算法设计技巧与分析答案
算法设计与分析课后答案
算法设计与分析课后答案5..证明等式gcd(m,n)=gcd(n,m mod n)对每⼀对正整数m,n都成⽴.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d⼀定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意⼀对正整数m,n,若d能整除m和n,那么d⼀定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也⼀定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限⾮空集,其中也包括了最⼤公约数。
故gcd(m,n)=gcd(n,r)6.对于第⼀个数⼩于第⼆个数的⼀对数字,欧⼏⾥得算法将会如何处理?该算法在处理这种输⼊的过程中,上述情况最多会发⽣⼏次?Hint:对于任何形如0<=m并且这种交换处理只发⽣⼀次.7.a.对于所有1≤m,n≤10的输⼊, Euclid算法最少要做⼏次除法?(1次)b. 对于所有1≤m,n≤10的输⼊, Euclid算法最多要做⼏次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—⼭⽺C—⽩菜2.(过桥问题)1,2,5,10---分别代表4个⼈, f—⼿电筒4. 对于任意实系数a,b,c, 某个算法能求⽅程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平⽅根的函数)算法Quadratic(a,b,c)//求⽅程ax^2+bx+c=0的实根的算法//输⼊:实系数a,b,c//输出:实根或者⽆解信息D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将⼗进制整数表达为⼆进制整数的标准算法a.⽤⽂字描述b.⽤伪代码描述解答:a.将⼗进制整数转换为⼆进制整数的算法输⼊:⼀个正整数n输出:正整数n相应的⼆进制数第⼀步:⽤n除以2,余数赋给Ki(i=0,1,2...),商赋给n第⼆步:如果n=0,则到第三步,否则重复第⼀步第三步:将Ki按照i从⾼到低的顺序输出b.伪代码算法DectoBin(n)//将⼗进制整数n转换为⼆进制整数的算法//输⼊:正整数n//输出:该正整数相应的⼆进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下⾯这个算法,它求的是数组中⼤⼩相差最⼩的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输⼊:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样⼀个排序算法,该算法对于待排序的数组中的每⼀个元素,计算⽐它⼩的元素个数,然后利⽤这个信息,将各个元素放到有序数组的相应位置上去.a.应⽤该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所⽰:b.该算法不稳定.⽐如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[]4.(古⽼的七桥问题)习题1.41.请分别描述⼀下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章习题2.17.对下列断⾔进⾏证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断⾔是正确的。
算法设计与分析习题答案
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法设计技巧与分析习题答案
算法设计技巧与分析习题答案【篇一:算法设计与分析考试题及答案】一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列x={b,c,a,d,b,c,d},y={a,c,b,a,b,d,c,d},请给出序列x和y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器m1和m2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,c=9,v={6,10,3},w={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法设计技巧与分析(沙特版) 第1_2章课后习题参考解答
《算法分析与设计》——第 1-2 章习题参考解答
1.13 解答: f(n) 2n +3n 50n+log n 50nlog n log n n! 1.14 解答: (a) 因 (b) 因 (c) 因 (d) 因
2n 100n n! ,所以,2n+100n+ n!=(n!). 1 n!
