【新课标】2018年最新湘教版七年级数学下册《运用乘法公式进行计算》同步练习题及答案解析
湘教版数学七年级下册2.2.3 运用乘法公式进行计算 同步课件
注意: 公式中的 a 与 b 既可以是数,又 可以是单项式 和 多项式.
课堂小结
如何运用乘法公式进行计算: 1. 先观察式子的特点,选取适当的乘法公式; 2. 有时会结合其它运算法则; 3. 灵活运用公式进行求值计算.
把 x+y 看做一个整体
遇到多项式的乘法时,我 们要先观察式子的特征, 看能否运用乘法公式,以
达到简化运算的目的.
典例精析
【例8】运用乘法公式计算:
(1)[(a+3)(a-3)]2;
(2)(a-b+c)(a+b-c).
解:(1)[(a+3)(a-3)]2 = (a2-9)2 = (a2)2-2·a2·9 + 92 = a4-18a2+81
2.2.3 运用乘法公式进行计算
湘教版数学七年级下册
教学目标
1.熟练地运用乘法公式进行计算. 2.能正确地根据题目的要求选择不同的乘法公式进行运算. 3.提高学生对乘法公式综合运用的能力,分析、解决问题的能力. 4.培养学生实事求是、科学严谨的学习态度. 【教学重点】 正确选择乘法公式进行运算. 【教学难点】 综合运用平方差和完全平方公式进行多项式的计算.
巩固练习
4. 解方程:
5x + 6(3x + 2)(-2 + 3x) - 54 (x-
1 3
)(x+
1) = 2
3
解: 5x + 6(9x2 - 4 ) – 54 (x2-
1
9) = 2
5x+54x2-24-54x2+6 = 2
七年级数学下册第2章运用乘法公式进行计算习题课件新版湘教版
【规律总结】 完全平方公式适用的前提是两项式的平方,故在利用完全平
方公式时,有时需把一项拆成两项的和或差,有时需把某几项 结合在一起,当作一项,只有把题目变形,具备完全平方公式 的特征时,才可使用.
【跟踪训练】 1.(2012·白银中考)如图,边长为(m+3)的正方形纸片,剪出一 个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重 叠无缝隙),若拼成的长方形一边长为3,则另一边长是( )
4.计算:(1)592=_____.(2)712=_____. 【解析】(1)592=(60-1)2=3 600-120+1=3 481. (2)712=(70+1)2=4 900+140+ቤተ መጻሕፍቲ ባይዱ=5 041. 答案:(1)3 481 (2)5 041
乘法公式的综合运用 【例2】(6分)计算:(m-2n+3t)(m+2n-3t). 【规范解答】原式=[m-(2n-3t)][m+(2n-3t)] ……………………………………………………………………1分 =m2-(2n-3t)2 ……………………………………………………4 分 =m2-(4n212nt+9t2) ……………………………………………5分 =m2-4n2+12nt-9t2. ……………………………………………6
1.(2012·绵阳中考)图(1)是一个长为2m,宽为2n(m>n)的长方 形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大 小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中 间空的部分的面积是( )
(A)2mn
(B)(m+n)2
(C)(m-n)2
(D)m2-n2
【解析】选C.空白面积=(m+n)2-4×mn=m2+2mn+n2-4mn
湘教版七年级数学下册同步练习 第2章整式的乘法 运用乘法公式进行计算课后作业
运用乘法公式进行计算(30分钟50分)一、选择题(每小题4分,共12分)1.若a2+ab+b2+A=(a-b) 2,则A式应为( )A.abB.-3abC.0D.-2ab2.计算(m-2n-1)(m+2n-1)的结果为( )A.m2-4n2-2m+1B.m2+4n2-2m+1C.m2-4n2-2m-1D.m2+4n2+2m-13.计算(2a+3b)2(2a-3b) 2的结果是( )A.4a2-9b2B.16a4-72a2b2+81b4C.(4a2-9b2)2D.4a4-12a2b2+9b4二、填空题(每小题4分,共12分)4.计算(-3x+2y-z)(3x+2y+z)= .5.矩形ABCD的周长为24,面积为32,则其四条边的平方和为.6.已知a-b=3,则a(a-2b)+b2的值为.三、解答题(共26分)7.(8分)求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=.8.