m+1b 8m318.如果( a n b m b )3=a 9b 15,那么 m ,n 的值等于( ) A .m=9,n=- 4 B . m=3,n=4n=6【综合创新训练】 一、综合测试 19.计算:11 m+1 12-m n -1 (- x · y )·(- x y )33、创新应用20.下列计算结果为 m 14 的是( )A .m 2·m 7B .m 7+m 7C .m ·m 6·m 721.若 5m+n =56·5n -m ,求 m 的值.3)(-a m b n c )2·(a m -1b n+1c n )24)[( 12)2] 4·(-23)C . m=4,n=3D .m=9,2)10× 102× 1 000×10n -3D .m ·m 8·m 623.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c 的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想1 2 227.(1)( 2 )2× 42412)[(12)2] 3×(23)23)(-0.125)12×(- 1 2)7×(-8)13×3-35)4)-82003×(0.125)2002+(0.25)17×417计宜¢-2) i∞+ (-2)鈴所得的结果是( )A> -2" , -2C、产DK 22、当M是正整数时,下列等式咸立的有( )(1) a2fτ= (a ra) 2; <2) a2m= (a2) m; (3) a2m= ( -a m) 2; ( 4> a lm= (-a2> m.4 4个3个C、2个D* 1个3、下列运尊正确的是( >A S 2x+3γ=5xy B、(■ 3x2y)'二-9χδy3C、4χ3y2∙ ( -py2) χ-2x4y4DS(X-V) 5√-/4、a与b互为相反数,且都不等于0, n为正整数,则下列各组中一定互为相反数的是(A、J与b” B^a2n⅛b2nC、严⅞b2n*tD、孑2⅛-b2n^15、下列等戒中正确的个数是( )O5+a5=a ic∣②(- B ) δ∙ ( - a) 3∙a=a1°J Φ-a4∙ C -3 ) 5≡a2°J Φ5+25≡2δ.AZ个3、1个5 2个D・3个6 、计真;χ2∙χi≡ _____________ ; ( - a") 3+ ( - a2) 2=__________________ ・7 .若2π⅛,2'6,则2决叫_______________ •8、BftI 3κ (χπ+5 ) ≡3χ,Hl+45,求X 的值•9χ ≡ T3+2"求代数式(X ft Y) (χn*1v2) CX n V> - <x2yπ'1) (√)的值•10、已知2x+5y3 √*32v的值・11、已知25πn∙2∙10⅛7∙24≡ 求m、n∙12、EJD a x=5> a x4v=25> 求齐2的值.13、若严叫询χf⅛b求严「的值•14、e⅜ ID a=3» 10p=5> ICi7,试把105写咸底数是IO的幕的形式15、比较下列一组数的大小.8产,2产,95-16、如果a2+a=0 C a?O)J求a2005÷a2c°4+l2 的値.17 > B⅛ 9Γ*∙-32Γ=72^求n 的值.18、若< aπb m k>) 3=a5b15∙求2* 的值・19、计勒厂'<a r V2) 2+ (a n∙V z) 3 ( -b3m*2>迹若心T严, 当a=2 y n=3时,求一ay的值.21 > SJffls 2κ=4v*1> 27y≡3x'1 * 求X-Y 的值.22、i⅛M ≡ Ce e b)"」・(b β a ) J 〈匕―b) Cb-匕)23、若 C a rn*I b IH2) Ca2r∙1b2fl) =a⅛3则求m+n 的值•24用简便方法计算:Cl)(2丄)2χ424(2)( 一0.25〉12×41Z答案:【基础能力训练】1.D 2.D 3.C 4.C 5. C 6. 1002m+1 7.- a 10 8.原式 =(x -y )5-(x -y )4·[-(x -y )]=2(x -y )5 9.(1)a 56 (2) 105m(3)a 3m (4)b 10m (5)a 1710. D 11.B 12.D13.左边 =(82)2×83=84×83=87=(23)7=22115. D 16.C 17.C 18.20.C 解析: A 应为 m 9,B 应为 2m 7,D 应为 m 15.21.由 5m+n =56·5n -m =56+m -n 得 m+n=6+n -m ,即 2m=6,所以 m=3.22.式子 2×8n × 16n 可化简为: 2×23n ×24n =21+7n , 而右边为 222 比较后发现 1+7n=22,n=3.23.x 6n +x 4n ·x 5n =x 6n +x 9n =(x 3n )2+(x 3n )3把x 3n =2 代入可得答案为 12.