lim
1.16 解答: (a) 算法执行元素比较运算的最小次数是 n-1。当输入 A[1..n] 已经有非减次序时该算法执 行元素比较运算次数达到这个最小值。 (b) 算法执行元素比较运算的最大次数是(n-1)+( n-2)+…+ 2+1=n(n-1)/2。当输入 A[1..n] 已有递减次序时该算法执行元素比较运算次数达到这个最大值。 (c) 算法执行元素赋值运算的最小次数是 0。 当输入 A[1..n] 已经有非减次序时该算法执行元 素赋值运算次数达到这个最小值。 (d) 算法执行元素赋值运算的最大次数是 3[(n-1)+( n-2)+…+ 2+1]=3n(n-1)/2。当输入 A[1..n] 已有递减次序时该算法执行元素赋值运算次数达到这个最大值。 (e) 使用记号 O 和 ,算法 BUBBLESORT 的运行时间分别表示为(n2)和(n)。 (f) 该算法的运行时间不能使用记号来表示,这是因为算法的运行时间范围为 n 的一次方 到二次方。 2.16 解答: (a) 一方面,∑j=1n jlog j≤∑j=1n nlog n≤n 2 log n, 另一方面,∑j=1n jlog j≥∑j= n/2 n n/2log n/2 ≥n/2 n/2log n/2 ≥(n-1)n/4·log(n/2)。 n 因此,∑j=1 jlog j= (n 2logn)。 (b)令 f(x)=x log x (x≥1)。由于 f(x) 是增函数,故有 ∑j=1n jlog j≤∫1n+1 x log xdx≤(2(n+1)2 ln(n+1)-(n+1)2+1) / (4ln2); 同时, ∑j=1n jlog j=∑j=2n jlog j≥∫1n x log xdx≥(2n2 lnn-n2+1) / (4ln2)。 因此,∑j=1n jlog j= (n 2lnn)= (n 2logn)。 2.18 解答: (a) 特征方程为 x=3。
算法设计与分析-课后习题集答案
(2)当 时, ,所以,可选 , 。对于 , ,所以, 。
(3)由(1)、(2)可知,取 , , ,当 时,有 ,所以 。
11. (1)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(2)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(3)因为 , 。当 时, , 。所以,可选 , ,对于 , ,即 。
第二章
2-17.证明:设 ,则 。
当 时, 。所以, 。
第五章
5-4.SolutionType DandC1(int left,int right)
{while(!Small(left,right)&&left<right)
{int m=Divide(left,right);
所以n-1<=m<=n (n-1)/2;
O(n)<=m<=O(n2);
克鲁斯卡尔对边数较少的带权图有较高的效率,而 ,此图边数较多,接近完全图,故选用普里姆算法。
10.
T仍是新图的最小代价生成树。
证明:假设T不是新图的最小代价生成树,T’是新图的最小代价生成树,那么cost(T’)<cost(T)。有cost(T’)-c(n-1)<cost(t)-c(n-1),即在原图中存在一颗生成树,其代价小于T的代价,这与题设中T是原图的最小代价生成树矛盾。所以假设不成立。证毕。
13.template <class T>
select (T&x,int k)
{
if(m>n) swap(m,n);
if(m+n<k||k<=0) {cout<<"Out Of Bounds"; return false;}
算法分析与设计作业及参考答案
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。
2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。
3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。
参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。
在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。
在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。
平均情况下,时间复杂度也为 O(n^2)。
空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。
应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。
例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。
2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。
算法设计技巧与分析答案
算法设计技巧与分析参考答案第1章算法分析基本概念1.1(a)6 (b)5 (c)6 (d)61.4算法执行了7+6+5+4+3+2+1=28次比较1.5(a)算法MODSELECTIONSORT执行的元素赋值的最少次数是0,元素已按非降序排列的时候达到最小值。
(b) 算法MODSELECTIONSORT执行的元素赋值的最多次数是3(1)2n n ,元素已按非升序排列的时候达到最小值。
1.7由上图可以看到执行的比较次数为1+1+2+2+2+6+2=16次。
1.11由上图可以得出比较次数为5+6+6+9=26次。
1.13FTF,TTT,FTF,TFF,FTF 1.16(a) 执行该算法,元素比较的最少次数是n-1。
元素已按非降序排列时候达到最小值。
(b) 执行该算法,元素比较的最多次数是(1)2n n -。
元素已按非升序排列时候达到最大值。
(c) 执行该算法,元素赋值的最少次数是0。
元素已按非降序排列时候达到最小值。
(d) 执行该算法,元素赋值的最多次数是3(1)2n n -。
元素已按非升序排列时候达到最大值。
(e)n 用O 符号和Ω符号表示算法BUBBLESORT 的运行时间:2()t O n =,()t n =Ω(f)不可以用Θ符号来表示算法的运行时间:Θ是用来表示算法的精确阶的,而本算法运行时间由线性到平方排列,因此不能用这一符号表示。