(8分)计算:(x+1)(x+2)(x+3)(x+4).【拓展延伸】9.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.答案解析1.【解析】选B.因为(a-b)2=a2-2ab+b2,所以a2+ab+b2+A=a2-2ab+b2,所以A=-3ab.2.【解析】选A.(m-2n-1)(m+2n-1)=[(m-1)-2n][(m-1)+2n]=(m-1)2-4n2=m2-2m+1-4n2=m2-4n2-2m+1.3.【解析】选B.(2a+3b)2(2a-3b)2=[(2a+3b)(2a-3b)]2=(4a2-9b2)2=16a4-72a2b2+81b4.4.【解析】(-3x+2y-z)(3x+2y+z)=[2y-(3x+z)][2y+(3x+z)]=4y2-(3x+z)2=4y2-9x2-6xz-z2.答案:4y2-9x2-6xz-z25.【解析】因为矩形ABCD的周长为24,面积为32,所以2AB+2BC=24,AB·BC=32,所以AB+BC=12.因为AB2+BC2+CD2+AD2=2AB2+2BC2,所以AB2+BC2+CD2+AD2=2[(AB+BC)2-2AB·BC]=2×(122-64)=160,所以AB2+BC2+CD2+AD2=160.答案:1606.【解析】a(a-2b)+b2=a2-2ab+b2=(a-b)2.当a-b=3时,原式=32=9.答案:97.【解析】原式=a2-4b2+a2+4ab+4b2-4ab=2a2,当a=1,b=时,原式=2a2=2×12=2.8.【解析】原式=[(x+1)(x+4)][(x+2)(x+3)]=(x2+5x+4)(x2+5x+6)=[(x2+5x)+4][(x2+5x)+6]=(x2+5x)2+10(x2+5x)+24=x4+10x3+25x2+10x2+50x+24=x4+10x3+35x2+50x+24.9.【解析】(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1) 4+(-1)5 =(2-1)5=1.。
湘教版七年级数学下册 练习:《运用乘法公式进行计算》课时作业
《运用乘法公式进行计算》课时作业:一、填空题:1、____))((=+-y x y x ;()()a b a b ---+=2、如果多项式x 2+8x +k 是完全平方式,则k 的值是 。
3、如果多项式x 2-mx +25是完全平方式,则m 的值是 。
4、如果(a+b +1)(a+b -1)=63,那么a+b 的值是 。
5、若(2a -3b ) 2+N=4a 2+ab +9b 2,则N 的值为 。
6、(a +b -c -d )(a -b +c +d )=[a + ][a -(b -c -d )]7、计算:(3x +2y )(9x 2+4y 2)(3x -2y )= .二、选择题:1、化简(m 2+1)(m +1)(m -1)-(m 4+1)的值是( )A. -2m 2B. 0C. -2D. -12、把4x 2+1加上一个单项式,使其成为一个完全平方式,在下列单项式4x ,-4x ,4x 4,-1,2x ,-4x 2中,符合条件的有( )A. 3个B. 4个C. 5个D. 6个3、已知x 2-y 2=8,x+y =4,则x -y 的值是( )A. -4B. 4C. -2D. 24、已知x 2+y 2=25,x+y =7,且x >y ,那么x -y 的值等于( )A. ±1B. ±7C. 1D. -15、计算20152-2016×2014的结果为( )A. -1B. 1C. -2D. 2三、解答题:1、解方程:(1-3x ) 2+(2x -1) 2+5=13(x -1)(x +1)2、如果a 2+b 2-2a +4b +5=0 ,求a 、b 的值.3、已知a -b =1 ,a 2+b 2=25 ,求ab 的值4、已知x (x -1)-(x 2-y )=-2,求222x y xy +-的值。
5、先化简,再求值:(1)(3-x )(x +3)+(x +1)2,其中x=2(2)2b 2+(a +b )(a -b )-(a -b ) 2,其中a =-3,b =12参考答案:一、1、x 2-y 2,a 2-b 2;2、16;3、±10;4、±8;5、13ab ;6、b -c -d ;7、81x 4-16y 4;二、1、C ;2、C ;3、D ;4、C ;5、B ;三、1、x =2;2、a =1,b =-2;3、ab =12;4、原式=25、(1)原式=2x +10,当x =2时,原式=14;(2)原式=2ab ,当a =-3,b =12时,原式=-3。
