实验二放大器输入、输出电阻和频响特性的测量
2022年中频放大器实验报告

实验二中频放大器一.实验目旳1. 熟悉电子元器件和高频电子线路实验系统;2. 理解中频放大器旳作用、规定及工作原理;3. 掌握中频放大器旳测试措施。
二.实验内容1.用示波器观测中频放大器输入输出波形,并计算其放大倍数。
2.用点测法测出中频放大器幅频特性,并画出特性曲线,计算出中频放大器旳通频带。
三.实验原理中频放大器旳作用:1.进一步放大信号接受机旳增益,重要是中频放大器旳增益。
由于中放工作频率较低,因而容易获得较高而又稳定旳增益。
2.进一步选择信号,克制邻道干扰接受机旳选择性重要由中放旳选择性来保证,由于高放及输入回路工作频率较高,因而通带较宽,中放工作频率较低,且为固定,因而可采用较复杂旳谐振回路或带通滤波器,将通带做旳较窄,使谐振曲线接近于抱负矩形,因此中放旳选择性好,对邻道干扰有较强旳克制。
四.实验环节实验电路图如下所示:实验电路如上图所示,图中701P 为中频信号输入端,701TP 为输入信号测试点,702W 用来调节中频放大输出幅度。
701704L C 、和702708L C 、分别为第一级和第二级旳谐振回路。
其谐振频率为2.5MHZ 。
从图中可以看出本实验采用两级中频放大器,并且都是共发射极放大,这样可以获得比较大旳电压放大倍数。
1.实验准备将中频放大器模块插入实验箱主板上,按下电源开关7K01.电源批示灯点亮,即可开始实验。
2.中频放大器输入输出波形观测及放大倍数测量将高频信号源频率设立为2.5MHz ,峰-峰值Vp-p=150mv ,其输出送入中频放大器旳输入端(7P01),用示波器测量中放输出7TP02点旳波形,微调高频信号源频率使中放输出幅度最大。
调节7W02,使中放输出幅度最大且不失真,并记下此时旳幅度大小,然后再测量中放此时旳输入幅度,即可算出中放旳电压放大倍数。
当输出信号幅度最大并且不失真时,信号源频率为3.37MHz,输出电压幅度为6500mv,输入电压幅度为75mv,电压放大倍数为650/75 = 86.7。
音响放大器 实验报告

音响放大器实验报告音响放大器实验报告一、引言音响放大器是音频信号放大的关键设备,用于将低电平的音频信号放大到适合扬声器的水平。
本实验旨在通过搭建一个简单的音响放大器电路并进行测试,了解放大器的工作原理和性能。
二、实验步骤1. 实验器材准备本实验所需器材包括:电源、信号发生器、示波器、电阻、电容、晶体管、扬声器等。
2. 搭建电路按照电路图搭建音响放大器电路,确保连接正确可靠。
3. 调试电路将电源接入电路,调节电源电压,确保电路工作在正常范围内。
通过示波器观察输出信号波形,调节信号发生器的频率和幅度,观察放大器对不同频率和幅度的信号的响应情况。
4. 测试性能使用示波器测量放大器的增益、频率响应和失真等性能指标。
通过改变输入信号的频率和幅度,观察输出信号的变化情况,并记录相关数据。
三、实验结果与分析1. 增益测试通过改变输入信号的幅度,测量输出信号的幅度变化情况,计算出放大器的增益。
根据实验数据绘制增益-频率曲线图,分析放大器在不同频率下的增益变化情况。
2. 频率响应测试通过改变输入信号的频率,测量输出信号的幅度变化情况,计算出放大器的频率响应。
根据实验数据绘制频率响应曲线图,分析放大器在不同频率下的响应情况。
3. 失真测试通过改变输入信号的幅度和频率,观察输出信号的波形变化情况,判断放大器是否存在失真现象。
使用示波器测量输出信号的失真程度,计算出失真率,并与理论值进行比较,分析放大器的失真情况。
四、实验结论通过本次实验,我们成功搭建了一个简单的音响放大器电路,并对其进行了测试。
根据实验结果分析,我们得出以下结论:1. 放大器在不同频率下的增益存在差异,频率响应不均匀。
2. 放大器对于低幅度的输入信号具有较高的增益,但在高幅度下可能出现失真。
3. 放大器的失真率与输入信号的频率和幅度有关,需要根据实际需求进行调整。
五、实验改进与展望本实验仅搭建了一个简单的音响放大器电路,未考虑到更复杂的电路结构和性能优化。
两级放大电路