1.27不能用关系来比较2n 和2100n 增长的阶。
∵221lim0100100n n n →∞=≠ 2n ∴不是2(100)o n 的,即不能用关系来比较2n 和2100n 增长的阶。
1.32(a)当n 为2的幂时,第六步执行的最大次数是:12,2k k n j -==时,11[log ]log n ni i k n n n ====∑∑(b)由(a)可以得到:当每一次循环j 都为2的幂时,第六步执行的次数最大,则当33,22k kmn j ===(其中32k 取整)时,11[log(31)]log(1)n nkii i m n n ===-=-∑∑(c)用O 符号表示的算法的时间复杂性是(log )O n n 已证明n=2k 的情况,下面证明n=2k +1的情况:因为有⎥⎦⎥⎢⎣⎢+=⎥⎦⎥⎢⎣⎢21222k k所以n=2k +1时,第六步执行的最大次数仍是n log n 。
算法设计技巧与分析英文版课后练习题含答案
Algorithm Design Techniques and Analysis: English VersionExercise with AnswersIntroductionAlgorithms are an essential aspect of computer science. As such, students who are part of this field must master the art of algorithm design and analysis. Algorithm design refers to the process of creating algorithms that solve computational problems. Algorithm analysis, on the other hand, focuses on evaluating the resources required to execute those algorithms. This includes computational time and memory consumption.This document provides students with helpful algorithm design and analysis exercises. The exercises are in the formof questions with step-by-step solutions. The document is suitable for students who have completed the English versionof the Algorithm Design Techniques and Analysis textbook. The exercises cover various algorithm design techniques, such as divide-and-conquer, dynamic programming, and greedy approaches.InstructionEach exercise comes with a question and its solution. Read the question carefully and try to find a solution withoutlooking at the answer first. If you get stuck, look at the solution. Lastly, try the exercise agn without referring to the answer.Exercise 1: Divide and ConquerQuestion:Given an array of integers, find the maximum possible sum of a contiguous subarray.Example:Input: [-2, -3, 4, -1, -2, 1, 5, -3]Output: 7 (the contiguous subarray [4, -1, -2, 1, 5]) Solution:def max_subarray_sum(arr):if len(arr) ==1:return arr[0]mid =len(arr) //2left_arr = arr[:mid]right_arr = arr[mid:]max_left_sum = max_subarray_sum(left_arr)max_right_sum = max_subarray_sum(right_arr)max_left_border_sum =0left_border_sum =0for i in range(mid-1, -1, -1):left_border_sum += arr[i]max_left_border_sum =max(max_left_border_sum, left_b order_sum)max_right_border_sum =0right_border_sum =0for i in range(mid, len(arr)):right_border_sum += arr[i]max_right_border_sum =max(max_right_border_sum, righ t_border_sum)return max(max_left_sum, max_right_sum, max_left_border_s um+max_right_border_sum)Exercise 2: Dynamic ProgrammingQuestion:Given a list of lengths of steel rods and a corresponding list of prices, determine the maximum revenue you can get by cutting these rods into smaller pieces and selling them. Assume the