多边形与平面图形的镶嵌
中考数学热身 多边形与平面图形的镶嵌(含解析)
多边形与平面图形的镶嵌一.选择题1.只用下列图形不能镶嵌的是()A.三角形B.四边形C.正五边形 D.正六边形2.若n边形的每个内角为150°,则这个n边形是()A.九边形B.十边形C.十一边形 D.十二边形3.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形4.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.85.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种B.3种C.2种D.1种6.如图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是度.7.下面各角能成为某多边形的内角和的是()A.430°B.4343°C.4320°D.4360°8.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为()A.5 B.6 C.7 D.8二、填空题9.四边形的内角和等于度.10.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.11.一个内角和为1440°的正多边形的外角和为.12.一个多边形的每个外角都等于72°,则这个多边形的边数为.三、解答题13.已知一个多边形的内角和等于外角和的5倍,求这个多边形的内角和及边数.14.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.15.请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.16.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.27.求下图中x的值.多边形与平面图形的镶嵌参考答案与试题解析一.选择题1.只用下列图形不能镶嵌的是()A.三角形B.四边形C.正五边形 D.正六边形【考点】平面镶嵌(密铺).【分析】任意三角形的内角和是180°,放在同一顶点处6个即能组成镶嵌.同理四边形的内角和是360°,也能组成镶嵌.正六边形的每个内角是120°,正五边形每个内角是180°﹣360°÷5=108°,其中180°,360°,120°能整除360°,所以不适用的是正五边形.【解答】解:A、任意三角形的内角和是180°,放在同一顶点处6个即能密铺;B、任意四边形的内角和是360°,放在同一顶点处4个即能密铺;C、正五边形的每一个内角是180°﹣360°÷5=108°,不能整除360°,所以不能密铺;D、正六边形每个内角是120度,能整除360°,可以密铺.故选C.【点评】本题考查一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.2.若n边形的每个内角为150°,则这个n边形是()A.九边形B.十边形C.十一边形 D.十二边形【考点】多边形内角与外角.【分析】首先根据内角的度数计算出外角度数,再用360°÷外角的度数即可得到边数.【解答】解:∵n边形的每个内角为150°,∴它的外角是180°﹣150°=30°,∴n=360°÷30°=12,故选:D.【点评】此题主要考查了多边形的内角和外角的关系,关键是掌握多边形的内角与相邻的外角互补.3.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【考点】多边形内角与外角.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】压轴题.【分析】利用多边形的内角和公式即可求解.【解答】解:因为多边形的内角和公式为(n﹣2)•180°,所以(n﹣2)×180°=720°,解得n=6,所以这个多边形的边数是6.故选:B.【点评】本题考查了多边形的内角和公式及利用内角和公式列方程解决相关问题.内角和公式可能部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了公式,推导一下这个公式也不会花多少时间,所以,学习数学,理解比记忆更重要.5.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种B.3种C.2种D.1种【考点】平面镶嵌(密铺).【分析】由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.【解答】解:①正三角形的每个内角是60°,能整除360°,6个能组成镶嵌②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有3种.故选B.【点评】此题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.6.如图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是36 度.【考点】正多边形和圆.【分析】根据正五边形的性质和内角和为540°,得到△ABC≌△AED,AC=AD,AB=BC=AE=ED,先求出∠BAC和∠DAE的度数,再求∠CAD就很容易了.【解答】解:根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°.【点评】本题考查了正五边形的性质:各边相等,各角相等,内角和为540°.7.下面各角能成为某多边形的内角和的是()A.430°B.4343°C.4320°D.4360°【考点】多边形内角与外角.【分析】利用多边形的内角和公式可知,多边形的内角和是180度的倍数,由此即可找出答案.【解答】解:因为多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,在这四个选项中是180的倍数的只有4320度.故选:C.【点评】本题主要考查了多边形的内角和定理,是需要识记的内容.8.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】方程思想.【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.【解答】解法1:设边数为n,这个外角为x度,则0<x<180°根据题意,得(n﹣2)•180°+x=570°解之,得n=.∵n为正整数,∴930﹣x必为180的倍数,又∵0<x<180,∴n=5.解法2:∵0<x<180.∴570﹣180<570﹣x<570,即390<570﹣x<570.又∵(n﹣2)•180°=570﹣x,∴390<(n﹣2)•180°<570,解之得4.2<n<5.2.∵边数n为正整数,∴n=5.故选A.【点评】此题较难,考查比较新颖,涉及到整式方程,不等式的应用.二、填空题9.四边形的内角和等于360 度.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,代入公式就可以求出内角和.【解答】解:(4﹣2)•180°=360°.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.10.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是12 .【考点】平面镶嵌(密铺).【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正方形的一个内角度数为180°﹣360°÷4=90°,正六边形的一个内角度数为180°﹣360°÷6=120°,∴需要的多边形的一个内角度数为360°﹣90°﹣120°=150°,∴需要的多边形的一个外角度数为180°﹣150°=30°,∴第三个正多边形的边数为360÷30=12.故答案为:12.【点评】此题主要考查了平面镶嵌,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个内角之和为360°;正多边形的边数为360÷一个外角的度数.11.一个内角和为1440°的正多边形的外角和为360°.【考点】多边形内角与外角.【专题】计算题.【分析】根据了多边形的外角和定理即可得到答案.【解答】解:∵一个多边形的外角和为360°,∴一个内角和为1440°的正多边形的外角和为360°.故答案为360°.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.12.一个多边形的每个外角都等于72°,则这个多边形的边数为 5 .【考点】多边形内角与外角.【分析】利用多边形的外角和360°,除以外角的度数,即可求得边数.【解答】解:多边形的边数是:360÷72=5.故答案为:5.【点评】本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.三、解答题13.已知一个多边形的内角和等于外角和的5倍,求这个多边形的内角和及边数.【考点】多边形内角与外角.【专题】计算题;方程思想.【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据一个多边形的内角和等于它的外角和的5倍列方程求解.【解答】解:设这个多边形是n边形.则(n﹣2)×180°=5×360°,n=12.5×360°=1800°.答:这个多边形内角和是1800°,是6边形.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征.14.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.【考点】多边形的对角线.【专题】探究型.【分析】首先从特殊四边形的对角线观察起,则四边形是2条对角线,五边形有5=2+3条对角线,六边形有9=2+3+4条对角线,则七边形有9+5=14条对角线,则八边形有14+6=20条对角线.