【新课标】2018年最新湘教版七年级数学下册《单项式的乘法》同步测试题及答案解析
新课标2017-2018学年湘教版七年级数学下册2.1.3 单项式的乘法要点感知1一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘.预习练习1-1 计算:(1)2x5·5x2=__________;(2)2ab2·23a3=__________;(3)25x2y3·516xyz=__________.要点感知2 几个单项式相乘时,积的符号由负因式的个数决定:偶数个负因式相乘积为__________,奇数个负因式相乘积为__________.预习练习2-1计算(-2a)(-3a)的结果是( )A.-5aB.-aC.6aD.6a22-2 计算:3x2y·(-4xy2)·(x3)2=__________.知识点单项式的乘法1.计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2.下列关于单项式乘法的说法中,不正确的是( )A.几个单项式的积仍是单项式B.几个符号相同的单项式相乘,则积为正C.几个单项式相乘,有一个因式为0,积一定为0D.单项式之积的次数不可能比各个单项式的次数低3.下列各式中,计算正确的是( )A.2a2·3a3=5a6B.-3a2·(-2a)=-6a3C.2a3·5a2=10a5D.(-a)2·(-a)3=a54.计算-12m2n·(-mn2x)的结果是( )A.-12m4n2x B.12m3n3 C.12m3n3xD.-12m3n3x5.计算:3a·(-2a)2=( )A.-12a3B.-6a2C.12a3D.6a26.如果□×3ab=3a2b,那么□内应填的代数式是( )A.abB.3abC.aD.3a7.一种计算机每秒可做4×108次运算,它工作6×105秒,运算的次数用科学记数法表示为( )A.24×1015B.2.4×1014C.24×1013D.24×10128.下列计算正确的是( )A.6x2·3xy=9x3yB.2ab2·(-3ab)=-a2b3C.(mn)2·(-m2n)=-m3n3D.(-3x2y)·(-3xy)=9x3y29.计算:(1)4xy2·(-38x2yz3); (2)(-12xyz)·23x2y2·(-35yz3);(3)25x2y·(-0.5xy)2-(-2x)3·xy3; (4)5a3b·(-3b)2+(-6ab)2·(-ab)-ab3·(-4a)2.10.光复中学要新建一座教学实验楼,量得地基为长方形,长为3a3米,宽为2a2米,求地基的面积,并计算当a=2时,地基的面积是多少?11.先化简,再求值:(-12ab2)·(14a2b4)-(-a3b2)·(-b2)2,其中a=-14,b=4.12.下列4个算式:①63+63;②(2×62)×(3×63);③(23×33)2;④(22)3×(33)2.结果等于66的是( )A.①②③B.②③④C.②③D.③④13.已知(a m+1b n+2)·(-a2n-1b2m)=-a5b6,则m+n的值为( )A.1B.2C.3D.414.一个长方体的长是5×103 cm,宽是1.2×102 cm,高是0.8×102 cm,则它的体积为( )A.4.8×1012 cm3B.4.8×107 cm3C.9.6×1012 cm3D.9.6×107 cm315.若单项式-6x2y m与13x n-1y3是同类项,则这两个单项式的积是__________.16.计算:(-2×103)3·(5×107)=__________.17.计算:(1)(-12x2y)3·(-3xy2)2·13xy;(2)(-1.2×102)2×(5×103)3×(2×104)2;(3)[-2(x-y)2]2·(y-x)3;(4)(-3x2y)2·(-23xyz)·34xz2+(-12x2yz2)·(-8x4y2z).18.若1+2+3+…+n=m,且ab=1,m为正整数,求(ab n)·(a2b n-1)·…·(a n-1b2)·(a n b)的值.19.已知-2x3m+1y2n与7x n-6y-3-m的积与x4y是同类项,求m2+n的值.20.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.21.光的速度约为3×105 km/s,在太阳系以外距离地球最近的一颗恒星(比邻星)发出的光,需要4年的时间才能到达地球.若一年以3×107 s计算,则这颗恒星到地球的距离是多少km?22.三角表示3abc,方框表示-4x y w z,求·参考答案预习练习1-1(1)10x7(2)43a4b2(3)18x3y4z要点感知2正负预习练习2-1 D2-2-12x9y31.C2.B3.C4.C5.C6.C7.B8.D9.