而右边 =2x ,所以 x=21. 14.(1)× (2)× (3)× ( 4)×5)∨综合创新运用】1119.原式 =(- )×( )·33 y 1+n -1= 1 x 3y n9 原式 =10×102×103×10n -3=101+2+3+n -3=103+n 原式=(-1)2(a m )2·(b n )2·c 2·(a m -1) b 2n ·c 2·a 2m-2b 2n+2c 2n =a 4m -2b 4n+2c 2n+2xm+1·x 2-m·y ·y n -11 m+1+2-m=x 9(2)(3) 2m=a2·(b n+1)2(c n )2 4)原式=(21)2×4·(-1)3·23×3=-(21)829 29=-228=-224.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2× 6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533327.(1)原式=(9)2×42=814(2)原式=(1)6×29=(1×2)6×23=23=8223)原式= -1)12×(-5)7×(-8)13×(-3)98 3 5=-(1)12×813×(5 )7×(3)98 3 5=-(1 ×8)12×8×(5×3)7×(3)2=-8×9728 3 5 5 25 254)原式= 82003×(1 )20 02+(-1)17×4178 4=-(8× 1)2002×8+(-1×4)17=-8+(-1)=-9 84探究学习】设拉面师傅拉n 次就可以变成一碗面条,则2n=256,由于256=28,∴ n=8.。
初一数学幂的运算题目
初一数学幂的运算题目一、幂的运算题目1. 计算:a^3· a^4- 解析:根据同底数幂相乘,底数不变,指数相加。
所以a^3· a^4=a^3 + 4=a^7。
2. 计算:(x^2)^3- 解析:根据幂的乘方,底数不变,指数相乘。
所以(x^2)^3=x^2×3=x^6。
3. 计算:(2a)^3- 解析:根据积的乘方等于乘方的积,(2a)^3=2^3· a^3=8a^3。
4. 计算:a^5div a^2- 解析:根据同底数幂相除,底数不变,指数相减。
所以a^5div a^2=a^5 - 2=a^3。
5. 计算:( - 3x^3)^2- 解析:根据积的乘方,( - 3x^3)^2=(-3)^2·(x^3)^2=9x^6。
6. 若a^m=3,a^n=2,求a^m + n的值。
- 解析:根据同底数幂相乘的运算法则a^m + n=a^m· a^n,已知a^m=3,a^n=2,所以a^m + n=3×2 = 6。
- 解析:- 先计算x^3· x^5,根据同底数幂相乘,底数不变,指数相加,得到x^3· x^5=x^3+5=x^8。
- 再计算(x^4)^2,根据幂的乘方,底数不变,指数相乘,得到(x^4)^2=x^4×2=x^8。
- 所以x^3· x^5-(x^4)^2=x^8-x^8=0。
8. 计算:(a^2b)^3- 解析:根据积的乘方等于乘方的积,(a^2b)^3=(a^2)^3· b^3=a^6b^3。
9. 若a^m=5,a^2m的值是多少?- 解析:根据幂的乘方,a^2m=(a^m)^2,已知a^m=5,所以a^2m=5^2=25。
10. 计算:y^10div y^5div y^3- 解析:- 根据同底数幂相除,底数不变,指数相减。
- 先计算y^10div y^5=y^10 - 5=y^5。
幂的运算和性质练习题
幂的运算和性质练习题一、选择题1. 若\( a^3 \cdot a^2 = a^5 \),则下列哪个选项是正确的?A. \( a^3 + a^2 = a^5 \)B. \( a^3 a^2 = a^5 \)C. \( a^3 \div a^2 = a^5 \)D. \( a^3 \cdot a^2 = a^6 \)2. 已知\( 2^x = 32 \),则\( x \)的值为:A. 5B. 4C. 3D. 23. 若\( a^5 \cdot a^2 = a^7 \),则\( a \)的值:A. 必须为0B. 必须为1C. 可以是任何数D. 不能确定二、填空题1. \( 3^4 \) 的结果是 _______。
2. 若\( 5^x = 125 \),则\( x \)的值为 _______。
3. \( (2^3)^2 \) 等于 _______。
4. \( 2^5 \cdot 2^3 = _______ \)。
5. \( 4^2 \div 2^3 = _______ \)。
三、解答题1. 计算 \( (3^2)^3 \)。
2. 已知\( 2^x = 16 \),求\( x \)的值。