两级放大电路一、实验目的:1.掌握多级放大器静态工作点的调整与测试方法。
3.掌握两级放大器频率特性测量方法.二、实验仪器示波器数字万用表信号发生器直流电源双踪示波器毫伏表三、预习要求1.复习多级放大电路内容及频率响应特性理论。
2.分析两极交流放大电路,估计测试内容的变化范围。
3.按照实验原理图和基本要求用Multisim进行仿真,并采用DC 分析、AC分析和瞬态分析对实验数据和波形进行处理。
四、实验原理实验电路如下图所示,是两级阻容耦合放大器1. 静态工作点的计算测量阻容耦合多级放大器各级的静态工作点相互独立,互不影响。
所以静态工作点的调整与测量与前述的单击放大器一样。
图示的实验电路,静态值可按下式计算。
IBQ1=Vcc?UBEQ1RB1?(1??)RE1 ICQ1=βIBQ1UCEQ1=Vcc-IBQ1(RE1+RC1)UB2=RB22VCC RB21?RB22UE2=UB2-UBEQ IE2≈UE2 IB2=IC2/βRE2实际测量时,先把静态工作点调到最佳位置,然后只要测出两个晶体管各级对地的电压,经过换算便可得到其静态工作点值的大小。
2.多级放大器放大倍数的测量多级放大电路,不管是采用阻容耦合还是直接耦合,前一级的输出信号即为后级的输入信号,而后级的输入电阻会影响前级的交流负载。
多级放大电路的放大倍数,为各级放大倍数的乘机,而每一级电路电压放大倍数的计算,要将后级电路的输入电阻作为前级电路的负载来计算,上图实验电路中Au=Au1Au2=?RC1//RL?RC2//RL﹒rbe1?(1??)RE1rbe2Ri2=RB21//RB22//rbe2≈rbe2实际测量时,可直接测量第一级和第二级输入,输出电压,或两级的输入输出电压,并验证上述结论。
3.多级放大器的输入,输出电阻多级放大器不存在级间反馈时,输入电阻为第一季放大器的输入电阻,输出电阻为最后一级放大器的输出电阻。
本实验电路中,输入电阻:Ri=Ri1=Rb1//(Rbe1+(1+β)Re1)输出电阻: Ro=Ro2=Rc24.多级放大器的幅频特性多级放大器幅频特性的测量原理与单级放大器相同,理论分析与实践验证都表明,多级放大器的通频带小于任一单级放大器的通频带五、实验内容1.按图电路装接电路,注意接线尽可能短。
放大器的特性测量

放大器的滔量除上述需采用有效的测量系统及方法外,还应对其系统中的测量设备的正
确度为己知,并对其溯量方法例定向藕合器的方向性等引起的不确定度予以分析,以确保其 测量的准确性. 参考文献:
1.
1lF&Microwave Phase Noise Measurement
l丑95 t4.60 14.05 14.10 14.15
28.科
28.34 2&34 2&33 2&33
讯50
∞.蚰
50.4l
59.∞ 59.船
59.81 59.72 59.60 59.42
弛.9
32.7 30 2 31.5 30.7 29.5
-9.4 -9.4
—9.4
8.3 8.3 8.3
50.∞
O% &3 8.3
P叫z
13.70
3,65
I功率P-d阻l功羊P.d钿I G dB} -9,4 50.∞ I∞.03
60.oo
奉P
9 60 9.53
型吐
28科
n% 33.9 33.6
V锨
1.26 1.30
2&3.
—58—
&3 8-3 8.3 8.3 8.3
8.3
13.75 13.80
-9.4 -9.4 -9.4 -9.4 —91
4
50.57 50.57 50.5l
59.97
9.伯
9.46 9‘34 9'3l 9.27 9.12 8.93 8.69 8,34
28.34 2 8.34
33.4 33.4 33.0
.1.船 1.筠
I.2‘ t.23 1.20 1.18 1.17 1-16
晶体管两级放大电路实验报告

竭诚为您提供优质文档/双击可除晶体管两级放大电路实验报告篇一:实验三晶体管两级放大电路实验报告《模拟电子技术》实验报告篇二:实验四两级放大电路实验报告实验四两级放大电路一、实验目的l、掌握如何合理设置静态工作点。
2、学会放大器频率特性测试方法。
3、了解放大器的失真及消除方法。
二、实验原理1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管bg2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av为:Vo2Vo2Vo2Vo2Vo1VsViVi1Vi2Vi1式中电压均为有效值,且Vo1?Vi2,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。
当忽略信号源内阻Rs和偏流电阻Rb的影响,放大器的中频电压增益为:Vo1Vo1?1R?L1Rc1//rbe2AV11VsVi1rbe1rbe1Vo2Vo2?2R?L2Rc2//RLAV22Vi1Vo1rbe2rbe2Rc1//rbe2Rc2//RLAV?AV1?AV2??1??2rbe1rbe2必须要注意的是AV1、AV2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。
2、在两极放大器中β和Ie的提高,必须全面考虑,是前后级相互影响的关系。
3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。
guo?gu1o?gu2o式中gu?20logAV(db)三、实验仪器l、双踪示波器。
2、数字万用表。
3、信号发生器。
4、毫伏表5、分立元件放大电路模块四、实验内容1、实验电路见图4-1RL3K2、设置静态工作点(l)按图接线,注意接线尽可能短。
(2)静态工作点设置:要求第二级在输出波形不失真的前提下幅值尽量大,第一级为增加信噪比,静态工作点尽可能低。
D类功放数据测量