(1)原式=-32x3y3z3.(2)原式=12xyz·23x2y2·35yz3=15x3y4z4.(3)原式=25x2y·14x2y2+8x3·xy3=110x4y3+8x4y3=8110x4y3.(4)原式=5a3b·9b2-36a2b2·ab-ab3·16a2=45a3b3-36a3b3-16a3b3=-7a3b3.10.3a3·2a2=6a5.当a=2时,6a5=6×25=192(平方米).11.原式=-18a3b6-(-a3b2)·b4=-18a3b6+a3b6=78a3b6,当a=-14,b=4时,原式=78×(-14)3×46=-56.12.B 13.C 14.B 15.-2x4y616.-4×101717.(1)原式=-18x6y3·9x2y4·13xy=-38x9y8.(2)原式=1.44×104×125×109×4×108=7.2×1023.(3)原式=4(y-x)4·(y-x)3=4(y-x)7.(4)原式=9x4y2·(-23xyz)·34xz2+4x6y3z3=-92x6y3z3+4x6y3z3=-12x6y3z3.18.因为1+2+3+…+n=m,所以(ab n)·(a2b n-1)·…·(a n-1b2)·(a n b)=a1+2+3+…+n b n+n-1+…+1=a m b m=(ab)m=1m=1.19.因为-2x3m+1y2n与7x n-6y-3-m的积与x4y是同类项,所以3164,23 1.m nn m++-=--=⎧⎨⎩解得2,3.mn==⎧⎨⎩所以m2+n=7.20.由题意,得2310,350.x yx y-+=++=⎧⎨⎩解得2,1.xy=-=-⎧⎨⎩所以(-2xy)2·(-y2)·6xy2=4x2y2·(-y2)·6xy2=-24x3y6.当x=-2,y=-1时,原式=-24×(-2)3×(-1)6=192.21.4×3×107×3×105=(4×3×3)×(107×105)=3.6×1013(km). 答:这颗恒星到地球的距离为3.6×1013 km.22.原式=9mn·(-4n2m5)=-36m6n3.。
2018年湘教版七年级数学下册全册同步练习含答案最新
2017-2018学年湘教版初中数学七年级下册全册课时作业目录1.1 二元一次方程组课时作业1.3 二元一次方程组的应用(第1课时)课时作业1.3 二元一次方程组的应用(第2课时)课时作业1.4 三元一次方程组课时作业2.1.1 同底数幂的乘法课时作业2.1.2 多项式的乘法课时作业2.1.2 幂的乘方与积的乘方课时作业2.1.3 单项式的乘法课时作业2.1.4 多项式的乘法课时作业2.2.1 平方差公式课时作业2.2.2 完全平方公式课时作业2.2.3 运用乘法公式进行计算课时作业3.1 多项式的因式分解课时作业3.2 提公因式法课时作业3.3 公式法(第1课时)课时作业3.3 公式法(第2课时)课时作业4.1.1 相交与平行课时作业4.1.2 相交直线所成的角课时作业4.2 平移课时作业课时作业4.3 平行线的性质课时作业4.4 平行线的判定课时作业4.5 垂线课时作业4.6 两条平行线间的距离课时作业5.1.1轴对称图形课时作业5.1.2轴对称变换课时作业5.2 旋转课时作业5.3 图形变换的简单应用课时作业6.1.1 平均数课时作业6.1.2 中位数课时作业6.1.3 众数课时作业6.2 方差课时作业建立二元一次方程组(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程中,是二元一次方程的是( )A.3x2-2y=4B.6x+y+9z=0C.+4y=6D.4x=2.以为解的二元一次方程组是( )A. B.C. D.3.(2013·广州中考)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A. B.C. D.二、填空题(每小题4分,共12分)4.请写出一个二元一次方程组,使它的解是5.方程(k2-1)x2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k=时,它为二元一次方程.6.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x元/束,礼盒y 元/盒,则可列方程组为.三、解答题(共26分)7.(8分)下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组的解?为什么?①②③④8.(8分)(1)若是方程2x+y=0的解,求6a+3b+2的值.