3. 计算 \( 5^3 \cdot 5^2 \div 5^4 \)。
4. 若\( a^3 \cdot a^4 = a^7 \),求\( a \)的值。
5. 已知\( (2^x)^2 = 64 \),求\( x \)的值。
6. 计算 \( 3^4 + 3^3 3^2 \)。
7. 已知\( a^5 \div a^3 = a^2 \),求\( a \)的值。
8. 计算 \( (4^2)^2 \div 2^5 \)。
9. 若\( 5^x = 25 \),求\( x \)的值。
10. 计算 \( 2^6 \cdot 3^3 \div 6^3 \)。
四、判断题1. \( a^m \cdot a^n = a^{m+n} \) 对于任何实数\( a \)和正整数\( m \)、\( n \)都成立。
《幂的运算》练习题
《幂的运算》练习题《幂的运算》练习题一、选择题一、选择题1、计算(﹣、计算(﹣22)100100+(﹣(﹣22)9999所得的结果是(所得的结果是( )A 、﹣、﹣2299B 、﹣、﹣2 2C 、299D 、2 2、当m 是正整数时,下列等式成立的有(是正整数时,下列等式成立的有( )(1)a 2m 2m =(a m m )22;(2)a 2m 2m =(a 22)m m (3)a 2m 2m =(-a 22)m m (4)a 2m 2m =(﹣(﹣a a 22)m m. A 、4个 B 、3个 C 、2个 D 、1个3、下列运算正确的是(、下列运算正确的是( )A 、2x+3y=5xyB B、、(﹣(﹣3x 3x 2y )3=﹣9x 6y 3C 、D 、(x ﹣y )33=x 33﹣y 334、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是(数的是( )A 、a n n 与b n nB 、a 2n 2n 与b 2n 2nC 、a 2n+12n+1与b 2n+12n+1D 、a 2n 2n﹣﹣﹣11与﹣与﹣b b 2n 2n﹣﹣﹣115、下列等式中正确的个数是(、下列等式中正确的个数是( )①a 55+a 55=a 1010;②(﹣;②(﹣a a )66•(﹣•(﹣a a )33•a=a 1010;③﹣;③﹣a a 44•(﹣•(﹣a a )55=a 2020;④255+255=266. A 、 0个 B 、1个 C 、2个 D 、3个6、若a2n+1·ax =a3 那么x 等于等于( ) ( )A.n+2B.2n+2C.4-nD.4-2n二、填空题二、填空题7、 若2m m =5=5,,2n n =6=6,则,则2m+2n m+2n= _________ .8、 (x-y)2n+12n+1·(x-y)2n+12n+1=(=(yy-x)22·(x-y)( )( )= (= (xx-y)n+4n+4·(x-y)( )( )。
幂的运算练习题及答案
幂的运算练习题及答案幂的运算练习题及答案幂的运算在数学中占据着重要的地位,它是一种简洁而有效的表示方式,广泛应用于各个领域。
在这篇文章中,我们将通过一系列练习题来巩固和加深对幂运算的理解和应用。
1. 计算下列幂的值:a) 2^3b) 5^2c) (-3)^4d) 10^0解答:a) 2^3 = 2 × 2 × 2 = 8b) 5^2 = 5 × 5 = 25c) (-3)^4 = (-3) × (-3) × (-3) × (-3) = 81d) 10^0 = 1 (任何数的0次方都等于1)2. 化简下列幂的表达式:a) 2^5 × 2^3b) 4^2 ÷ 4^(-1)c) (3^2)^3解答:a) 2^5 × 2^3 = 2^(5+3) = 2^8 = 256b) 4^2 ÷ 4^(-1) = 4^(2-(-1)) = 4^3 = 64c) (3^2)^3 = 3^(2×3) = 3^6 = 7293. 计算下列幂的值,并写出结果的科学计数法表示:a) 10^6 × 10^(-3)b) (2 × 10^5)^2c) 5^(-2) ÷ 5^(-4)解答:a) 10^6 × 10^(-3) = 10^(6-3) = 10^3 = 1000 (科学计数法表示为1.0 × 10^3)b) (2 × 10^5)^2 = 2^2 × (10^5)^2 = 4 × 10^(5×2) = 4 × 10^10c) 5^(-2) ÷ 5^(-4) = 5^(2-(-4)) = 5^6 (科学计数法表示为3.125 × 10^3)4. 利用幂运算简化下列表达式:a) 2 × 2 × 2 × 2 × 2 × 2b) 3 × 3 × 3 × 3 × 3c) 10 × 10 × 10 × 10解答:a) 2 × 2 × 2 × 2 × 2 × 2 = 2^6 = 64b) 3 × 3 × 3 × 3 × 3 = 3^5 = 243c) 10 × 10 × 10 × 10 = 10^4 = 100005. 