【解答】解:凸八边形的对角线条数应该是20.理由:∵从一个顶点发出的对角线数目,它不能向本身引对角线,不能向相邻的两个顶点引对角线,∴从一个顶点能引的对角线数为(n﹣3)条;∵n边形共有n个顶点,∴能引n(n﹣3)条,但是考虑到这样每一条对角线都重复计算过一次,∴能引条.∴凸八边形的对角线条数应该是: =20.【点评】能够从特殊中找到规律进行计算.15.请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.【考点】平面镶嵌(密铺).【分析】根据多边形镶嵌成平面图形的条件,因为正三角形的内角和为60°,而正方形、正六边形的内角分别为90°、120°,由于60+90×2+120=360,故能进行平面镶嵌,进而得出即可.【解答】解:因为三种瓷砖都必须用到,所以在每一个顶点处正三角形1个,正方形2个,正六边形1个即可.如图:【点评】此题主要考查了平面镶嵌,解这类题,需要掌握多边形镶嵌成平面图形的条件,即围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.16.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.【考点】多边形内角与外角.【分析】根据n边形的内角和公式,则内角和应是180°的倍数,且每一个内角应大于0°而小于180度,根据这些条件进行分析求解即可.【解答】解:(1)∵2300°÷180°=12…140°,则边数是:12+1+2=15;(2)该内角应是180°﹣140°=40°.【点评】本题主要考查多边形内角和公式的灵活运用,解题的关键是找到相应度数的等量关系.注意多边形的一个内角一定大于0°,并且小于180度.17.求下图中x的值.【考点】多边形内角与外角.【分析】根据五边形的内角和定理即可列方程求解.【解答】解:根据五边形的内角和是(5﹣2)•180=540°得到:2x+120+150+x+90=540解得:x=60.【点评】此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.。
初中数学多边形与平面镶嵌
初中数学——多边形与平面镶嵌一、选择题。
1.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形B.正八边形C.正六边形D.正五边形2.一个四边形截去一个角后内角个数是()A.3个B.4个C.5个D.3个或4个或5个3.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3B.4C.5D.64.如图,四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=2√3,AD=2,则四边形ABCD的面积是()A.4√2B.4√3C.4D.65.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定满足()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线相等且相互平分6.如果一个多边形的每一个内角都等于相邻外角的2倍,那么这个多边形的边数为()A.4B.5C.6D.87.如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A. 4B. 5C. 6D. 78.一个多边形的内角和是它的外角和的5倍,那么这个多边形的边数为 ( )A. 19B. 10C. 11D. 129.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是( )A. 5B. 6C. 7D. 810.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,50ABG ∠=︒,则FAE ∠的度数是( )A.22︒B.32︒C.50︒D.130︒11.若一个五边形有三个内角都是直角,另两个内角的度数都等于α,则α等于( )A. 30B. 120C. 135D. 10812.已知一个多边形的内角和是外角和的4倍,则这个多边形的边数是( )A.9B.10C.11D.12二、填空题。
13.若将多边形边数增加1倍,则它的外角和是__________度.14.一个多边形的每一个内角都是108°,你们这个多边形的边数是 .15.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .一个多边形的每个内角都等于150°,则这个多边形是 边形.B .用计算器计算:sin15°32' (精确到0.01)16.若一个多边形的每个外角都是 72° ,则这个多边形是 边形.三、解答题。
平面镶嵌的原理
平面镶嵌的原理
一、什么是平面镶嵌
平面镶嵌是指将小块图案和塑料或金属材料组合在一起,组成复杂的碎片图案,形成人眼无法细看而整体看上去美观的一面。
平面镶嵌历史悠久,是一种古老的装饰工艺,可以将木材、金属、玻璃、和砖石等材料组装在一起,把原材料中的功能用美学的手法达到一定的视觉效果,镶嵌的技艺具有卓越的应用价值。
二、平面镶嵌的原理
1.对角填充原理
按照平面镶嵌的原理,相对于每一个组成单元的中心点,可以得到另一个中心点,以此组成一个多边形,每一个多边形的内部,都可以放置一个图案,使得组装的图案不会出现空洞,不分行和列,也就是所谓的“对角填充”原理。
2.花砖原理
要实现这种技术,必须要使用到一种所谓的“花砖”原理,即在每一个碎片单元的最外侧,都要使用一个合适的尺寸,这样的尺寸可以使碎片合理的组装起来,置入花砖,把图案从外部组装起来,整体看上去,花砖就像拼图一样,只有所有的花砖才能够完整的形成整体图案。
三、平面镶嵌的应用
1.室内装饰
平面镶嵌广泛应用于室内装饰,比如墙面、地板、屋顶、柜台、
杂物架、墙纸等。
由于平面镶嵌可以组装出来的复杂精美的图案,所以可以给人以极大的视觉冲击,并且有利于环境的装饰。
2.服装
平面镶嵌也可以用于服装的制作。
比如服装的表面可以做成平面镶嵌的图案,色彩搭配十分精致,更能体现服装的尊贵气派。
中考数学总复习训练 多边形与平面镶嵌(含解析)-人教版初中九年级全册数学试题
多边形与平面镶嵌一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.92.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.93.正十边形的每个外角等于()A.18° B.36° C.45° D.60°4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°二、填空题14.正n边形的一个外角的度数为60°,则n的值为.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为cm2.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是度.多边形与平面镶嵌参考答案与试题解析一、选择题1.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【专题】计算题.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.2.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n ﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.3.正十边形的每个外角等于()A.18° B.36° C.45° D.60°【考点】多边形内角与外角.【专题】常规题型.【分析】根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解.【解答】解:360°÷10=36°,所以,正十边形的每个外角等于36°.故选:B.【点评】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形三者之间的关系是解题的关键.4.正六边形的每个内角都是()A.60° B.80° C.100°D.120°【考点】多边形内角与外角.【专题】常规题型.【分析】先利用多边形的内角和公式(n﹣2)•180°求出正六边形的内角和,然后除以6即可;或:先利用多边形的外角和除以正多边形的边数,求出每一个外角的度数,再根据相邻的内角与外角是邻补角列式计算.【解答】解:(6﹣2)•180°=720°,所以,正六边形的每个内角都是720°÷6=120°,或:360°÷6=60°,180°﹣60°=120°.故选D.【点评】本题考查了多边形的内角与外角,利用正多边形的外角度数、边数、外角和三者之间的关系求解是此类题目常用的方法,而且求解比较简便.5.一个多边形的内角和与外角和相等,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】首先设此多边形是n边形,由多边形的外角和为360°,即可得方程180(n﹣2)=360,解此方程即可求得答案.【解答】解:设此多边形是n边形,∵多边形的外角和为360°,∴180(n﹣2)=360,解得:n=4.∴这个多边形是四边形.故选A.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为360°,n边形的内角和等于180°(n﹣2).6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.7.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形【考点】多边形内角与外角.【分析】利用多边形的外角和360°,除以外角的度数,即可求得边数.