深圳大学实验报告课程名称:工程实践
实验项目名称:D类功放
学院:
专业:
指导教师:
报告人:学号:班级:
实验时间:2019年5月
实验报告提交时间:2019年6月24日星期一
教务部制
三、制作总结:
(1)本次实验最大体会就是核心板的焊接,第一次焊接失败,由于管脚过于密集,很容易粘连在一起,粘连之后又用电烙铁触碰板子,造成板子的损坏。
针对这个问题,我总结出了“滚动锡球法”(自己造的名字),先用电烙铁把融化的锡球在芯片对应的铜片上滚一圈,然后用镊子夹取芯片,将管脚对准板子上的铜片,固定好之后,用电烙铁加热管脚,铜片上的少量焊锡就会融化在管脚上。
这个方法不易造成粘连,但是可能会虚焊。
(2)学会了将焊好的芯片从板子上取下,学会了使用万用表判断芯片管脚是否虚焊。
(3)本次的实验电路使用了很多电分和模电的基础知识,比如滤波电路,原本知识学习了基础知识,现在更加深刻的认识到了这些模块在电路中的作用。
指导教师批阅意见:
成绩评定:。
放大器实验报告

1 实验二晶体管单管放大器一、实验目的1、了解和熟悉掌握晶体管单管放大器2、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
3、掌握放大器电压放大倍数、掌握放大器电压放大倍数、输入电阻、输入电阻、输出电阻及最大不失真输出电压的测试方法。
44、、熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻组成的分压电路,并在发射极中接有电阻R R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号器的输入端加入输入信号u u i 后,在放大器的输出端便可得到一个与后,在放大器的输出端便可得到一个与u u i 相位相反,幅值被放大了的输出信号放大了的输出信号u u 0,从而实现了电压放大。
图2-1 1 共射极单管放大器实验电路共射极单管放大器实验电路在左下图所示中在左下图所示中, , , 为函数信号发生器产生的交流信号,为函数信号发生器产生的交流信号,的交流信号经过的交流信号经过5.1K 5.1K 5.1K和和5151的电的电阻分压后,取阻分压后,取515151电阻两端的电压作为放大器的输入信号电阻两端的电压作为放大器的输入信号。
所以5151115100515151101100is s s s u u u u u ===»+ 在图在图22-1电路中,当流过偏置电阻电路中,当流过偏置电阻R R B1和R B2 的电流远大于晶体管的电流远大于晶体管T T T 的基极电流的基极电流的基极电流I I B 时(一般5~1010倍)倍),则它的静态工作点可用下式估算,则它的静态工作点可用下式估算CCB2B1B1BU R R R U +»CEBEB E I R U U I »-»U CE =U CC -I C (R C +R E) 电压放大倍数电压放大倍数电压放大倍数beLC V rR R βA // -=输入电阻输入电阻输入电阻 R i =R B1 // R B2 // r be输出电阻输出电阻 R O ≈R C放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。
运算放大器的应用实验报告

运算放大器的应用实验报告运算放大器的应用实验报告引言:运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元器件,具有高增益、高输入阻抗和低输出阻抗等特点。
它在现代电子电路中有着广泛的应用。
本实验旨在通过实际操作和测量,探索运算放大器在不同电路中的应用,并验证其性能。
一、直流放大电路实验:1. 实验目的:通过搭建直流放大电路,观察运算放大器的放大效果,并测量其放大倍数。
2. 实验步骤:(1)搭建直流放大电路,将运算放大器的正、负输入端分别连接到输入信号源和地线。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:通过实验数据的测量,我们得到了输入信号和输出信号的幅度数据,并计算了放大倍数。
结果显示,运算放大器能够将输入信号放大数倍,并且在一定频率范围内保持较好的线性放大特性。
二、反相放大电路实验:1. 实验目的:通过搭建反相放大电路,探索运算放大器的反相放大功能,并测量其放大倍数和频率响应。
2. 实验步骤:(1)搭建反相放大电路,将运算放大器的正输入端接地,负输入端连接到输入信号源。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:实验数据显示,反相放大电路能够将输入信号进行反向放大,并且放大倍数与输入信号的幅度成反比。
此外,随着输入信号频率的增加,输出信号的幅度逐渐下降,表明运算放大器的频率响应存在一定的限制。
三、非反相放大电路实验:1. 实验目的:通过搭建非反相放大电路,研究运算放大器的非反相放大功能,并测量其放大倍数和频率响应。
2. 实验步骤:(1)搭建非反相放大电路,将运算放大器的正输入端连接到输入信号源,负输入端接地。
(2)调节输入信号源的幅度,记录输出信号的幅度。
(3)改变输入信号的频率,观察输出信号的变化。
3. 实验结果和分析:实验数据显示,非反相放大电路能够将输入信号进行非反向放大,并且放大倍数与输入信号的幅度成正比。
声频功率放大器基本参数测试方法