计算下列幂的值,并化简结果:a) (4^3 × 2^5) ÷ (8^2)b) (5^2 × 3^4) ÷ (15^2)c) (2^(-3) × 4^2) ÷ (8^(-1))解答:a) (4^3 × 2^5) ÷ (8^2) = (4^3× 2^5) ÷ (4^2) = 4^(3-2) × 2^(5-2) = 4^1 × 2^3 = 4 × 8 = 32b) (5^2 × 3^4) ÷ (15^2) = (5^2 × 3^4) ÷ (5^2 × 3^2) = 3^(4-2) = 3^2 = 9c) (2^(-3) × 4^2) ÷ (8^(-1)) = (2^(-3) × 2^4) = 2^1 = 2通过以上的练习题,我们对幂的运算有了更深入的理解。
幂运算练习题初三
幂运算练习题初三幂运算是数学中常见的一种运算方法,它可以用于解决各种实际问题和数学推理。
对于初三学生来说,熟练掌握幂运算是非常重要的,不仅可以提高数学能力,还能为进一步学习高级数学打下坚实的基础。
本文将针对初三学生,提供一些幂运算的练习题,帮助学生们巩固和加深对幂运算的理解。
一、计算下列幂运算的结果:1. 2³ = ?2. 5² = ?3. (-3)⁴ = ?4. 10⁰ = ?5. 1⁵ = ?二、用幂运算表示下列算式的结果:1. 3 × 3 × 3 × 3 × 3 = ?2. 2 × 2 × 2 × 2 × 2 × 2 = ?3. 4 × 4 × 4 = ?4. (-2) × (-2) × (-2) × (-2) = ?5. 1 × 1 × 1 × 1 × 1 × 1 = ?三、计算下列幂运算的结果:1. 2⁴ × 2³ = ?2. 5⁴ ÷ 5² = ?3. 3⁵ × 3² = ?4. (-2)⁶ ÷ (-2)³ = ?5. 4⁷ ÷ 4⁴ = ?四、解决实际问题:1. 有一棵数树,每年生长的高度是上一年的高度的2倍。
如果第一年的高度为3米,那么经过5年后,树的高度是多少米?2. 小明去购买一本参考书,原价为120元。
商家决定每年将原价提高20%,小明打算连续购买3年,问三年后小明购买这本书需要多少钱?3. 一辆汽车以每小时60公里的速度行驶,行驶的距离与行驶的时间之间有怎样的关系?如果需要车辆行驶100公里,需要多长时间?通过以上的练习题,学生们可以逐步掌握幂运算的概念和计算方法,并运用到实际问题中。
幂函数的运算专项练习50题(有答案)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
完整版)幂的运算经典习题
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂的运算练习题(每日一页)
【基础能力训练】
一、同底数幂相乘
1.下列语句正确的是()
A.同底数的幂相加,底数不变,指数相乘;
B.同底数的幂相乘,底数合并,指数相加;
C.同底数的幂相乘,指数不变,底数相加;
D.同底数的幂相乘,底数不变,指数相加
2.a4·a m·a n=()
A.a4m B.a4(m+n)C.a m+n+4D.a m+n+4 3.(-x)·(-x)8·(-x)3=()
A.(-x)11B.(-x)24C.x12D.-x12 4.下列运算正确的是()
A.a2·a3=a6B.a3+a3=2a6C.a3a2=a6D.a8-a4=a4 5.a·a3x可以写成()
A.(a3)x+1B.(a x)3+1C.a3x+1D.(a x)2x+1 6.计算:100×100m-1×100m+1
7.计算:a5·(-a)2·(-a)3
8.计算:(x-y)2·(x-y)3-(x-y)4·(y-x)
二、幂的乘方
9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(a m)3=_______;
(4)(b2m)5=_________;(5)(a4)2·(a3)3=________.
10.下列结论正确的是()
A.幂的乘方,指数不变,底数相乘;
B.幂的乘方,底数不变,指数相加;
C.a的m次幂的n次方等于a的m+n次幂;
D.a的m次幂的n次方等于a的mn次幂
11.下列等式成立的是()
A.(102)3=105B.(a2)2=a4C.(a m)2=a m+2D.(x n)2=x2n 12.下列计算正确的是()
A.(a2)3·(a3)2=a6·a6=2a6
B.(-a3)4·a7=a7·a2=a9
C.(-a2)3·(-a3)2=(-a6)·(-a6)=a12
D.-(-a3)3·(-a2)2=-(-a9)·a4=a13
13.计算:若642×83=2x,求x的值.