【解答】解:360÷36=10.故选C.【点评】本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.8.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形 B.正八边形 C.正六边形 D.正五边形【考点】平面镶嵌(密铺).【分析】根据密铺的知识,找到一个内角能整除周角360°的正多边形即可.【解答】解:A、正十边形每个内角是180°﹣360°÷10=144°,不能整除360°,不能单独进行镶嵌,不符合题意;B、正八边形每个内角是180°﹣360°÷8=135°,不能整除360°,不能单独进行镶嵌,不符合题意;C、正六边形的每个内角是120°,能整除360°,能整除360°,可以单独进行镶嵌,符合题意;D、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能单独进行镶嵌,不符合题意;故选:C.【点评】本题考查了平面密铺的知识,注意几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.9.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形 B.正六边形 C.正方形D.正五边形【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【解答】解:A、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;C、正方形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意;D、正五边形的一个内角度数为180﹣360÷5=108°,不是360°的约数,不能镶嵌平面,符合题意.故选:D.【点评】本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.10.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能【考点】多边形内角与外角.【专题】压轴题.【分析】首先计算截取一个角后多边形的边数,然后分三种情况讨论.因为截取一个角可能会多出一个角,也可能角的个数不变,也可能少一个角,从而得出结果.【解答】解:∵内角和是1620°的多边形是边形,又∵多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形.综上原来多边形的边数可能为10、11、12边形,故选D.【点评】本题主要考查了多边形的内角和定理及多边形截去一个角有三种情况.11.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30° B.36° C.38° D.45°【考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=(180°﹣108°)÷2=36°,∵l∥BE,∴∠1=36°,故选:B.【点评】此题主要考查了正多边形的内角和定理,以及三角形内角和定理,平行线的性质,关键是掌握多边形内角和定理:(n﹣2).180° (n≥3)且n为整数.12.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】平行四边形的判定.【分析】求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.【解答】解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.【点评】本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.13.如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是()A.60° B.72° C.108°D.120°【考点】旋转的性质;正多边形和圆.【分析】由六边形ABCDEF是正六边形,即可求得∠AFE的度数,又由邻补角的定义,求得∠E′FE 的度数,由将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,可得∠EFE′是旋转角,继而求得答案.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFE==120°,∴∠EFE′=180°﹣∠AFE=180°﹣120°=60°,∵将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,∴∠EFE′是旋转角,∴所转过的度数是60°.故选A.【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义.此题难度不大,注意找到旋转角是解此题的关键.二、填空题14.正n边形的一个外角的度数为60°,则n的值为 6 .【考点】多边形内角与外角.【专题】探究型.【分析】先根据正n边形的一个外角的度数为60°求出其内角的度数,再根据多边形的内角和公式解答即可.【解答】解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和公式是解答此题的关键.15.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= 300°.【考点】多边形内角与外角.【专题】数形结合.【分析】根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.【解答】解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故答案为:300°.【点评】本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.16.△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为9 .【考点】正多边形和圆.【分析】分∠OAB=70°和∠AOB=70°两种情况进行讨论即可求解.【解答】解:当∠OAB=70°时,∠AOB=40°,则多边形的边数是:360÷40=9;当∠AOB=70°时,360÷70结果不是整数,故不符合条件.故答案是:9.【点评】此题主要考查正多边形的计算问题,属于常规题.17.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是12 .【考点】平面镶嵌(密铺).【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【解答】解:∵正方形的一个内角度数为180°﹣360°÷4=90°,正六边形的一个内角度数为180°﹣360°÷6=120°,∴需要的多边形的一个内角度数为360°﹣90°﹣120°=150°,∴需要的多边形的一个外角度数为180°﹣150°=30°,∴第三个正多边形的边数为360÷30=12.故答案为:12.【点评】此题主要考查了平面镶嵌,关键是掌握多边形镶嵌成平面图形的条件:同一顶点处的几个内角之和为360°;正多边形的边数为360÷一个外角的度数.18.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为 6 .【考点】平面镶嵌(密铺).【专题】应用题;压轴题.【分析】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【解答】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【点评】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240 度.【考点】多边形内角与外角.【专题】压轴题;数形结合.【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.【点评】考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.20.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于15 .【考点】等腰梯形的性质;多边形内角与外角;平行四边形的性质.【专题】计算题.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH﹣AB﹣BG=8﹣1﹣3=4,EF=PH﹣HF﹣EP=8﹣4﹣2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.21.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为40 cm2.【考点】正多边形和圆.【专题】压轴题.【分析】根据正八边形的性质得出正八边形每个内角以及表示出四边形ABGH面积进而求出答案即可.【解答】解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM=45°,∴MH=MG,设MH=MG=x,则HG=AH=AB=GF=x,∴BG×GF=2(+1)x2=20,四边形ABGH面积=(AH+BG)×HM=(+1)x2=10,∴正八边形的面积为:10×2+20=40(cm2).故答案为:40.【点评】此题主要考查了正八边形的性质以及勾股定理等知识,根据已知得出四边形ABGH面积是解题关键.22.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2.【考点】正多边形和圆.【专题】压轴题.【分析】延长AB,然后作出过点C与格点所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.