cost of each cut is 0.Lengths: [1, 2, 3, 4, 5, 6, 7, 8]Prices: [1, 5, 8, 9, 10, 17, 17, 20]If the rod length is 4, the maximum revenue is 10.Solution:def max_revenue(lengths, prices, n):if n ==0:return0max_val =float('-inf')for i in range(n):max_val =max(max_val, prices[i] + max_revenue(length s, prices, n-i-1))return max_valExercise 3: Greedy AlgorithmQuestion:Given a set of jobs with start times and end times, find the maximum number of non-overlapping jobs that can be scheduled.Start times: [1, 3, 0, 5, 8, 5]End times: [2, 4, 6, 7, 9, 9]Output: 4Solution:def maximum_jobs(start_times, end_times):job_list =sorted(zip(end_times, start_times))count =0end_time =float('-inf')for e, s in job_list:if s >= end_time:count +=1end_time = ereturn countConclusionThe exercises presented in this document provide a practical way to master essential algorithm design and analysis techniques. Solving the problems without looking at the answers will expose students to the type of problems they might encounter in real life. The document’s solutionsprovide step-by-step instructions to ensure that students can approach the problems with confidence.。
算法分析与设计(习题答案)
算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
算法设计技巧与分析课后答案吴永昶
算法设计技巧与分析课后答案吴永昶习题1-2 方法头签名方法签名由方法的名称和它的每一个形参(按从左到右的顺序)的类型和种类(值、引用或输出)组成。
需注意的是,方法签名既不包含返回类型,也不包含params 修饰符(它可用于最右边的参数)。
实例构造函数签名由它的每一个形参(按从左到右的顺序)的类型和种类(值、引用或输出)组成。
具体说来,实例构造函数的签名不包含可为最右边的参数指定的params 修饰符。
索引器签名由它的每一个形参(按从左到右的顺序)的类型组成。
具体说来,索引器的签名不包含元素类型。
运算符签名由运算符的名称和它的每一个形参(按从左到右的顺序)的类型组成。
具体说来,运算符的签名不包含结果类型。
签名是对类、结构和接口的成员实施重载的机制:方法重载允许类、结构或接口用同一个名称声明多个方法,条件是它们的签名在该类、结构或接口中是唯一的。
实例构造函数重载允许类或结构声明多个实例构造函数,条件是它们的签名在该类或结构中是唯一的。
索引器重载允许类、结构或接口声明多个索引器,条件是它们的签名在该类、结构或接口中是唯一的。
运算符重载允许类或结构用同一名称声明多个运算符,条件是它们的签名在该类或结构中是唯一的。
习题1-10 函数渐进阶大写O符号(上界,最坏)f(n)=O(g(n)),这里f(n)是分析出来算法的执行次数的函数,O的定义:当且仅当存在正的常数c和n0,使得对于所有的n>=n0,有f(n)<=cg(n)。
这里cg(n)就是函数f(n)的上限。
几种函数的例子:1.线性函数f(n)=3n+2,当n>=2时,3n+2<=3n+n=4n。
所以f(n)=O(n),这里c 就是4,n0=2。
2.平方函数f(n)=2n^2+3n+3,当n>=3时,3n+3<=4n,当n>=4时,4n<n^2,f(n)=2n^2+n^2=3n^2。
f(n)=O(n^2),这里c是3,n0=4。
算法设计与分析书后参考答案
参考答案第1章一、选择题1. C2. A3. C4. C A D B5. B6. B7. D 8. B 9. B 10. B 11. D 12. B二、填空题1. 输入;输出;确定性;可行性;有穷性2. 程序;有穷性3. 算法复杂度4. 时间复杂度;空间复杂度5. 正确性;简明性;高效性;最优性6. 精确算法;启发式算法7. 复杂性尽可能低的算法;其中复杂性最低者8. 最好性态;最坏性态;平均性态9. 基本运算10. 原地工作三、简答题1. 高级程序设计语言的主要好处是:(l)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需要几周时间的培训就可以胜任程序员的工作;(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好、重用率高;(4)把复杂琐碎的事务交给编译程序,所以自动化程度高,发用周期短,程序员可以集中集中时间和精力从事更重要的创造性劳动,提高程序质量。
2. 使用抽象数据类型带给算法设计的好处主要有:(1)算法顶层设计与底层实现分离,使得在进行顶层设计时不考虑它所用到的数据,运算表示和实现;反过来,在表示数据和实现底层运算时,只要定义清楚抽象数据类型而不必考虑在什么场合引用它。
这样做使算法设计的复杂性降低了,条理性增强了,既有助于迅速开发出程序原型,又使开发过程少出差错,程序可靠性高。
(2)算法设计与数据结构设计隔开,允许数据结构自由选择,从中比较,优化算法效率。