声频功率放大器基本参数测试方法旋钮设置:音量旋钮最小,ECHO最小,其余置中。
各声场处理关闭,静音取消。
额定条件:功放机电源为额定(AC 220V),输入信号为额定源电动势(500MV/1KH Z 600Ω)。
输出负载为额定负载8Ω,输出功率为额定功率(技定)。
(MIC的额定源电动势为50MV/1KHZ,600Ω。
)正常工作条件:将放大器置于额定条件下,把输入信号(额定源电动势)衰减10DB。
1.静太中点电压测量:在通电情况下不接输入和输出,用数字万用表直流200MV检测输出对地电压值。
2.最大噪声电平(MV):输入0信号,音量至最大,输出接额定负载8Ω,用毫伏表测输出电平。
3.信号比(DB):额定条件下将输入信号降为0V(接短接插),用毫伏表测试输出电平与额定输出电平之差(可直接读出DB值)。
4.增益差(DB):正常工作条件下,调音量电位器从最大odB计调至最小—46dB。
此过程中毫伏表L/R的最大差值(dB)。
5.输出功率(W/V):额定条件下L/R输入500MV/1KHZ同相信号,主声道输出失真为1%时输出功率为主声道功率。
中置输出失真1%之功率为中置功率。
R/L输入500MV/1KHZ反相信号(模拟),或AC-3直接输入500MV/1KHZ同相信号,环绕输出失真1%之功率为环绕功率。
6.分离度(DB):L或R输入500MV/1KHZ信号,示波器最大不失真输出。
再把L或R输入信号去掉,接上10KΩ对地电阻,从毫伏表读出L/R的差值。
7.频响:放大器置正常工作条件下,再把信号限至10K,16K,100HZ,40HZ时,看输出与1KHZ时之差值dB,中置环绕依据技术要求而定。
8.音调范围:正常工作条件下,输出2.5V再把信号频率限至100HZ,10KHZ调整BASS/TREBLE电位器,从毫伏表上看其最大提升和衰减值(与旋钮中点值相比)。
(数码调节类似)9.灵敏度:音量开至最大,输入信号1KHZ,幅度由小到大至示波器最大不失真输出止,再用毫伏表测输入信号的幅度。
功率放大器 实验报告

功率放大器实验报告功率放大器实验报告引言功率放大器是电子电路中常见的一种设备,用于将输入信号的功率放大到较大的输出功率。
它在各个领域中都有广泛的应用,如音频放大器、射频放大器等。
本实验旨在通过搭建一个简单的功率放大器电路并进行测试,以了解功率放大器的基本原理和性能。
实验目的1. 了解功率放大器的基本原理和工作方式;2. 掌握功率放大器电路的搭建方法;3. 测试功率放大器的性能指标,如增益、频率响应等。
实验器材1. 功率放大器芯片;2. 电容、电阻等被动器件;3. 示波器、信号发生器等测试仪器。
实验步骤1. 搭建功率放大器电路根据给定的电路图,按照电路原理进行连接,注意器件的极性和接线的正确性。
2. 测试电路的直流工作点将示波器的探头连接到输出端,调节信号发生器的频率和幅度,观察示波器上的波形。
通过调节电阻和电容的值,使得输出信号的直流偏置点处于合适的范围。
3. 测试电路的交流增益将示波器的探头连接到输入端和输出端,调节信号发生器的频率和幅度,观察示波器上的波形。
通过测量输入和输出信号的幅度,计算得到功率放大器的增益。
4. 测试电路的频率响应在一定范围内改变信号发生器的频率,测量输出信号的幅度和相位,绘制功率放大器的频率响应曲线。
实验结果与分析通过实验测量和计算,得到了功率放大器的增益和频率响应曲线。
根据实验结果可以发现,功率放大器在一定频率范围内具有较好的增益和线性特性。
然而,随着频率的增加,放大器的增益会逐渐下降,这是由于被动器件的频率特性等因素所致。
同时,功率放大器还存在着一些非线性失真问题,如交趾失真和截止失真等,这些问题需要在实际应用中进行进一步的优化和改进。
结论通过本次实验,我们深入了解了功率放大器的基本原理和性能指标。
通过搭建电路并进行测试,我们成功获得了功率放大器的增益和频率响应曲线。
这些实验结果对于我们进一步理解和应用功率放大器具有重要的参考价值。
在实际应用中,我们需要根据具体的需求选择合适的功率放大器,并进行相应的电路设计和优化,以实现更好的性能和效果。
两级放大器实验报告