【解答】解:延长AB,然后作出过点C与格点所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,中间间隔一个顶点的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.【点评】本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为4πcm.【考点】正多边形和圆;弧长的计算;旋转的性质.【分析】每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,然后计算出弧长,最后乘以六即可得到答案.【解答】解:根据题意得:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,正六边形的中心O运动的路程∵正六边形的边长为2cm,∴运动的路径为:=;∵从图1运动到图2共重复进行了六次上述的移动,∴正六边形的中心O运动的路程6×=4πcm故答案为:4π.【点评】本题考查了正多边形和圆的、弧长的计算及旋转的性质,解题的关键是弄清正六边形的中心运动的路径.24.如图,将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是60 度.【考点】旋转对称图形.【分析】本题考查旋转对称图形的概念,旋转的最小度数是解决本题的关键.【解答】解:将正六边形绕其对称中心O旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是=60度.【点评】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.。
平面图形的镶嵌(1)优秀教案
《综合与实践》主题研究教学设计鲁教版八年级数学上册综合与实践《平面图形的镶嵌》探究报告一、探究活动一:同种正多边形的镶嵌问题:小明家的新房进行地面装修,他的父母在某建材市场选购材料的过程中看到如下几种形状的地砖:正三角形,正方形,正五边形,正六边形和正八边形,如果只选择一种进行地面装修,哪几种可供选择?探究:请各小组合理分工,利用多边形模板动手操作验证,得出结论,小组合作完成导学案上的活动报告,并准备进行小组展示。
时间:5分钟探究报告:1.我们发现:这五种正多边形中,能进行镶嵌,不能进项镶嵌。
2.请结合拼图,具体说一下能够镶嵌的图形是如何镶嵌的?3.请结合拼图,具体说一下不能镶嵌的图形的原因?4.根据以上探究,总结平面图形镶嵌的条件:5.根据平面图形镶嵌的条件,总结正多边形能够镶嵌的条件:6.你还能找到其他能够镶嵌的正多边形吗?你是怎么想的?二、探究活动二:任意多边形的平面镶嵌问题:小明的爸爸在装修过程中用一些边角余料切割成一些形状、大小完全相同的任意三角形,他用这些三角形能进行地面镶嵌吗?任意的四边形呢?探究:请各小组合理分工,利用任意三角形和任意四边形模板动手操作验证,根据操作验证,小组合作完成导学案上的活动报告,并准备进行小组展示。
时间:5分钟探究报告:1.我们发现:任意的三角形和任意的四边形(能或不能)进行镶嵌。
2.若它们能镶嵌,请具体说一下它们是如何镶嵌的?三、探究活动三:边长相等的两种正多边形的组合镶嵌问题:小明的父母想用刚才边长相等的正三角形,正方形、正五边形,正六边形中的两种地砖进行卧室地面的装修,请你帮他们设计出能够利用两种地砖进行组合镶嵌的方案。
探究:编号为奇数的小组利用动手操作来设计方案,编号为偶数的小组利用探究活动一和探究活动二发现的规律,不动手操作,利用其他方法来设计方案。
时间:5分钟探究报告:1.我们发现:以上四种图形进行两两组合,共有种组合方案,其中能够镶嵌的有共种方案。
平面图形的镶嵌
平面图形的镶嵌教学目标1. 理解平面图形的镶嵌的含义、掌握哪些平面图形能够镶嵌,镶嵌的理由。
2. 通过探索平面图形的镶嵌,知道常见的一种或多种正多边形能够镶嵌.3. 经历探索多边形镶嵌的过程,进一步发展学生的合情推理水平,开发、培养学生创造性思维.教学重点:以正三角形、正四边形和正六边形的镶嵌.教学难点:用同一种平面图形或者几种平面图形能够镶嵌的条件.教学过程:一、巧设情景问题,引入课题我们经常能见到各种建筑物的地板,观察地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.这种用形状、大小完全相同的一种或几种平面图形实行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌.这节课我们来探索平面图形的镶嵌.二、讲授新课(一)用同一种正多边形镶嵌做一做,回答以下问题:平面图形的镶嵌,需注意:各种图形拼接后要既无缝隙,又不重叠,那我们先来探索正多边形镶嵌的条件,大家拿出准备好硬纸片分组来做一做:(1)用形状、大小完全相同的正三角形能否镶嵌?在用正三角形镶嵌的图案中,观察每个拼接点处有几个角?它们的和为多少度?发现:用形状、大小完全相同的正三角形能够镶嵌。
从用正三角形镶嵌的图案中,观察到:每个拼接点处有6个角,这6个角都为60°,它们的和为360°(2) 用形状、大小完全相同的正四边形能够镶嵌吗?在用正四边形镶嵌的图案中,观察每个拼接点处有几个角?它们的和为多少度?发现::用形状、大小完全相同的正四边形能够镶嵌。
在用四边形镶嵌的图案中,观察到:每个拼接点处有4个角,这4个角都为90°,它们的和为360°.(3) 用形状、大小完全相同的正五边形能够镶嵌吗?发现:用形状、大小完全相同的正五边形不能够镶嵌。
(4) 用形状、大小完全相同的正六边形能够镶嵌吗?在用正六边形镶嵌的图案中,观察每个拼接点处有几个角?它们的和为多少度?发现::用形状、大小完全相同的正六边形能够镶嵌。
中考总复习:多边形与平行四边形--知识讲解(基础)
中考总复习:多边形与平行四边形--知识讲解(基础)【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n -2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三:【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是( )A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.举一反三:【变式】现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A.2种 B.3种 C.4种 D.5种【答案】 B.类型二:平行四边形及其他知识的综合运用3.如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.【思路点拨】连接ME,FN,由四边形ABCD为平行四边形,得到对角线互相平分,利用AAS得到三角形AOE与三角形COF全等,利用全等三角形对应边相等得到OE=OF,同理得到三角形BOM与三角形DON全等,得到OM=ON,进而确定出四边形MEFN为平行四边形,利用平行四边形的对边平行即可得证.【答案与解析】证明:连接ME,FN,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE⊥BD,CF⊥BD,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,同理△BOM≌△DON,得到OM=ON,∴四边形EMFN为平行四边形,∴EN∥MF.【总结升华】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.4.如图所示,△ABC中,∠BAC=90°,延长BA到D,使,点E、F分别为边BC、AC 的中点.(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G,求证:AG=DG.【思路点拨】(1)E、F分别为BC、AC中点,则EF为△ABC的中位线,所以EF∥AB,.而.则EF=AD.从而易证△DAF≌△EFC, 则DF=CE=BE.(2) AG与DG在同一个三角形中,只需证∠D=∠DAG即可.【答案与解析】(1)∵点E、F分别为BC、AC的中点,∴ EF是△ABC的中位线.∴ EF∥AB,.又∵,∴ EF=AD.∵ EF∥AB,∴∠EFC=∠BAC=90°,∵∠BAC=90°,∴∠DAF=90.又∵ F是AC的中点,∴AF=CF,∴△DAF≌△EFC.∴DF=EC=BE.(2)由(1)知∵△DAF≌△EFC,∴∠D=∠FEC.又∵ EF∥AB,∴∠B=∠FEC.又∵ AG∥BC,∴∠DAG=∠B,∴∠ DAG=∠FEC∴∠D=∠DAG.∴AG=DG.【总结升华】三角形中位线定理的作用:位置关系——可以证明两条直线平行;数量关系——可以证明线段的相等或倍分.此外应注意三角形共有三条中位线,并且它们又重新构成一个新的三角形.举一反三:【变式】如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C.5.如图:六边形ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD ⊥BD.已知FD=4cm,BD=3cm.则六边形ABCDEF的面积是_________cm2.【思路点拨】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【答案与解析】连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∵FD⊥BD,∴∠GDH=90°,∴四边形AHDG是矩形,∴AH=DG∵EH=AE-AH,BG=BD-DG∴EH=BG.∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=3×4=12cm2.故答案为:12.