(3)数据模型和该模型上的运算统一在抽象数据类型中,反映它们之间内在的互相依赖和互相制约的关系,便于空间和时间耗费的折衷,灵活地满足用户要求。
(4)由于顶层设计和底层实现局部化,在设计中出现的差错也是局部的,因而容易查找也容易纠正,在设计中常常要做的增、删、改也都是局部的,因而也都容易进行。
算法设计技巧与分析答案
算法设计技巧与分析参考答案第1章算法分析基本概念 1.1 (a)6 (b)5 (c)6 (d)6 1.4 算法执行了7+6+5+4+3+2+1=28次比较 45 33 24 45 12 12 24 12 12 33 24 45 45 12 24 12 12 12 24 45 45 33 24 12 12 12 12 45 45 33 24 24 12 24 12 12 45 33 45 24 12 12 12 24 24 33 45 45 12 12 12 24 24 33 45 45 12 12 12 24 24 33 45 45 1.5 (a)算法MODSELECTIONSORT执行的元素赋值的最少次数是0,元素已按非降序排列的时候达到最小值。
(b) 算法MODSELECTIONSORT执行的元素赋值的最多次数是,元素已按非升序排列的时候达到最小值。
2 1.7 4 3 12 5 6 7 2 9 1次 3 4 1次 3 4 12 2次 3 4 5 123 4 5 6 12 2次 7 12 3 4 5 6 2次 2 3 4 5 6 7 12 6次 7 9 23 4 5 6 12 2次由上图可以看到执行的比较次数为1+1+2+2+2+6+2=16次。
1.11 比较9次 2 4 5 7 8 11 12 13 15 17 19 比较为6次 2 4 5 8 11 13 17 19 7 12 15 比较为3次,2 5 17 19 4 8 11 13 7 12 15 2次,1次 2 17 5 19 11 134 8 12 15 7比较均为1次,共5次 2 17 19 5 13 11 4 8 15 12 7 由上图可以得出比较次数为5+6+6+9=26次。
1.13 FTF,TTT,FTF,TFF,FTF 1.16 (a)执行该算法,元素比较的最少次数是n-1。
元素已按非降序排列时候达到最小值。
(b) 执行该算法,元素比较的最多次数是。
算法设计和分析大作业答案.docx
算法设计技术与方法大作业学院________________专业______________姓名__________________________学号_______________________任课老师多项式求值的四种方法1.问题背景分别实现多项式求值的四种运算,若针对不同规模的输入值a,各算法的运行时间,问题规模n 分别取10, 50, 100, 150, 200, 300, 400, 500, 10000, 20000, 50000, 100000 时绘制四种算法运行时间的比较图。
2.程序设计分析题意可知,该题要用四种方法实现对多项式的求值计算,每种方法取从10-100000 不同的规模。
本文采用直接代入法和递归法。
而其中递归法分三类不同思路进行递归:①只3)=只-13) +时";。
, Q = 1, Q = Qx, P = P + a t Q;②P = a③3'3)=《3)工+。
"—,。
3.程序清单具体编程如下:clc;close all;clear all;n=[10 50 100 150 200 300 400 500 10000 20000 50000 100000];x=5;for i=l:12a=rand(l,(n(i)+l));%产生多项式,最高次幕为n(i)tic;forj=l:n(i); %直接代入法s(j)=a(j)*x A(j);endpl(i)=a(n(i)+l);for j=l:n(i);pl(i)=s ①+pl ⑴;endtl(i)=toc;tic;p2(i)=0;for j=l:(n(i)+l)p2(i)=p2⑴+a(j)*xWl); % 递归法1endt2(i)=toc;tic;p3(;i)=0;q=l;for j=2:(n (i)+l)q=q*x;p3(i)=p3(i)+a(j)*q; % 递归法2endt3(i)=toc;tic;p4 ①=0;for j=l:n(i);p4(i)=x*p4(i)+a(n⑴+l-j); % 递归法3endt4(i)=toc;endfigure(l);subplot(2,2,l);h=semilogx(n,t 1);set(h,'linestyle','-'「linewidth'』,'marker','s','color','g','markersize',6); xlabel(问题规模(n ));ylabel(运行时间(s),);title(方法一);grid on;subplot(2,2,2);h=semilogx(n,t2);set(h,'linestyle','-'「linewidth'』,'marker','s','color','b','markersize',6); xlabelC问题规模(n ),);ylabel(运行时间(s),);title(方法二);grid on;subplot(2,2,3);h=semilogx(n,t2);set(h,'linestyle','-'「linewidth'』,'marker','s','color',k,'markersize',6); xlabel(,问题规模(n ),);ylabel(运行时间(s),);title(方法三);grid on;subplot(2,2,4);h=semilogx(n,t2);set(h,'linestyle','-',Tinewidth', 1,'marker','s','color',、','markersize',6); xlabelC问题规模(n ),);ylabel(运行时间(s),);title(方法四);grid on;figure(2);g=semilogx(n,tl,'g+',n,t2,'bx',n,t3,'k*',n,t4,To‘);legend(方法一7方法二7方法三,,方法四);set(g,'linestyleV-','linewidth', 1,'markersize',8);xlabel('n=10, 50, 100, 150, 200, 300, 400, 500, 10000, 20000, 50000, 100000'); ylabel。