(2)若是方程3x-y=1的解,求6a-2b+3的值.【拓展延伸】9.(10分)为民医疗器械经销部经营甲、乙两种医疗器械,甲器械每台2万元,乙器械每台5万元,今年厂方给经销部规定了24万元的营销任务,那么该经销部要想刚好完成任务,有哪些销售方案可选择?若乙医疗器械的利润是甲医疗器械的3倍,那么你觉得选择哪个方案更好些?答案解析1.【解析】选D.4x=含有两个未知数x,y,并且含x,y项的次数都是1,是二元一次方程.选项A有二次项,选项B有三个未知数,选项C分母中有未知数,故A,B,C都不是二元一次方程.2.【解析】选D.将分别代入四个方程组中,只有D中的两个方程同时成立.3.【解析】选C.由题意知,x+y=10,x-3y=2,即x=3y+2,所以4.【解析】以为解的二元一次方程有无数个,如x+y=1,x-y=3,x+2y=0等,只要满足x=2,y=-1即可.然后从中选两个方程,但是这两个方程的对应项的系数不能成倍数关系. 答案:(答案不唯一)5.【解析】无论是一元一次方程还是二元一次方程,都不可能有二次项,所以k2-1=0,即k=±1.当k=-1时,原方程为-2y=2是一元一次方程;当k=1时,原方程为x+y=2为二元一次方程. 答案:-1 16.【解析】一束鲜花x元,一盒礼盒y元,由一束鲜花和两盒礼盒共55元,得:x+2y=55;由两束鲜花和3盒礼盒共90元,得2x+3y=90,故答案:7.【解析】①②是方程3x-2y=11的解.②③是方程2x+3y=16的解.②是方程组的解.因为方程组的解必须是方程组中两个方程的公共解.8.【解析】(1)把代入方程2x+y=0得2a+b=0,两边同时乘以3得:6a+3b=0,所以6a+3b+2=2.(2)把代入3x-y=1得3a-b=1,则6a-2b+3=2(3a-b)+3=5.【归纳整合】解决本题的方法为整体代入法,将含a,b的式子整体代入,使得整个求解过程更加简便,在解决整体代入法求值问题时,要多观察式子的特点,合理运用整体代入法.9.【解析】设销售甲医疗器械x台,乙医疗器械y台,根据题意,得2x+5y=24.因为x,y都是非负整数,所以x==12-2y-.当y=0时,x=12;当y=2时,x=7;当y=4时,x=2.所以销售方案有三种:方案一:销售甲器械12台,乙器械0台;方案二:销售甲器械7台,乙器械2台;方案三:销售甲器械2台,乙器械4台.设甲医疗器械的利润为a(a>0),则方案一的利润为12a+0×3a=12a(元);方案二的利润为7a+2×3a=13a(元);方案三的利润为2a+4×3a=14a(元).因为14a>13a>12a,所以选择方案三更好些.二元一次方程组的应用(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( ) A. B.C. D.2.(2013·潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是 2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A.B.C.D.3.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是( )A.50元,150元B.150元,50元C.100元,50元D.50元,100元二、填空题(每小题4分,共12分)4.甲种电影票每张20元,乙种电影票每张15元.若购买甲,乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.5.学校组织一次有关历史知识的竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得了76分,那么他答对道题.6.一个长方形的长减少5cm,宽增加2cm,就变成了一个正方形,并且这两个图形的面积相等,则原长方形的面积为cm2.三、解答题(共26分)7.(8分)(2013·济南中考)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间.8.(8分)(2013·宜宾中考)2013年4月20日,四川省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【拓展延伸】9.(10分)一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.答案解析1.【解析】选B.第一个等量关系式为:x+y=1.2,第二个等量关系式为:x+y=16,构成方程组2.【解析】选B.