【总结升华】注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.6 .已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+32-4,求BC的长.【思路点拨】(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;(2)根据三角形中位线定理可得PF∥AO,且PF=12AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.【答案与解析】(1)如图,连接PO,∵PE⊥AC,PE=3,EO=1,∴tan∠EPO=3 EOPE=,∴∠EPO=30°,∵PE⊥AC,PF⊥BD,∴∠PEO=∠PFO=90°,在Rt△PEO和Rt△PFO中,PO PO PE PF=⎧⎨=⎩,∴Rt△PEO≌Rt△PFO(HL),∴∠FPO=∠EPO=30°,∴∠EPF=∠FPO+∠EPO=30°+30°=60°;(2)如图,∵点P是AD的中点,点F是DO的中点,∴PF ∥AO ,且PF=12AO , ∵PF ⊥BD ,∴∠PFD=90°, ∴∠AOD=∠PFD=90°,又∵PE ⊥AC ,∴∠AEP=90°,∴∠AOD=∠AEP ,∴PE ∥OD ,∵点P 是AD 的中点,∴PE 是△AOD 的中位线,∴PE=12OD , ∵PE=PF ,∴AO=OD ,且AO ⊥OD ,∴平行四边形ABCD 是正方形,设BC=x ,则x+12x ,∵ -4,∴x , 解得x=4,即BC=4.【总结升华】 本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD 是正方形是解题的关键.举一反三:【变式】如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)是双曲线上的一点,Q 为坐标平面上的一动点,PA ⊥x 轴,QB ⊥y 轴,垂足分别为A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,是否可以使△OBQ 与△OAP 面积相等?(3)如图2,点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ周长的最小值.图1 图2【答案】(1)正比例函数解析式为,反比例函数解析式为.(2)当点Q在直线MO上运动时,设点Q的坐标为,,解得.所以点Q的坐标为和.(3)因为P(,),由勾股定理得OP=,平行四边形OPCQ周长=.因为点Q在第一象限中的双曲线上,所以可设点Q的坐标为,由勾股定理可得,通过图形分析可得:OQ有最小值2,即当Q为第一象限中的双曲线与直线的交点时,线段OQ的长度最小.所以平行四边形OPCQ周长的最小值:.。
平面镶嵌的条件
平面镶嵌的条件平面镶嵌是一种几何问题,即如何在平面上把多边形拼接成一个封闭的区域。
在这个问题中,我们需要考虑到多边形的边界线和内部空间的交错和重叠等因素,以保证拼接后的结果是合法的。
平面镶嵌的条件非常重要。
平面镶嵌的每个多边形都必须是凸多边形。
凸多边形是指平面上的一个区域,其中连接任意两个内部点的线段都在这个区域内。
在平面镶嵌中,凸多边形可以确保拼接后的图形不会出现奇怪的空洞或凹陷。
在计算过程中,凸多边形也更容易处理。
平面镶嵌中的每个多边形必须可以通过相邻多边形的公共边缝合在一起。
这就要求相邻多边形的公共边必须完全重合,并且两边的角度要相等。
这个条件是平面镶嵌中最基本的条件,也是每个多边形都需要满足的条件。
除了上述两个基本条件外,平面镶嵌中还需要满足一些其他的条件。
平面镶嵌中不能出现两个多边形的重叠部分,也不能出现两个多边形相交的情况。
这两个条件是保证拼接后的图形没有破损或重叠的关键条件。
如果不满足这些条件,拼接后的图形就可能出现错综复杂的情况,难以判定。
在平面镶嵌中,我们还需要考虑到多边形的方向。
通常情况下,我们规定多边形的内部在左边,而外部在右边。
这种规定是为了方便计算,使得我们可以通过向量或点积等方式来确定多边形的方向。
在将多边形放置在平面上进行拼接时,也需要考虑到这个方向性。
需要注意的是,平面镶嵌中的拼接结果可能不唯一。
即使是同样的凸多边形和相邻关系,可能也会有多种不同的拼接方式。
在进行平面镶嵌时,我们需要结合实际问题来选择最合适的拼接方式。
除了以上条件,平面镶嵌还需要满足一些其他的约束条件。
在某些情况下,平面镶嵌中的多边形必须被放置在特定的位置和方向上,或者必须满足特定的拓扑结构。
这些约束条件通常与实际应用有关,例如在设计地图、计算机芯片布线、制作纹理贴图等领域中都会涉及到平面镶嵌问题。
在实际应用中,平面镶嵌的计算通常会使用算法来实现。
常用的算法包括贪心算法、分治算法、动态规划等。
这些算法分别针对不同的问题和约束条件,采用不同的方法和策略进行求解。
“平面图形镶嵌问题”教学案例分析
一、设计背景本节课问题的实际背景是日常生活中的铺地砖问题。
教材背景是学生刚学完的正多边形知识。
教学的主题是把日常生活中的铺地砖问题抽象为数学中的平面图形的完全镶嵌问题。
本节课设计的理论支撑点是建构主义的学习理论,这种理论认为学生的学习不是被动的接受,而是一种主动的探究与建构,认为各个个体对知识的理解随个人的经验、经历的不同而不同。
根据这一理论,教师在教学设计中充分考虑到学生的差异,设计了开放性的问题,教学中采用合作学习的方式。
二、实施过程教学目标:1、通过对平面图形镶嵌问题的探究与解决(当然不一定能完全解决)的过程,加深对正多边形的有关概念、性质的理解;2、了解数学知识在实际生产生活中的应用,培养学生应用数学解决实问题的意识和能力;优化思维品质,培养学生发散性思维能力及由特殊到一般的归纳能力;3、通过合作学习,培养学生团结协作的团队精神。
课前,教师布置给学生一个任务,用纸片做一些正多边形的图片,上课要用,学生们都不知道教师葫芦里到底卖的什么药。
但因为这个班级每周都有一节数学研究性学习课,同学们都很喜欢这种课,在这种课上,大家可以充分展开想象的翅膀,展现自己的才能。
所以,各个学习小组的同学都相互合作,完成了老师布置的任务。
上课了,教师问学生:“大家见过自己家里地上铺的地砖及马路上人行道上铺的地砖吧?都是什么形状的啊?”这是一个学生非常熟悉的问题,同学们纷纷回答,有的是正方形的,有的是正六边形的。
教师接着追问:“那么,我们能否用其它正多边形来铺地面呢?要求没有空隙。
这就是今天我们要研究的平面图形镶嵌问题。
比如用正五边形,大家看行吗?于是同学们分成小组,动手实践,用事先剪好的正五边形纸片进行试验,马上发现不行。
教师又问,用正五边形不行,用正八边形行吗?学生通过实践发现也不行。
教师问学生,那么我们今天要研究的平面图形镶嵌问题,应该研究什么问题啊?经过思考,一位学生说:“我们应该研究用什么样的正多边形可以完成平面的镶嵌而不留空隙。
中考数学复习练习第29课时多边形与平面图形的镶嵌
山东省滨州市无棣县埕口中学中考数学复习练习第29课时多边形与平面图形的镶嵌知识点回顾:知识点一:多边形及其相关的概念1. 多边形:在平面内,由一些_______首尾顺次相接组成的图形叫做多边形.2.正多边形:在平面内,各个内角都________,各条边都_______的多边形叫做正多边形.一个多边形是正多边形应具备两个条件:①各个内角大小_______;②每条边长度______. 3.多边形的内角:多边形________两条边组成的角叫做多边形的内角.多边形内角的个数与边数______.4.多边形的内角和:多边形所有的_______的和叫做多边形的内角和.5.多边形的外角:多边形的边与它的________的延长线组成的角叫做多边形的外角. 6.多边形的外角和:在多边形的每个顶点处各取一个外角,这些_____的和叫做多边形的外角和.7.多边形的对角线:连接多边形不相邻的两个_______的线段叫做多边形的对角线.连接n 边形的一个顶点和其它不相邻的各顶点,可得_________条对角线. n边形共有____________条对角线.例1:如果多边形的边数增加1,那么这个多边形的内角和增加多少度?将n边形的边数增加1倍,则它的内角和增加多少度?上述两种情况下外角和怎样变化?解:设这个多边形的边数为n,当边数增加1后,多边形的边数变为(n+1),则两个多边形的内角和之差为当多边形的边数增加1倍时,边数变化为2n,则此时两个多边形的内角和之差为上述两种变化情况下,多边形的外角和保持不变,都是同步测试1:1.六边形的对角线的条数为()A.15B.9C.8D.62.n边形内角和与外角和的差为360o,则n _____.答案:1、B;2、6.知识点二:内角和以及外角和公式1. n边形的内角和等于___________;2.任意多边形的外角和都等于_________;3.正n边形的每一个内角等于_____________,每一个外角等于_________.例2:(2009年黄冈市)一个多边形的内角和是外角和的2倍,则这个多边形的边数为()(A)4 (B)5 (C)6 (D)7解:设这个多边形为n边形,则()on2180-⨯=360°×2,解得n=6.故应选(C).同步测试2:1. 一个多边形的每一个外角都等于36°,那么这个多边形的内角和是°.2. 一个多边形的内角和角和是外角和的4倍,则这个多边形是边形.答案:1、︒14402、十.知识点三:平面镶嵌1.用形状、大小完全相同的一种或几种平面图形进行________,彼此之间不留空隙、不_______地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌.2. 取一些形状、大小相同的多边形也可以作平面镶嵌,此时要求以其中一个顶点处的各个内角之和为__________.例3:(2009年广州市)只用下列正多边形地砖中的一种,能够铺满地面的是()(A)正十边形(B)正八边形(C)正六边形(D)正五边形分析:解答此类问题的关键是求出各正多边形的内角度数,若内角度数是360°的约数,则这个正多边形能够进行平面镶嵌,否则不能进行平面镶嵌.