两级放大器实验报告两级放大器实验报告引言:放大器是电子电路中常见的重要组成部分,其作用是将输入信号放大到需要的幅度。
在实际应用中,常常需要使用多级放大器来增加信号的增益,以满足不同的需求。
本实验旨在通过搭建两级放大器电路,探究其工作原理和性能特点。
一、实验目的本实验的主要目的有以下几点:1. 了解两级放大器的基本原理和工作方式;2. 掌握放大器电路的搭建和调试方法;3. 测量放大器的电压增益、频率响应等性能参数;4. 分析和比较不同放大器电路的优缺点。
二、实验原理1. 两级放大器的基本原理两级放大器由两个级联的放大器组成,第一级放大器称为前置放大器,负责将输入信号放大到一定程度;第二级放大器称为输出放大器,进一步放大前一级的信号并驱动负载。
两级放大器的总增益等于各级放大器的增益的乘积。
2. 放大器电路的搭建本实验使用常见的共射放大器电路作为前置放大器,以及共射共集放大器电路作为输出放大器。
前置放大器的输入信号通过耦合电容传递给基极,输出信号通过耦合电容和负载电阻传递给输出端;输出放大器的输入信号通过耦合电容传递给基极,输出信号则由集电极输出。
1. 搭建两级放大器电路按照实验原理中给出的电路图,使用电子元器件搭建两级放大器电路。
注意连接的正确性和稳定性。
2. 调试放大器电路通过调整电路中的偏置电压、负反馈电阻等参数,使得放大器电路能够正常工作。
使用示波器观察输入和输出信号的波形,确保信号的放大和失真情况。
3. 测量放大器的性能参数使用信号发生器提供不同频率的输入信号,通过示波器测量输入和输出信号的幅度,并计算出放大器的电压增益。
同时,还可以测量放大器的频率响应、输入阻抗、输出阻抗等参数。
四、实验结果与分析1. 放大器的电压增益根据测量结果,可以得到放大器的电压增益。
通过比较不同频率下的增益值,可以分析放大器的频率响应特性。
2. 放大器的失真情况通过观察示波器上的波形,可以判断放大器是否存在失真现象。
场效应管放大器实验报告

实验六场效应管放大器一、实验目的1、了解结型场效应管的性能和特点2、进一步熟悉放大器动态参数的测试方法二、实验仪器1、双踪示波器2、万用表3、信号发生器三、实验原理实验电路如下图所示:图6-1场效应管是一种电压控制型器件。
按结构可分为结型和绝缘栅型两种类型。
由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。
加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。
1、结型场效应管的特性和参数场效应管的特性主要有输出特性和转移特性。
图6-2所示为N 沟道结图6-2 3DJ6F 的输出特性和转移特性曲线型场效应管3DJ6F 的输出特性和转移特性曲线。
其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数U △U △I g DS GSDm ==表6-1列出了3DJ6F 的典型参数值及测试条件。
表6-12、场效应管放大器性能分析图6-1为结型场效应管组成的共源级放大电路。
其静态工作点2PGS DSS D )U U (1I I -= 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U(1U 2I g PGS P DSS m --= 计算。
但要注意,计算时U GS 要用静态工作点处之数值。
3、输入电阻的测量方法场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。
其输入电阻的测量,从原理上讲,也可采用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。
因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。
功率放大器实验报告

一、实验目的1. 理解功率放大器的基本原理和组成。
2. 掌握功率放大器的性能指标及其测量方法。
3. 学习功率放大器在实际电路中的应用。
4. 培养动手能力和分析问题、解决问题的能力。
二、实验原理功率放大器是一种将输入信号放大到足够大的功率以驱动负载的电子电路。
它主要由输入级、中间级和输出级组成。
输入级用于放大输入信号,中间级用于对信号进行进一步的处理,输出级则将信号放大到足够的功率以驱动负载。
功率放大器的主要性能指标包括输出功率、效率、非线性失真、输入阻抗、输出阻抗等。
三、实验器材1. 功率放大器实验板2. 函数信号发生器3. 示波器4. 阻抗箱5. 负载电阻6. 电源7. 连接线四、实验步骤1. 连接电路根据实验板上的原理图,正确连接功率放大器实验电路。
包括连接输入级、中间级和输出级,以及连接信号发生器、示波器、阻抗箱、负载电阻和电源等。
2. 输入信号调节使用函数信号发生器产生一个合适的输入信号,并将其输入到功率放大器的输入级。
3. 观察输出波形使用示波器观察功率放大器的输出波形,分析输出波形的形状、幅度和失真情况。
4. 测量输出功率使用阻抗箱和负载电阻测量功率放大器的输出功率。
根据输出电压和电流,计算输出功率。
5. 测量效率使用功率计测量功率放大器的输入功率和输出功率,计算效率。
6. 测量非线性失真使用失真分析仪测量功率放大器的非线性失真。
7. 测量输入阻抗和输出阻抗使用阻抗箱测量功率放大器的输入阻抗和输出阻抗。
五、实验结果与分析1. 输出波形观察到的输出波形基本为正弦波,但存在一定的失真。
这是由于功率放大器在工作过程中,晶体管特性曲线的非线性引起的。
2. 输出功率测量得到的输出功率为XX瓦,符合实验要求。
3. 效率测量得到的效率为XX%,说明功率放大器的效率较高。
4. 非线性失真测量得到的非线性失真为XX%,说明功率放大器的非线性失真较小。
5. 输入阻抗和输出阻抗测量得到的输入阻抗为XX欧姆,输出阻抗为XX欧姆。
放大器的测量方法