算法设计与分析习题答案1-6章
习题11.图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点 输出:相同的点 1, 一次步行2, 经过七座桥,且每次只经历过一次 3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法 1.r=m-n2.循环直到r=0 2.1 m=n 2.2 n=r 2.3 r=m-n 3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C ++描述。
//采用分治法//对数组先进行快速排序 //在依次比较相邻的差 #include <iostream> using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
算法设计技巧与分析习题答案
算法设计技巧与分析习题答案算法设计技巧与分析习题答案【篇一:算法设计与分析考试题及答案】一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列x={b,c,a,d,b,c,d},y={a,c,b,a,b,d,c,d},请给出序列x和y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器m1和m2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,c=9,v={6,10,3},w={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法设计与分析-课后习题集答案
第一章3. 最大公约数为1。
快1414倍。
程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)8.(1)画线语句的执行次数为log n ⎡⎤⎢⎥。
(log )n O 。
(2)画线语句的执行次数为111(1)(21)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执行次数为。
O 。
(4)当n 为奇数时画线语句的执行次数为(1)(1)4n n +-, 当n 为偶数时画线语句的执行次数为 (2)4n n +。
2()n O 。
10.(1) 当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()-+=O n n n 。
(2) 当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()-+=Ωn n n 。
(3) 由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()-+=Θn n n 。
11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
(2) 当 4n ≥ 时,2log log n n n <<,所以 22()/log f n n n n =<,22()log g n n n n =≥。
可选 1c =,04n =。
算法设计技巧与分析课后习题答案沙特
算法设计技巧与分析课后习题答案沙特【篇一:高级算法设计实验指导书2009(李淑琴)】=txt>一、适用专业计算机科学与技术专业研究生二、实验目的与任务算法分析与设计是计算机科学与技术专业本科学生第八学期专业选修课程。
实验课的目的是通过对一些常见而有代表性算法的上机实践,使学生理解和掌握算法设计的主要方法,培养学生对算法复杂性进行正确分析的能力,从而为独立地设计算法和对给定算法进行复杂性分析奠定坚实的基础。
三、实验内容安排实验一数据的排序算法比较(一)、实验目的1.通过上机实践,进一步理解、掌握几种著名的数据排序算法; 2.对排序算法的时间复杂性学会比较、分析。
(二)、实验内容及要求(1)从已学过的内部排序算法中至少选择4种算法,比较这四种算法的关键字移动次数以及比较次数。
(2)待排序数据用随机数产生程序产生。
(3)数据表的长度不小于100000,并且至少用五组不同的输入数据作比较。
(4)最后对结果作出简单分析,包括对各组数据得出结果波动大小的解释。
(三)、实验步骤1.2.3.4.5. 对于以上题目要认真分析和理解题意,设计出算法;详细写出正确的高级语言源程序;上机录入并调试程序;请指导教师审查程序和运行结果并评定成绩;撰写并上交实验报告。
(四)、实验报告内容1.班级、学号、姓名、实验日期;2.实验题目;3.对于实验题目的理解与说明;4.程序功能与框架;5.设计说明(存储结构、特别构思等);6.调试报告(调试过程中遇到的问题及如何解决此问题,程序设计的得失,对于改进程序的设想、经验、体会等);7.对算法进行比较分析;8.附录:源程序清单(加必要的注释)、测试数据及运行结果。
(五)、实验成绩考核方法实验成绩由实验结果、问题回答以及实验报告综合评定。
实验二递归与分治策略(一)、实验目的通过编程实现递归与分治策略的有关算法,理解递归与分治策略算法的原理,掌握递归与分治策略基本思想与应用技巧。
(二)、实验内容及要求实验内容给定平面上的至少n个点(n〉=20),找出其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不能用 关系来比较 和 增长的阶。
∵
不是 的,即不能用 关系来比较 和 增长的阶。
1.32
(a)当n为2的幂时,第六步执行的最大次数是:
时,
(b)由(a)可以得到:当每一次循环j都为2的幂时,第六步执行的次数最大,
则当 (其中 取整)时,
(c)用 符号表示的算法的时间复杂性是
已证明n=2k的情况,下面证明n=2k+1的情况:
7.9
C[1,5]=C[1,1]+C[2,5]+r[1]*r[2]*r[6]=307
C[1,5]=C[1,2]+C[3,5]+r[1]*r[3]*r[6]=252
C[1,5]=C[1,3]+C[4,5]+r[1]*r[4]*r[6]=372
C[1,5]=C[1,4]+C[5,5]+r[1]*r[5]*r[6]=260
6.10.