根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”所得的方程是x-y=22;调查的吸烟的人数是,不吸烟的人数是,根据共调查了10000人,列方程得+=10000,所以可列方程组3.【解析】选B.设甲的定价为x元,乙的定价为y元.则解得:4.【解析】设购买甲种电影票x张,乙种电影票y张,由题意得解得即甲种电影票买了20张.答案:20【归纳整合】二元一次方程组的优点当我们遇到两个量之间出现两种等量关系时,可以考虑列二元一次方程组解题.虽然本题也可列一元一次方程,但相比较而言,列二元一次方程组比列一元一次方程更好.5.【解析】设他答对x道题,答错或不答y道题.根据题意,得解得答案:166.【解析】设长方形的长为xcm,宽为ycm,则根据题意得解这个方程组得所以长方形的面积xy=.答案:7.【解析】设大宿舍有x间,小宿舍有y间,根据题意得解得答:大宿舍有30间,小宿舍有20间.8.【解析】设规定时间为x天,生产任务是y顶帐篷,由题意得,解得答:规定时间是6天,生产任务是800顶帐篷.9.【解析】本题答案不唯一,方法一:问题:普通公路段和高速公路段各长多少千米?设普通公路段长为xkm,高速公路段长为ykm.由题意可得:解得答:普通公路段长为60km,高速公路段长为120km.方法二:问题:汽车在普通公路段和高速公路段上各行驶了多少小时?设汽车在普通公路段上行驶了xh,在高速公路段上行驶了yh.由题意可得:解得:答:汽车在普通公路段上行驶了1h,在高速公路段上行驶了1.2h.二元一次方程组的应用(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A.10g,40gB.15g,35gC.20g,30gD.30g,20g2.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A.1.2元/支,3.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.0.8元/支,2.6元/本3.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8,6,5个店铺,且每组至少有两人,则学生分组方案有( )A.6种B.5种C.4种D.3种二、填空题(每小题4分,共12分)4.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.5.如图,正方形是由k个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= .6.(2013·鞍山中考)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.三、解答题(共26分)7.(8分)(2013·莱芜中考)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,求两种跳绳的单价各是多少元?8.(8分)(2013·嘉兴中考)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?【拓展延伸】9.(10分)某公园的门票价格如表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?答案解析1.【解析】选C.设每块巧克力的质量为xg,每个果冻的质量为yg,由题意得解得2.【解析】选 A.设小红所买的笔和笔记本的价格分别是x元/支,y元/本,则解得所以小红所买的笔和笔记本的价格分别是1.2元/支,3.6元/本.3.【解析】选 B.设第一小组有x人,第二小组有y人,则第三小组有(20-x-y)人,则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=1 1,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意,故学生分组方案有5种.4.【解析】设鸡有x只,兔有y只,根据题意可得解得:即鸡有22只,兔有11只.答案:22 115.【解析】设矩形的长为x,矩形的宽为y,中间竖的矩形为n个,则可列方程组解得n=4.则k=2+2+4=8.答案:86.【解析】设长铁棒长为xcm,短铁棒长为ycm,由题意可得解得所以水的深度为×120=80(cm).答案:807.【解析】设长跳绳的单价是x元,短跳绳的单价是y元.由题意,得解得所以长跳绳的单价是20元,短跳绳的单价是8元.8.【解析】(1)设年降水量为x万立方米,每人年平均用水量为y立方米,则:解得答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,则:12000+25×200=20×25z,解得z=34.