放大器的测量方法放大器是一种电子设备,用于放大电信号,使其足以驱动扬声器或其他负载。
在测量放大器时,可以从多个方面进行评估。
下面将讨论一些常见的放大器测量方法。
首先,最基本的测量是电压增益。
电压增益是指输出电压与输入电压之间的比率。
测量电压增益时,首先需要一个电压源来提供输入信号。
通过在输入端施加一个特定的电压,并在输出端测量得到的电压,可以计算出电压增益。
其次,一个重要的测量指标是频率响应。
频率响应是指放大器在不同频率下的增益特性。
为了测量频率响应,可以使用频谱分析仪或信号发生器和示波器组合。
在输入端施加一系列不同频率的信号,并在输出端测量到相应的电压。
通过绘制输入频率与输出电压之间的关系曲线,可以得到放大器的频率响应特性。
第三,输出功率是另一个重要的测量指标。
放大器的输出功率是指放大器可提供给负载的最大功率。
为了测量输出功率,可以使用功率计或示波器来测量输出信号的功率。
通过改变输入信号的幅度,然后测量输出信号的功率,可以找到放大器的最大输出功率。
第四,失真是一个需要注意的因素。
失真会导致输出信号变得畸变,从而影响音质。
常见的失真类型包括谐波失真、交调失真等。
为了测量失真,可以使用频谱分析仪,通过测量输出信号中的谐波分量来评估失真程度。
此外,静态特性也是需要考虑的因素之一。
静态特性是指当没有输入信号时,放大器的输出电压和电流的稳定性。
常见的静态特性包括偏置电流和输出偏置电压等。
通过测量输出电压和电流,可以评估放大器的静态特性。
还有一些其他的测量方法,如输入/输出阻抗、噪声指标、互调失真等。
输入/输出阻抗是指放大器对输入和输出信号的阻抗匹配情况。
噪声指标评估了放大器引入到信号中的噪声水平。
互调失真是放大器在幅度调制和相位调制下产生的非线性失真。
综上所述,放大器的测量通常包括电压增益、频率响应、输出功率、失真、静态特性等多个方面。
通过综合考虑这些参数,可以评估放大器的性能和质量,从而选择适合的放大器应用。
放大器的特性测量

IN
OUT
放大器
数字万用表
图四
四、压摆率(SR)的测量: 压摆率的定义为:放大器输出电压的最大 变化速率。其计算公式为:SR=Δ E/Δ T 测量装置图所图3所示。信号发生器输出为 10KHz 的方波。请用示波器测出 Δ E 和 Δ T值,根据公式计算SR值。
△T
△E
图五、对方波或脉冲输入的响应(实线为输入信号,虚线为输出信号)
IC1 A L F35 3 C2 1 OUT 1
2
R3 1K
R4 1 0K -1 5V
4
图1
-
图一
+15 V
OUT 2
+
8
7
6
5
LF353
1 2 3 4
图2
图二
OUT 1 + -1 5V
二、放大器增益-频率特性曲线测量:
按装置图图三接好实验装置,保持信号发生器正弦波输出辐度 不变,改变正弦波信号的频率,从500Hz-2KHz,每隔200Hz为 一测量点, 2KHz-300KHz 每隔 40KHz 为一测量点, 300KHz- 500KHz 每 隔 1 0 KHz 为 一 测 量 点 。 放 大 器 增 益 计 算 公 式 为 : K=Vout / Vin(Vout、Vin为放大器输入、输出正弦波信号的峰 峰值 ) 。画出放大器增益-频率特性曲线,并确定放大器的高 通截止频率 f H ( 注: f H 为低频段增益下降为最高增益的 0.707 倍时的频率点,即 3dB 点) 和低频截止频率 f L ( 注: f L 为高频段 3dB 点 ) ,并计算出该放大器的 3dB 带宽 BW(BW=f L-f H)。
实验二 压控振荡器和放大器测量实验

实验二放大器和压控振荡器测量实验1、实验设置的意义宽带放大器是工作频率上限与下限之比甚大于1的放大电路。
习惯上也常把相对频带宽度大于20%~30%的放大器列入此类。
这类电路主要用于对视频信号、脉冲信号或射频信号的放大。
为了扩展带宽,除了使其增益较低以外,通常还需要采用高频和低频补偿措施,以使放大器的增益-频率特性曲线的平坦部分向两端延展。
可以归入宽带放大器的还有用于时分多路通信、示波器、数字电路等方面的基带放大器或脉冲放大器(带宽从几赫到几十或几百兆赫),用于测量仪器的直流放大器(带宽从直流到几千赫或更高),以及音响设备中的高保真度音频放大器(带宽从几十赫到几十千赫)等。
用于射频信号放大的宽带放大器(大多属于带通型),如雷达或通信接收机中的中频放大器,其中心频率为几十兆赫或几百兆赫,通带宽度可达中心频率的百分之几十。
微波放大器的种类很多,有行波管放大器、参量放大器、隧道二极管放大器等。
衡量放大器性能的主要参数有增益、噪声、寄生振荡和失真等。
测量这些参数的方法也很多,但是,对于放大器的微小失真和寄生振荡的测量,一般实验技术就很难解决。
由于频谱仪具有高灵敏度,高分辨力、宽动态范围,所以能很好的解决这些参数测量的问题。
压控振荡器(简称VCO),是输出信号频率随输入控制电压变化的振荡器,也可以看作是一种电压频率变换器。
它可以用作频率扫描信号发生器,FM调制器等,也是锁相技术的重要组成部分。
因此在现代通信、导航、雷达、广播电视、工业控制以及仪表测量等技术领域中有广泛的应用,在航空、航天电子工程设备中的应用更是随处可见,因此对压控振荡器的学习和研究十分重要。
振荡器作为一种电路元件,其输出量是对应于一定频率或频率范围的电压或功率。
利用频谱仪,这些频响数据能在示波管屏幕上准确直观地显示出来。
此外,频谱仪比起示波器来讲对低电平的失真具有更高的灵敏性,可以准确直观地显示谐波失真。
高的灵敏度和宽的动态范围也使频谱仪得以测量低电平调制。
信号放大器实验报告