三、积的乘方
14.判断正误:
(1)积的乘方,等于把其中一个因式乘方,把幂相乘()
(2)(xy)n=x·y n()
(3)(3xy)n=3(xy)n()
(4)(ab)nm=a m b n()
(5)(-abc)n=(-1)n a n b n c n()
15.(ab3)4=()
A.ab12B.a4b7C.a5b7D.a4b12
16.(-a2b3c)3=()
A.a6b9c3B.-a5b6c3C.-a6b9c3D.-a2b3c3
17.(-a m+1b2n)3=()
A.a3m+3b6n B.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m3 18.如果(a n b m b)3=a9b15,那么m,n的值等于()
A.m=9,n=-4 B.m=3,n=4 C.m=4,n=3 D.m=9,n=6
【综合创新训练】
一、综合测试
19.计算:
(1)(-1
3
x m+1·y)·(-
1
3
x2-m y n-1)(2)10×102×1 000×10n-3
(3)(-a m b n c)2·(a m-1b n+1c n)2(4)[(1
2
)2] 4·(-23)3
二、创新应用
20.下列计算结果为m14的是()
A.m2·m7B.m7+m7C.m·m6·m7D.m·m8·m6 21.若5m+n=56·5n-m,求m的值.
22.已知2×8n×16n=222,求n的值.
23.已知x3n=2,求x6n+x4n·x5n的值.
24.若2a=3,4b=6,8c=12,试求a,b,c的数量关系.25.比较6111,3222,2333的大小.
26.比较3555,4444,5333的大小.
三、巧思妙想
27.(1)(21
4
)2×42(2)[(
1
2
)2] 3×(23)3
(3)(-0.125)12×(-12
3
)7×(-8)13×(-
3
5
)9
(4)-82003×(0.125)2002+(0.25)17×417
答案:
【基础能力训练】
1.D 2.D 3.C 4.C 5.C 6.1002m+17.-a10
8.原式=(x-y)5-(x-y)4·[-(x-y)]=2(x-y)5
9.(1)a56(2)105m(3)a3m(4)b10m(5)a17
10.D 11.B 12.D
13.左边=(82)2×83=84×83=87=(23)7=221而右边=2x,所以x=21.14.(1)×(2)×(3)×(4)×(5)∨
15.D 16.C 17.C 18.C
【综合创新运用】
19.原式=(-1
3
)×(
1
3
)·x m+1·x2-m·y·y n-1
=1
9
x m+1+2-m·y1+n-1=
1
9
x3y n
(2)原式=10×102×103×10n-3=101+2+3+n-3=103+n
(3)原式=(-1)2(a m)2·(b n)2·c2·(a m-1)2·(b n+1)2(c n)2 =a2m·b2n·c2·a2m-2b2n+2c2n=a4m-2b4n+2c2n+2
(4)原式=(1
2
)2×4·(-1)3·23×3=-(
1
2
)8·29=-
9
8
2
2
=-2
20.C 解析:A应为m9,B应为2m7,D应为m15.
21.由5m+n=56·5n-m=56+m-n得m+n=6+n-m,即2m=6,所以m=3.22.式子2×8n×16n可化简为:2×23n×24n=21+7n,
而右边为222比较后发现1+7n=22,n=3.
23.x6n+x4n·x5n=x6n+x9n=(x3n)2+(x3n)3把x3n=2代入可得答案为12.24.由4=6得22b=6,8c=12即23c=12,
所以2a·22b=2×6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>5333
27.(1)原式=(9
4
)2×42=81
(2)原式=(1
2
)6×29=(
1
2
×2)6×23=23=8
(3)原式=(-1
8
)12×(-
5
3
)7×(-8)13×(-
3
5
)9
=-(1
8
)12×813×(
5
3
)7×(
3
5
)9
=-(1
8
×8)12×8×(
5
3
×
3
5
)7×(
3
5
)2=-8×
972
2525
=-
(4)原式=-82003×(1
8
)2002+(-
1
4
)17×417
=-(8×1
8
)2002×8+(-
1
4
×4)17=-8+(-1)=-9
【探究学习】
设拉面师傅拉n次就可以变成一碗面条,则2n=256,由于256=28,∴n=8.健康文档放心下载放心阅读。