所以50-34=16.答:该城镇居民人均每年需要节约16立方米的水才能实现目标.9.【解析】设甲班有x人,乙班有y人,根据题意得,解得答:甲班有55人,乙班有48人.三元一次方程组(30分钟 50分)一、选择题(每小题4分,共12分)1.下列方程中,是三元一次方程组的是( ) A.B.C.D.2.若方程组的解x 与y 的值的和为3,则a 的值为()A.7B.4C.0D.-43.(2012·德阳中考)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.4,6,1,7 B.4,1,6,7 C.6,4,1,7D.1,6,4,7二、填空题(每小题4分,共12分)4.解方程组时,①+②可消去未知数 ,得到一个二元一次方程.5.已知方程组则x+y+z= .6.已知甲、乙、丙三人各有一些钱,其中甲的钱数是乙的钱数的2倍,乙的钱数比丙的钱数多1元,丙的钱数比甲的钱数少11元.三人共有元.三、解答题(共26分)7.(8分)李红在做这样一个题目:在等式y=ax2+bx+c中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y等于多少?她想,在求y值之前应先求a,b,c的值,你认为她的想法对吗?请你帮她求出a,b,c及y的值.8.(8分)某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50棵,乙小组植树的棵数是甲、丙两小组的和的,甲小组植树的棵数恰是乙小组与丙小组的和,问每小组各植树多少棵?【拓展延伸】9.(10分)某企业为了激励员工参与技术革新,设计了技术革新奖,这个奖项分设一、二、三等,按获奖等级颁发一定数额的奖金,每年评选一次,下表是近三年技术革新获奖人数及奖金总额情况.三等奖人数(人)2012年那么技术革新一、二、三等奖的奖金数额分别是多少万元?答案解析1.【解析】选C.三元一次方程组里必须有三个方程,故排除A,B;D中有两个方程不是一次方程,故它也不是三元一次方程组.2.【解析】选A.把x+y=3和原方程组联立,得到一个关于x,y,a的三元一次方程组,求得a=7.3.【解析】选C.根据题意,得解得故选C.4.【解析】方程①和②中未知数y的系数互为相反数,相加可消去未知数y,得2x+z=27.答案:y 2x+z=275.【解析】①+②+③得:2x+2y+2z=12,所以x+y+z=6.答案:66.【解析】设甲有x元、乙有y元、丙有z元,根据题意,得解得所以三人共有20+10+9=39(元).答案:397.【解析】她的想法对.根据题意,得解得所以该等式为y=4x2+3x-1,所以当x=-2时,y=4×4-3×2-1=9,即y=9.8.【解析】设甲小组植树x棵、乙小组植树y棵、丙小组植树z棵,根据题意,得解得答:甲小组植树25棵、乙小组植树10棵、丙小组植树15棵.9.【解析】设一、二、三等奖的奖金数额分别是x万元、y万元、z万元, 根据题意,得解得答:一、二、三等奖的奖金数额分别是1万元、万元、万元.同底数幂的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.计算(-x)2·x3的结果是( )A.x5B.-x5C.x6D.-x62.下列各式计算正确的个数是( )①x4·x2=x8;②x3·x3=2x6;③a5+a7=a12;④(-a)2·(-a2)=-a4;⑤a4·a3=a7.A.1B.2C.3D.43.下列各式能用同底数幂乘法法则进行计算的是( )A.(x+y)2·(x-y)2B.(x+y)2(-x-y)C.(x+y)2+2(x+y)2D.(x-y)2(-x-y)二、填空题(每小题4分,共12分)4.(2013·天津中考)计算a·a6的结果等于.5.若2n-2×24=64,则n= .6.已知2x·2x·8=213,则x= .三、解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3).(2)a3·a2-a·(-a)2·a2.(3)(2m-n)4·(n-2m)3·(2m-n)6.(4)y·y n+1-2y n·y2.8.(8分)已知a x=5,a y=4,求下列各式的值:(1)a x+2. (2)a x+y+1.【拓展延伸】9.(10分)已知2a=3,2b=6,2c=12,试确定a,b,c之间的关系.答案解析1.【解析】选A.(-x)2·x3=x2·x3=x2+3=x5.2.