信号放大器实验报告信号放大器实验报告引言:在现代科技的发展中,信号放大器扮演着至关重要的角色。
无论是在通信领域、医疗设备还是音频设备中,信号放大器都是不可或缺的组成部分。
本实验旨在通过实际操作和数据分析,探究信号放大器的原理和性能。
一、实验目的本实验的主要目的是通过搭建信号放大器电路,了解其基本原理,并通过实际测量和数据分析,掌握信号放大器的性能参数。
二、实验原理信号放大器是一种能够放大输入信号幅度的电路。
在本实验中,我们将使用一个基本的放大器电路,即共射极放大器电路。
该电路由一个NPN型晶体管、耦合电容和负载电阻组成。
输入信号经过耦合电容输入到基极,晶体管将信号放大后输出到负载电阻上。
三、实验步骤1. 搭建信号放大器电路:按照实验指导书提供的电路图,依次连接晶体管、耦合电容和负载电阻。
2. 测量输入输出电压:使用万用表分别测量输入电压Vin和输出电压Vout,并记录数据。
3. 计算电压增益:根据测量数据,计算电压增益Av,即输出电压与输入电压的比值。
4. 测量频率响应:通过改变输入信号的频率,测量不同频率下的输出电压,并绘制频率响应曲线。
5. 计算功率增益:根据测量数据,计算功率增益Ap,即输出功率与输入功率的比值。
四、实验结果与分析1. 输入输出电压测量结果:根据测量数据计算得到的电压增益为Av=Vout/Vin。
2. 频率响应曲线:根据测量数据绘制得到的频率响应曲线,可以看出信号放大器在不同频率下的放大效果。
3. 功率增益计算结果:根据测量数据计算得到的功率增益为Ap=Pout/Pin。
五、实验总结通过本次实验,我们对信号放大器的原理和性能有了更深入的了解。
在实际应用中,信号放大器可以根据不同的需求进行调整,以获得最佳的放大效果。
同时,我们也学会了如何通过实际测量和数据分析,对信号放大器的性能进行评估和优化。
六、实验改进与展望本实验中使用的是基本的共射极放大器电路,未涉及到更复杂的放大器电路。
高频实验报告实验二 单调谐高频小信号谐振放大器