解:由于正十边形、正八边形、正六边形、正五边形的内角度数分别为144°、135°、120°、108°,显然,只有120°是360°的约数,所以只用正六边形地砖能够铺满地面.故应选(C).注意:只用同一种正多边形能够进行密铺的,只有三种正多边形,即正三角形、正方形、正六边形.同步测试3:1.只用下列一种正多边形不能镶嵌成平面图案的是()A.正三角形B.正方形C.正五边形D.正六边形2如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是度.答案:1、C;2、120.随堂检测(8—10题)1.若多边形的边数由3增加到n(n是正整数,且大于3),则其外角和的度数( )(A)增加(B)减少(C)不变(D)不确定2.一个多边形共有5条对角线,这个多边形内角和等于( )(A)360°(B)540°(C)720°(D)900°3.在多边形的内角中,锐角的个数不能多于( )A.2个B.3个C.4个D.5个4.一个凸n边形除了一个内角外,其余各内角之和是2570°,则这个内角等于( ) A.90°B.15°C.120°D.130°5.不能够铺满地面的正多边形的组合是()A.正三角形与正方形B.正五边形与正十边形C.正六边形与正三角形D.正六边形与正八边形6.已知一个多边形的内角和与外角和的比为9:2,则它的边数是_____.7.日常生活中常用的铺设地板的多边形有_____.(至少写出三种)8.用边长相等的正八边形与正方形可以密铺,在它的每个拼接上处有_____个正方形与_____个正八边形.答案:1.C;2.B;3.B;4.D;5.D;6.11;7.答案不惟一;8.1,2.。
多边形及平面镶嵌讲义.doc
多边形&平面镶践我们知道,任意四边形的内角和都等于360°.所以用一批形状大小完全相同但不规则的四边形瓷砖也可以铺成无空隙的地板.用任意相同的三角形可以铺满地面吗?请同学们拼拼看.3、用两种或两种以上的正多边形拼地板问题我们已经知道,有些相同的正多边形能够铺满地面,而有些则不行.实际上我们还看到有不少用两种以上边长相等的正多边形组合成的平面图案.这个问题实质上是相关正多边形“交接处各角之和能否拼成周角”的问题.【习<14 5依】_、选择题:Ln边形所有对角线的条数是(),啰2.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是(B. 2k+lC. 2k+2D. 2k-23.若把一个多边形的顶点数增加一倍,它的内角和是2520°,那么原多边形的顶点数为(4.下列命题中,正确的有()%1没有对角线的多边形只有三角形%1内角和小于外角和的多边形只有三角形%1边数最少的多边形是三角形%1三角形的外角和小于任何一个多边形的外角和A. 0个B. 1个C. 2个D. 3个5.某中学新科技馆铺设地面,己有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是()A正方形B正六边形C正八边形D正十二边形6.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A正方形B矩形C正八边形D正六边形7.下列边长为a的正多边形与边长为a的正方形组合起来,不能镶嵌成平面的是正()边形.A.三B、五C、六D、八8.下列图形中,不是凸多边形的是()A、8B、9C、10D、11A. 1种B.2种C.3种 C. 4种用正三角形和正六边形镶嵌,若每一个顶点周围有m 个正三角形、n个正六边形,则m, n 满足的关系式是(A. 2m+3n=12B. m+n = 8C. 2m+n=6D. m+2n=6L 一个多边形的内角和与外角和相等,则这个多边形是边形.2.多边形的边数增加一条时,其外角和,内角和增加 4 .正八边形的外角和是 ,每个内角是 5. 一个多边形有14条对角线,则这个多边形的内角和是6.如图 7-3-2,己知四边形 ABCD 中,Z1=Z2, Z3=Z4,匕5二匕6, Z7-Z8,则 ZE+ZF=7.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就拼成一个平面图形.8.能用种正多边形拼成地而 — —,•• •• • .W KWl •• • ♦ ・ t曹二二• • • *Mm.I ..•・・ • •• • • • < —. • I • ••・•二二.. ..• ■ c • • • • • ♦ ••1 • • • •• •.—・• • J »_ ■ ,• ••ill• 9* f •• ♦ ♦ •• • • . . • * • • • •• • • • •— -• •••■ • • • • • •• • - •卜X .'•一 ••r —. • • • • ・■・• • • •F 二 二• • - •.A• • ♦ ♦ ♦ 4•三三10 题• •■» • ♦ ♦ • • • • . ♦・一 褊 • •*. . • '表 * *•••••■ 4 • 1 ♦・• • ► * • • •・ < •• — . % • • •・•・♦・ •-・. 二'・• .・• ■ •・• •・• ♦ ■ — II9.如图用同样规格的黑白两种正方形瓷砖铺设正方形地面, 观察图形并猜想填空;当黑色瓷砖为20块时,白色瓷砖为块;当白色瓷砖为Y 块时,黑色瓷砖为9. 过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是(10. 在综合时间活动课上,小红准备用两种不同颜色的布料缝制一个正方形坐垫,坐垫的图案如图所示,应该选下图中的哪一块布料才能使其与图(1)拼接符合原来的图案模式?()11.用正三角形和正十二边形镶嵌,可能情况有( )%1. 填空题:3.过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形共有k 条对角线,则(nrk )” A D的C%1.解答题1.一个五边形的五个外角的读数比是1 : 2 : 3 : 4 : 5,求这个五边形的五个内角的度数比.2.两个正多边形的边数之比为1:2,内角和之比为3: 8,求这两个多边形的边数、内角和3.一个多边形出一个内角外,其余个内角的和为2030°,求这个多边形的边数.4.已知ZABC的边BA、BC分别于ZDEF的边ED、EF垂直,垂足分别是M、N,且NABC二70。
北师版数学八下《平面图形的镶嵌》教学设计
《平面图形的镶嵌》教学设计一、教材分析1.从教材编写角度看《平面图形的镶嵌》是北师大版数学教材八年级下册的一节综合实践课,本节课主要是让学生通过动手操作、小组合作、多媒体辅助(几何画板)等多种形式探究平面图形镶嵌的条件。
在此之前,学生已经学习了三角形的内角和、多边形的内角和等知识。
通过这个课题的学习,学生可以经历从实际问题抽象出数学问题,建立数学模型,综合应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力,获得分析问题的方法,对于今后的学习具有重要意义。
2.从在教材中的地位与作用看本综合与实践活动课具有一定的现实性,可以激发学生的学习兴趣,形成良好的数学观,同时也有利于发展学生的数学应用意识。
进行本节课的学习,需要学生对图形进行一定的分解、组合、拼接,需要进行图案设计等操作活动,同时也需要应用所学习的平面图形的有关知识,因此本节课还具有一定的实践性和综合性。
本节课需要学生经历一个具体的研究过程,探索过程中需要从事一定的归纳、猜想、验证、推理等思维活动,这都有助于丰富学生的数学活动经验,发展学生的推理能力,以及分析问题和解决问题的能力。
二、学情分析在学习本节课之前,学生经历了对平行四边形性质和判定的探索活动,并掌握了如何求解多边形的内角和以及外角和。
在本章前几节的综合实践活动中,学生体现出了较强的主动合作和实践动手能力,积累了丰富的探索图形性质的经验。
八年级学生对镶嵌的认识大多数来源于生活实际中的感性认识,对其内在规律关注不够,因而在本节课教学中教师应通过创设情境,组织学生动手活动,在活动中与学生共同探究,从而加深对镶嵌的认识,发现其内在规律,将感性认识上升为理性认识。
三、教学任务分析1.教学目标(1)知识传授:通过探索平面图形的镶嵌,认识多边形镶嵌平面的条件,并能运用其中的一种或几种图形进行平面图形镶嵌;了解构造基本镶嵌图案的一些方法。
(2)能力培养:经历动手拼、相互交流、展示成果等活动,探索发现多边形镶嵌的条件,培养学生发现问题、提出问题的能力,进一步发展探究意识,积累探究经验。
2017年晒课《平面图形的镶嵌》教学设计
知识目标:让学生了解平面镶嵌的特点,会辨别一些能平面镶嵌的图形,创作平面镶嵌图案。
能力目标:提高分析图形、合情推理的能力,发展图形观念,积累数学活动经验,培养审美情趣。
情感目标:在自主探索平面图形镶嵌的过程中,经历观察、拼图、交流等活动,体验在解决问题过程中与他人合作的重要性,体验学习活动充满着探索与创造,体验学习带来的快乐。
5、思考:用一种正多边形密铺有几种情况?为什么?
6、用形状、大小完全相同的任意三角形能否密铺?用形状、大小完全相同的任意四边形能否密铺?如果能,你能发现什么规律?如果不能,请说明理由
7、思考:用全等的三角形(或四边形)密铺的方法?
8、思考:用正五边形与什么图形搭配就能密铺?用正八边形与什么图形搭配就能密铺?正三角形、正方形、正六边形两两组合能否密铺?
通过讲一讲引导学生进行自我总结,提高学生的归纳、概括能力,收获侧重于知识和方法,体会侧重于情感和态度,使学生在知识技能与情感、态度、价值观诸多方面的素质得到提高。
教学重点:
多边形平面镶嵌的条件
教学难点:
运用三角形、四边形或正六边形进行简单的平面镶嵌设计。
教学方法:
根据本节课内容及八年级学生的认知规律,采用探究教学法,以“问题串”的形式将学生领进精彩的问题空间;依据中学生学法指导的操作性原则,通过学生自主、合作、探究的学习方法分析问题、解决问题。
所需设备:
多媒体、剪刀、硬纸板若干张。
活动三