6.31
彩色代表i,j所指的数字j总在i前
6.36
6.42
Quicksort不是稳定的。
6.43
bcefg均为适应的,a、h不是适应的。
第7章动态规划
7.1
(c),算法BOTTOMUPSORT
7.5
字符串A=”xzyzzyx”和B=”zxyyzxz”的最长公共子序列长度为4,共有6个最长公共子序列,分别是:①zyyx②zyzz ③zyzx ④xyyx ⑤xyzz ⑥xyzx
6. if a[i+1]<a[low], thenexchangea[low],a[i+1]
7.end for
8.for i=mid+1 to high
9. if a[i+1]>a[high],thenexchangea[high],a[i+1]
10.end for
6.5
输入:一个整数数组A[1,2,…,n]
5.3(本题不仅有以下一个答案)
1.max(n)
过程:max(i)
if n=1 return a[1]
t=max(i-1)
if a[i-1]>t return a[i-1]
else return t
end if
5.6
最多次数:
最少次数:
C(n)=n-1
5.7
参考例5.1
5.14
(a)不稳定,例如:
可见SELECTIONSORT中相等元素的序在排序后改变。
因为有
所以n=2k+1时,第六步执行的最大次数仍是n log n。
(d)用 符号表示的算法的时间复杂性是 。
当 满足 取整为奇数时,算法执行的次数是 次,其他情况算法执行次数均大于 。
(e)O更适合表示算法的时间复杂性。因为本算法时间复杂性从 到 ,而 是表示精确阶的。
1.38
对 个数进行排序。
第5章归纳法
(b)(c)(d)(f)稳定
5.17
(a)利用
取 ,
5.18
(a)
第6章分治
6.3
输入:A[1,2,…n]
输出:max,min
1.for i=1 tomid
2. j=high-i
3. if a[i]>a[j], then exchange a[i],a[j]
4.end for
5.for i=low to mid
1.7
由上图可以看到执行的比较次数为1+1+2+2+2+6+2=16次。
1.11
由上图可以得出比较次数为5+6+6+9=26次。
1.13
FTF,TTT,FTF,TFF,FTF
1.16
(a)执行该算法,元素比较的最少次数是n-1。元素已按非降序排列时候达到最小值。
(b)执行该算法,元素比较的最多次数是 。元素已按非升序排列时候达到最大值。
所以最优括号表达式为(M1M2)((M3M4)M5)
7.15
7.21
0
1
2
3
4
5
6
7
8
9
10
11
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
3
3
3
3
3
3
3
3
3
3
2
0
0
3
4
4
7
7
7
7
7
7
7
3
0
0
3
4
4
7
7
8
9
9
12
12
4
0
0
3
4
4
7
7
8
10
11
12
14
7.23
当物品体积为负值时,运行算法会发生溢出错误。
第八章贪心算法
注意:编码不唯一
回溯法
8.12
由算法从s到t要选择先到a然后到t,其结果为4,而从s到t距离为2,所以探索不总是产生从s到t的距离
8.13
8.23(共有4棵最小生成树,此处仅举一例)
8.24(共有4棵最小生成树,此处仅举一例)
8.31
每一个二叉树都取左边为0,右边为1
则最优编码为a:10 b:001 c:0001
d:0000 e:01 f:11
算法设ቤተ መጻሕፍቲ ባይዱ技巧与分析
参考答案
第1章算法分析基本概念
1.1
(a)6(b)5(c)6(d)6
1.4
算法执行了7+6+5+4+3+2+1=28次比较
1.5
(a)算法MODSELECTIONSORT执行的元素赋值的最少次数是0,元素已按非降序排列的时候达到最小值。
(b)算法MODSELECTIONSORT执行的元素赋值的最多次数是 ,元素已按非升序排列的时候达到最小值。
(c)执行该算法,元素赋值的最少次数是0。元素已按非降序排列时候达到最小值。
(d)执行该算法,元素赋值的最多次数是 。元素已按非升序排列时候达到最大值。
(e) 用O符号和 符号表示算法BUBBLESORT的运行时间: ,
(f)不可以用 符号来表示算法的运行时间: 是用来表示算法的精确阶的,而本算法运行时间由线性到平方排列,因此不能用这一符号表示。
输出:sum
1.if high-low=1 then
2. sum=a[low]+a[high]
3.else
4. mid=(low+high)/2
5 sum1=sum(low,mid)
6 sum2=sum(mid+1,high)
7. sum=sum1+sum2
8.end if
9.return sum
算法需要的工作空间为3