单调谐高频小信号谐振放大器目录一、实验原理 (2)二、仿真分析 (8)2.1 实验一 (8)2.2 实验二 (14)三、单调谐放大电路设计实例 (22)3.1电路选择与参数计算 (23)3.1.1选定电路形式 (23)3.1.2设置静态工作点 (24)3.1.3谐振回路参数计算 (24)3.1.4确定耦合电容与高频滤波电容: (24)一、实验原理调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由 L 、C 组成的并联谐振回路,由于L 、C 并联谐振回路的阻抗随频率而变化,在谐振频率处、其阻抗是纯电阻,且达到最大值。
因此,用并联谐振回路作集电极负载的调谐放大器在回路的谐振频率上具有最大的放大系数,稍离开此频率放大系数就迅速减小。
因此用这种放大器就可以只放大我们所需要的某些频率信号,而抑止不需要的信号或外界干扰信号。
正因如此,调谐放大器在无线电通讯等方面被广泛地用作高频和中频选频放大器。
调谐放大器的电路形式很多,但基本的电路单元只有两种:一种是单调谐放大器,一种是双调谐放大器。
这里先讨论单调谐放大器。
(—) 单调谐放大器的基本原理典型的单调谐放大器电路如图1.1所示。
图中R 1, R 2 是直流偏置电阻;LC 并联谐振回路为晶体管的集电极负载,R e 是为提高工作点的稳定性而接入的直流负反馈电阻, C b 和C e 是对信号频率的旁路电容。
输入信号V s ’经变压器耦合至晶体管发射结,放大后再由变压器耦合到外接负载R L ,C L 上。
为了减小晶体管输出导纳对回路的影响,晶体管T 1采用抽头接入。
L LV s ’图1.1高频小信号谐振放大器电路在低频电子电路中,我们经常采用混合π模型来描述晶体管。
把晶体管内部的物理过程用集中元器件RLC 表示。
用这种物理模型的方法所涉及到的物理等效电路就是所谓的π参数等效电路。
混合π 参数是晶体管物理参数,与频率无关,物理概念清楚。
但是由于输入输出相互牵制,在高频分析时不太方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 放大器输入、输出电阻和频响特性的测量
一、实验目的
掌握放大器输入电阻、输出电阻和频率特性的测量原理和方法。
二、实验原理
1.放大器输入电阻R i 的测试
最简单的测试方法是“串联电阻法”。
其原理如图2-1所示,在被测放大器与信号源之间串入一个已知标准电阻R i ,只要分别测出放大器的输入电压U i 和输入电流I i ,就可以求出: R i =V i /I i =
n R i R U U /=R
i U U
•Rn
但是,要直接用交流毫伏表或示波器测试Rn 两端的电压U R 是有困难的,因U R 两端不接地。
使得测试仪器和放大器没有公共地线,干扰太大,不能准确测试。
为此,通常是直接测出U S 和U i 来计算R i ,由图不难求出: R i =
i
S i
U U U -• Rn
注:测R i 时输出端应该接上R L ,并监视输出波形,保证在波形不失真的条件下进行上述测量。
图2-1放大电路输入端模型
2.放大器输出电阻R o 的测试
放大器输出端可以等效成一个理想电压源U o 和R o 相串联,如图2-3所示。
在放大器输入端加入U S 电压,分别测出未接和接入R L 时放大器的输出电压U o 和U L 值,则 L L
R U U R )1(
0-= 注意:要求在接入负载R L (或R W )的前后,放大器的输出波形都无失真。
501mA β==CQ ,I , 212*c B b p E R V R R R =
++12*5.1
1.7,10 5.1
p V R ==++
20.9p R K =Ω 2626200(1)
200(1) 1.526,1be EQ mv mv
r K I mA
ββ=++=++=Ω 12()//// 1.13,i b p b be R R R R r K =+=Ω
3o c R R K ==Ω
1212()l c L f R R C π=
+ 21
1
2l be f r C π=',
136
11
0.262()2(310)*10*47*10l f Hz R R C ππ-=
==++
(1)按图2-5所示电路,接好并检查无误后,接通直流电源+12V ,在无信号输入情况下,调整偏置可变电阻R P ,使I C ≈1mA,(即U RC =3V)
4.测量放大器的幅频特性
开关K闭合,保持输入信号幅度不变,在输出信号不失真的前提下,改变输入信号的频率,测出输出电压的大小,找出f L,f H计算出B值, 结果记入表2-3中。
表2-3
五、实验结果分析、小结: 1、放大器输入电阻R i 的测试
输入电阻R i 的大小表示放大电路从信号源或前级放大电路获取电流的多少。
输入电阻越大,索取前级电流越小,对前级的影响就越小。
测试方法是“串联电阻法”,即在被测的放大电路的输入端与信号源之间串入一个已知电阻Rn ,在放大器正常工作的情况下,直接用交流毫伏表测出U S 和U i ,根据输入电阻的定义可得: R i =
i
S i
U U U -• Rn
测量时应注意以下几点:
由于电阻Rn 两端没有电路公共接地点,所以测量Rn 两端电压时必须分别测出测出U S 和U i ,然后按U R =U S -U i ,求出U R
电阻Rn 的值不宜取得过大,过大会引入干扰;但也不宜取得太小,太小易引起较大的测量误差。
最好取Rn 和R i 的阻值为同一数量级
2、放大器输出电阻R o 的测试
输出电阻R o 的大小表示电路带负载能力的大小。
输出电阻越小,带负载能力越强。
在放大器输入端加入U i 电压,测出输出端不接负载R L 输出电压U o 和接入负载R L 输出电压U L ,即可求输出电阻R o 。
L L
R U U R )1(
0-= 在测试时应注意:必须保持R L 接入前后输入信号的大小不变。
3、放大器幅频特性的测量
放大器幅频特性指放大器的电压放大倍数Av 与输入信号频率f 之间的关系曲线。
一般用逐点法进行测量。
在保持输入信号幅值不变的情况下,改变输入信号的频率,逐点测量对应于不同频率时的电压增益,用对数坐标纸画出幅频特性曲线。
通常将放大倍数下降到中频电压放大倍数的0.707倍时所对应的频率称为该放大电路上、下限截止频率,用f H 和f L 表示,则该放大电路的通频带为B=f H -f L
六、实验预习要求
1.计算图2-5中当I C =1mA 时的U CQ 、U CEQ 、U EQ 、U BEQ 和U BQ 值。
2.计算图2-5中的输入电阻i R 、输出电阻o R 、下限截止频率L f 、上限截止频率H f 、频带宽度
B 。
七、实验报告要求
1.整理实验记录,并对其结果进行分析讨论。
2.总结测量输入电阻、输出电阻和频率特性的方法。
八、实验设备
1.示波器一台2.函数信号发生器一台3.交流毫伏表一台4.直流稳压电源一台5.万用表一只6.实验箱一台。