1.师问:用下列图形能否镶嵌?
(1)、形状、大小完全相同的任意三角形
(2)、形状、大小完全相同的任意四边形
请动手试一2.师问:用全等的三角形(或四边形)镶嵌的方法?
三、应用巩固
练一练:
请你依照上述步骤制作出图案(3),你能用它镶嵌吗?试试看!
《平面图形的镶嵌》教学设计
《平面图形的镶嵌》教学设计1.经历探索多边形进行平面图形镶嵌条件的过程,发展学生的合情推理能力、合作交流意识和审美情趣,体会平面图形在现实生中的广泛应用,培养学生理性思维和勇于探究的能力。
2.通过探索平面图形的镶嵌,掌握任意一个三角形、四边形或正六边形可以镶嵌,并能运用这几种图形进行简单的镶嵌设计,使学生的实践创新能力得以提升。
3.获得一些研究问题的方法和经验,发展思维能力,加深理解相关的数学知识。
4.通过获得成功的体验和克服困难的经历,使学生乐学善学,勤于反思,增进应用数学的自信心。
【学情分析】1.学生的认知基础:学生已经掌握了图形的平移和对称,掌握了多边形的内角和、外角和公式,正多边形内角的度数等,在日常生活中见到用瓷砖镶嵌的实例,有一定的生活经验。
通过动手实践、自主探索与合作交流等学习方式,经过教师的引导和启发,能发现多边形可以镶嵌的条件。
2.学生的年龄心理特点:学生具有很强的感性认知基础,有简单的图案设计基础。
对一些具体的实践活动充满兴趣,表现欲强,思维敏捷。
【教学重点】探索图形镶嵌的条件、方式及在现实生活中的意义。
【教学难点】图形镶嵌的原理。
【教学方法】动手实践、自主探索与合作交流。
【教具准备】课前学生利用彩色卡纸制作了边长相等的六个正三角形,四个正方形,三个正六边形,两个正八边形等。
【教学过程】一、情境创设,导入新课师:(老师随着幻灯片的放映,娓娓道来)我们生活的周围有一些美丽而神奇的图案,其中蕴含着大量的数学信息。
我们一起观察和欣赏:无论是农家小院的墙壁,还是我们每日就读的高新一中的外墙……它们其实就是一些简单的几何图形构成的。
如三角形、四边形、等边三角形或正多边形等图形构成的严丝合缝、不留空隙的美妙图案。
在这些美丽的、神奇的视觉盛宴的冲击下,我们希望用数学的眼光欣赏,更想用数学的方法观察、分析它们,也能设计出各种美妙的图案。
经过同学们观察思考后,平面图形的镶嵌到底应具备什么特征,谈谈你的看法。
《平面图形的镶嵌》教学设计
《平面图形的镶嵌》教学设计一、教材分析.(一)地位和作用平面图形的镶嵌内容安排在本章的最后,在此之前,学生已经学习了三角形的内角和,多边形的内角和等知识.通过这个课题的学习,学生可以经历从实际问题抽象出数学问题,建立数学模型,综合应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力,获得分析问题的方法,对于今后的学习具有重要的意义.(二)教学目标根据课程标准的要求,教学内容的特点以及初二学生的认知水平,本节课的教学目标是:1.认知目标:(1) 通过探索平面图形的镶嵌,知道用单一的正多边形图形能进行平面镶嵌的只有正三角形、正四边形或正六边形,并能运用正多边形图形进行简单的镶嵌设计;(2)在探究的过程中,理解正多边形是否能够镶嵌的原因.2.能力目标:(1)培养学生从实际中发现问题、解决实际问题的能力;(2)开发、培养学生的创造性思维能力,使其理论联系实际;(3)培养学生动手操作,自主探索,合作学习的能力.3.情感目标:(1)通过观察,实验,归纳,说理等学习活动,使学生在体验数学活动的探索性和创造性中提高学习数学的兴趣,增强学好数学的信心;(2) 在探索过程中,培养学生的合作交流意识和一定的审美情感;(3)使学生进一步体会平面图形在现实生活中的广泛应用,体会数学与现实生活的密切联系,认识数学的应用价值.(三)教学重点、难点本课题学习需要学生通过观察图片感知概念,进而探索用一种或两种正多边形能够镶嵌的规律.鉴于学生已有的知识,我将理解平面镶嵌的概念,探究用一种正多边形能够镶嵌的规律作为教学重点,将学生通过数学实验发现用正多边形镶嵌的规律作为教学难点,将采用学生小组合作探究、多媒体演示等方式来突出重点,突破难点.二、教法与学法分析课题学习应以学生自主探究为主,教师引导为辅,因此我选用“引导式探索发现法和主动式探索尝试法”进行教学.采用“动手实验,合作探究”的学习方法,鼓励学生积极动手实验合作探究,使每个学生在活动中都得到充分的发展.三、教学程序设计(一)创设情景,导入新课为了激发学生的好奇心和探究欲望,首先让学生欣赏一组生活中的图片,说一说家里装修房子在铺地板砖时应注意什么?砖与砖之间是否有空隙,是否重叠?接着欣赏一组平面图案,感受数学与现实生活的紧密联系,并初步形成对镶嵌的直观感知,思考:这些图案由哪些平面图形构成?学生细心观察发现,图案中的平面图形有的规则,有的不规则,有的是用一种多边形拼成,有的用多种多边形拼成,培养学生分类的数学思想.进一步提问:这些图形拼成一个平面图案有什么特征?学生很快可以回答:没有空隙,不重叠.教师再引导学生结合图案用规范化的语言描述:像这样,用一些不重叠摆放的多边形把平面的一部分完全覆盖,这类问题叫做多边形覆盖平面(或平面镶嵌).由此引入到要研究的课题:平面图形的镶嵌.(设计意图:数学概念的获得与观察,实验是分不开的.引导学生用数学眼光去观察和认识周围事物,让学生亲身经历实际问题抽象成数学模型的过程,体验数学源于生活)(二)实验探究活动1、动手实验探索用一种正多边形镶嵌的规律,这也是本节的重点.为了让学生更好的掌握这节课的重点,我设了“动手实验,填写表格,实验思考,得出结论”这四个环节.具体做法是:首先全班分组活动,动手实验.拿出课前准备好的正三角形、正四边形、正五边形、正六边形纸片,进行镶嵌.看那个小组拼的又快又好.然后展示他们的成果.学生从拼图中,很快得出正三角形、正四边形、、正六边形能够镶嵌,而正五边形不能.提出问题:为什么正五边形不能镶嵌,其它的三种正多边形可以镶嵌?这其中有什么规律?让学生结合刚才的活动填写表格,寻找规律.学生通过填写表格,分析得到:正三角形、正四边形、正六边形的内角度数分别是60°90°120°,它们都是360的约数,说明在一个顶点处有整数个这样的正多边形镶嵌;而正五边形的内角为108°,108不是360的约数,在一个顶点处没有整数个正五边形镶嵌成一个平面图案.通过以上环节,学生在实验过程中充分体验数据的收集和分析给学习带来的帮助和启发,逐渐发现用一种正多边形能够镶嵌的规律,突出本节课的教学重点.练习:①当围绕一个点拼在一起的几个正多边形的内角加在一起恰好组成时,就镶嵌成一个平面图案. ②能用一种正多边形铺满地面的有(培养学生用数学语言去描述刚才活动发现的规律).进一步讨论:若干个能完全重合的任意三角形能否镶嵌?任意四边形呢?这是一个开放题. 这既是对所学知识的拓展,还可以检验学生发散思维的能力(活动1的设计,可操作性很强,每个学生都能参与实验.让学生感受了数据处理的全过程,能通过相互的交流发现规律,养成用数据说话的习惯和实事求是的科学态度,体验从特殊到一般的数学思想.)活动2:正三角形和正四边形可以镶嵌吗?学生在对活动1的理解基础上很容易猜出:能够镶嵌.那么你的理由是什么?然后小组活动:哪两种正多边形能够镶嵌?看谁找的多?从而激发学生继续动手实验的欲望,以小组活动进行验证.在学生分析时,引导他们依照刚才的表格去收集数据,分析数据.这样学生会更加清楚的认识到:当围绕一个点在一起的几个正多边形的内角加在一起恰好组成360度时,就能镶嵌成一个平面图案.让同桌互相出题:任选两种正多边形,判断它们能否镶嵌成一个平面图案?这样既巩固了新知识,又提高了学生的学习兴趣.进一步:想一想用三种正多边能否镶嵌成一个平面图案?这个问题留给学生课后思考.这既是对所学知识的拓展,还可以检验学生发散思维能力.(设计意图;活动2通过”猜想,验证,引申”三个环节,对问题不断反思,获取解决问题的经验,将学生对镶嵌的理解由感性认识提高到理性认识,把学生的思维领向一个更深的层次,也成功地通过数学实验发现用两种正多边形能够镶嵌的规律这一教学难点.)(三)联系实际,生活应用练习:1、现有一些正三角形,正方形,正六边形,正八边形地砖,选择其中两种镶嵌地面,则有( )种选法A 1B 2C 3D 42.小刚和爸爸到市场买地板砖,准备装修新居,该市场有五种型号的正多边形地砖,它们的内角分别是60 °90 °108 °120 °150 °,如果只选一种,这些地砖哪些适用?如果选用两种呢?说说你的方案.(通过这个练习让学生学会用数学知识解决生活中的实际问题,真正领悟数学源于生活,又为生活服务)(四)回顾与总结让学生从两个方面进行小结.1、通过本节课的学习你学到了哪些知识?2、你的收获是什么?培养学生的概括归纳能力和语言表达能力.(五)教案设计说明从本节课的设想到实践体会很多,最深切的有以下三点:让学生在生活原型中做数学,经历数学.引导学生用数学眼光去观察和认识周围事物,指导学生用所学数学知识去解决实际问题,让学生感受数学源于生活,又为生活服务.让学生学会实践操作,体验知识的产生过程.“我做过了,便真正掌握了.”学生的这句话让我一直难忘.注重学生的活动过程,注重学生的情感体验,使学生投入到丰富多彩、充满活力的数学学习中去,从而充分发挥学生的主体作用.让学生学会交流合作,展示个性才能.学生在数学课堂上,要学会各抒已见,敢想、敢说、敢问,善于倾听别组的同学的汇报,并能对结果做出合理的评价.这样既展示了学生的才能,使学生个性飞扬,也使整堂课异彩纷呈.。
探索平面镶嵌认识平面镶嵌的基本规律
探索平面镶嵌认识平面镶嵌的基本规律探索平面镶嵌:认识平面镶嵌的基本规律平面镶嵌是一种将多个多边形无重叠地拼接在一起的几何方法。
在几何学中,研究平面镶嵌的基本规律对于理解多边形的组合和形状转换有重要意义。
本文将探索平面镶嵌的基本概念、分类、特征和一些经典的例子,帮助读者加深对平面镶嵌的认识。
1. 平面镶嵌的基本概念平面镶嵌是在平面上由多个多边形共享边界而组成的图形。
其中,各个多边形的顶点和边必须完全对应,而且没有重叠。
这意味着,任意两个多边形之间只能有公共的一个点或一条边。
平面镶嵌可以看作是将多个拼图块无缝地连接在一起,形成一个整体的图形。
2. 平面镶嵌的分类根据平面镶嵌形状的不同,可以将平面镶嵌分为三类:凸镶嵌、半凸镶嵌和非凸镶嵌。
凸镶嵌是由一系列凸多边形组成的镶嵌,每个多边形的所有内角都小于180度。
半凸镶嵌则包含了一些凹多边形,但是没有相邻的凹多边形。
非凸镶嵌则可以由一个或多个凹多边形组成,其中的任意两个凹多边形可以共享一条边。
3. 平面镶嵌的特征平面镶嵌具有一些特征,可以帮助我们理解和判断这些图形。
首先,每个平面镶嵌都可以构成一个封闭的曲线,称为边界曲线。
其次,每个多边形都有一个邻居多边形,即与其共享边的多边形。
此外,每个顶点都与若干个多边形的顶点相连,并且镶嵌中所有的多边形都是连通的。
4. 经典的平面镶嵌例子在几何学中,有一些经典的平面镶嵌例子,展示了各种有趣的形状和规律。
其中之一是著名的六边形镶嵌,由正六边形组成,每个六边形都与六个相邻的六边形共享边。
此外,还有四边形镶嵌,如罗马蛇镶嵌,由正方形和等边梯形组成。
其他的例子还包括五边形镶嵌和三角形镶嵌,它们都展示了特定多边形的组合和规律。
5. 平面镶嵌的应用平面镶嵌在现实生活中有着广泛的应用。
首先,它可以用于拼图游戏,通过将各种形状的拼图块拼接在一起来还原图形。
其次,在建筑和设计中,平面镶嵌可以帮助设计师构思出独特的图案和装饰。
此外,平面镶嵌也在计算机图形学和纹理映射等领域有着重要的应用。
帮你学习多边形的角与平面图形的镶嵌
帮你学习多边形的角与平面图形的镶嵌一、学会探索多边形的内角和与外角和:多边形是生活中常见的图形,认识多边形有关知识要从多边形的基本概念入手。
1.多边形的概念:在平面内由若干条不在同一直线上的线段首尾顺次相连组成的平面图形叫做多边形。
注意:①“在平面内”将多边形的所有顶点、所有边限定在了同一个平面内,说明我们要认识的多边形是平面图形;②“若干条不在同一直线上的线段”,可以是3条、4条、5条……n 条,依次构成三角形、四边形、五边形……n 边形,但两条线段不能构成多边形,理解这一点还要注意,我们过去学过的三角形、四边形也是多边形。
2.多边形的对角线:在多边形中,连结不相邻的两个顶点的线段叫做多边形的对角线。
注意:n 边形(3)n ≥从一个顶点可以引出(3)n -条对角线,n 个顶点就是(3)n n -条,但是每一条都重复计算一次,因此n 边形共有(3)2n n -条对角线。
3.正多边形的概念:在平面内,内角都相等,各边都相等的多边形叫做正多边形。
注意:①在同一平面内;②内角都相等;③各边都相等是正多边形的三个缺一不可的条件。
在同一平面内,各边都相等的多边形不一定是正多边形,如菱形;各角都相等的多边形也不一定是正多边形,如矩形。
4.多边形的内角和:从正多边形的一个顶点出发引出该顶点处所有的对角线可以引出(3)n -条对角线,这些对角线将多边形分成了(2)n -个三角形(如图),因此:n 边形的内角和为0(2)180n -g。
注意:此结论的推导还有很多方法,如在多边形内任选一点,连结这点与各顶点,构成n个三角形,可求出内角和;在边上取一点也可以求出内角和等;另外,多边形的内角和随多边形的边数的改变而改变。
5.多边形的外角和:(1)定义:在一个多边形的每个顶点处取这个多边形的一个外角,它们的和叫做多边形的外角和。
(2)性质:多边形的外角和等于3600。
注意:多边形的外角和是一个定值,无论多边形的边数是几,其外角和都是3600。
人教版中考数学导学案-多边形与平面图形的镶嵌
多邊形與平面圖形的鑲嵌◆課前熱身1.一個多邊形的內角和與它的外角和相等,則這個多邊形的邊數是2.若正六邊形的外接圓半徑為4,則此正六邊形的邊長為.3.若一個正n邊形的一個外角為36°,則n等於()A、4B、6C、8D、104.若正多邊形的中心角為200,那麼它的邊數是__________.5.從多邊形一個頂點可作17條對角線,則這個多邊形內角和為度.【參考答案】1.4 2.4 3.D 4.18 5.3240◆考點聚焦知識點多邊形多邊形的內角和和外角和平面圖形的鑲嵌大綱要求1.瞭解多邊形的內角和與外角和公式和正多邊形的概念2.瞭解平面圖形的鑲嵌,掌握簡單的鑲嵌設計考查重點和常考題型求多邊形的邊數、內角和、外角和及正多邊形的角、邊長及半徑、邊心距,以正五邊形、正六邊形為常見,多見於填空題和選擇題,◆備考兵法多邊形的內角和隨邊數的增加而增加,但多邊形的外角和隨邊數的增加沒有變化,外角和恒為360 º.◆考點連結1. 四邊形有關知識⑴n邊形的內角和為.外角和為.⑵如果一個多邊形的邊數增加一條,那麼這個多邊形的內角和增加,外角和增加.⑶n邊形過每一個頂點的對角線有條,n邊形的對角線有條.2. 平面圖形的鑲嵌⑴當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個____________時,就拼成一個平面圖形.⑵只用一種正多邊形鋪滿地面,請你寫出這樣的一種正多邊形____________.◆典例精析例1(浙江寧波)如圖,∠1,∠2,∠3,∠4是五邊形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,則∠AED的度數是()A.110°B.108°C.105°D.100°【分析】知識點:多邊形的內角和(n -2)×180°,外角的和是360°。
【答案】D例2(山東煙臺)現有四種地面磚,它們的形狀分別是:正三角形、正方形、正六邊形、正八邊形,且它們的邊長都相等.同時選擇其中兩種地面磚密鋪地面,選擇的方式有( )A .2種B .3種C .4種D .5種【分析】知識點:兩個正多邊形的內角中各取一個內角的和是360°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学第一轮复习
多边形与平面图形的镶嵌
♦课前热身
1•一个多边形的内角和与它的外角和相等,则这个多边形的边数是
2.若正六边形的外接圆半径为4,则此正六边形的边长为
3.若一个正n边形的一个外角为36°,则n等于(
、10
4.若正多边形.的中心角为20°,那么它的边数是
5.从多边形一个顶点可作17条对角线,则这个多边形内角和为度.
【参考答案】1.4 2.4 3.D 4.18 5.3240
♦考点聚焦
知识点
多边形多边形的内角和和外角和平面图形的镶嵌
大纲要求
1. 了解多边形的内角和与外角和公式和正多.边形的概念
2. 了解平面图形的镶嵌,掌握简单的镶嵌设计考查重点和常考题型求多边形的边数、内角和、外角和及正多边形的角、边长及半径、边心距,以正五边形、正六边形为常见,多见于填空题和选择题,
♦备考兵法
多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 0.
♦考点链接
1.四边形有关知识
n边形的内角和为.外角和为
如果一个多边形的边数增加一条,那么这个多边形的内角和增加
外角和增加
n边形过每一个顶点的对角线有条,n边形的对角线有条.
2.平面图形的镶嵌
A. 4 B . 5 C. 6 D. 7
⑴ 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个 就拼成一个平面图形.
♦典例精析
【答案】
【答案】 例3 (浙江嘉兴) 在四边形ABCDK / D= 60°,/ B 比/ A 大20°,/ C 是/ A 的2倍,求 / A ,/ B,/ C 的大小.
【分析】知识点:四边形内角和是 360。
,通过列方程解应用题
解:设 N A =x (度),则 /B =x +20 , N C =2x .
根据四边形内角和定理得, X +(x +20) +2X +60 =360 .
解得,x
时, ⑵只用一种正多边形铺满地面, 请你写出这样的一种正多边形
例1 (浙江宁波) 如图,/ 1,/ 2, / 3,/4 是五边形 ABCDI 的外角,且/ 1 = / 2=/3= / 4= 70°,则/ AED 勺度数是(
B. 108°
C. 105°
D. 100°
【分析】 知识点: 多边形的内角和( n — 2)x 180 °,外角的和是 360 °。
例2 (山东烟台) 现有四种地面砖, 它们的形状分别是:正三角形、正方形、正六边形、正 八边形, 且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式 .有 (
) A. 2种 B. 3种 C. 4种 D. 5种
【分析】 知识点:两个正多边形的内角中各取一个内角的和是 360 °。
•••厶=70°, N B =90°, N C =140°.
♦迎考精炼
一、选择题
1.(湖北黄冈 )一个多边形的内 角和是外角和的2倍,则这个多边形的边数为(
A. 110°
2.(广西南宁)如图是一个五边形木架,
■它的内角和是(
720 °B. 540°
C. 360 °
D. 180 °
(广东茂名)已知一个多边形的内角和是540°,则这个多边形是(
6.(浙江义乌)在正三角形、正方形、正五边形、正六边形中不能单独镶嵌平面的
是(
二、填空题如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四
A.
3.
A. 四边形 B .五边形 C .六边形 D.七边形
4. (北京市)若一个正多边形的一个外角是40°,则这个正多边形的边数是
A. 10
B. 9
C. 8
D. 6
5. (新疆乌鲁木齐市)某多边形的内角和是其外角和的3倍,则此多边形的边数
).
A. B. C. 7 D. 8
A •正三角形
B .正方形•正五边形 D .正六边形
7.(广东广.州)只用下列正多边形地砖中的一种,能够铺满地面的是(
A正十边形 B .正八边形 C .正六边形D.正五边形
8.(广东湛江)如图所示,已知等边三角形ABC勺边长为1,按图中所示的规律,用2008个
这样的三角形镶嵌而.成的四边形的周长是(
A.2008
B.2009
C.2010
D.2011
1.(天津市)
参考答案】
、选择题
1. A
2.B
3.B
4.B
5.D
6.C
7.C
8. C
二、填空题
1.21。