【解析】选B.x4·x2=x4+2=x6,故①错误;x3·x3=x3+3=x6,故②错误;a5与a7不是同类项,不能合并,故③错误;(-a)2·(-a2)=a2·(-a2)=-a2·a2=-a2+2=-a4,故④正确;a4·a3=a4+3=a7,故⑤正确.3.【解析】选 B.A,D选项底数不相同,不是同底数幂的乘法,C选项不是乘法;(x+y)2(-x-y)=-(x+y)2(x+y)=-(x+y)3.4.【解析】根据同底数幂的乘法法则“同底数幂相乘,底数不变,指数相加”,所以a·a6=a1+6=a7. 答案:a75.【解析】因为2n-2×24=2n-2+4=2n+2,64=26,所以2n+2=26,即n+2=6,解得n=4.答案:46.【解析】因为2x·2x·8=2x·2x·23=2x+x+3,所以x+x+3=13,解得x=5.答案:57.【解析】(1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a3·a2-a·(-a)2·a2=a3+2-a·a2·a2=a5-a5=0.(3)(2m-n)4·(n-2m)3·(2m-n)6=(n-2m)4·(n-2m)3·(n-2m)6=(n-2m)4+3+6=(n-2m)13.(4)y·y n+1-2y n·y2=y n+1+1-2y n+2=y n+2-2y n+2=(1-2)y n+2=-y n+2.8.【解析】(1)a x+2=a x×a2=5a2.(2)a x+y+1=a x·a y·a=5×4×a=20a.9.【解析】方法一:因为12=3×22=6×2, 所以2c=12=3×22=2a×22=2a+2,即c=a+2,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①+②得2c=a+b+3.方法二:因为2b=6=3×2=2a×2=2a+1,所以b=a+1,①又因为2c=12=6×2=2b×2=2b+1,所以c=b+1,②①-②得2b=a+c.多项式的乘法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3B.2x+9C.8x-3D.18x-32.下列各式中计算错误的是( )A.2x-(2x3+3x-1)=4x4+6x2-2xB.b(b2-b+1)=b3-b2+bC.-x(2x2-2)=-x3+xD.x=x4-2x2+x3.今天数学课上,老师讲了单项式乘以多项式.放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy·(4y-2x-1)=-12xy2+6x2y+ .空格的地方被钢笔水弄污了,你认为横线上应填写( )A.3xyB.-3xyC.-1D.1二、填空题(每小题4分,共12分)4.(-2x2)3·(x2+x2y2+y2)的结果中次数是10的项的系数是.5.当x=1,y=时,3x(2x+y)-2x(x-y)= .6.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图中的阴影部分小正方形的个数是.三、解答题(共26分)7.(8分)先化简,再求值.x(x2-6x-9)-x(x2-8x-15)+2x(3-x),其中x=-.8.(8分)如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.【拓展延伸】9.(10分)阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入. 解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.答案解析1.【解析】选A.原式=10x-15+12-8x=(10x-8x)+(-15+12)=2x-3.2.【解析】选A.2x-(2x3+3x-1)=2x-2x3-3x+1=-2x3-x+1.3.【解析】选A.-3xy·(4y-2x-1)=-3xy·4y+(-3xy)·(-2x)+(-3xy)·(-1)=-12xy2+6x2y+3xy,所以应填写3xy.4.【解析】(-2x2)3·(x2+x2y2+y2)=-8x6·(x2+x2y2+y2)=-8x8-8x8y2-8x6y2,所以次数是10的项是-8x8y2,系数是-8.答案:-85.【解析】3x(2x+y)-2x(x-y)=6x2+3xy-2x2+2xy=4x2+5xy,当x=1,y=时,原式=4x2+5xy=4×12+5×1×=4+1=5.答案:56.【解析】根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2,第二个图形中阴影部分小正方形个数为8=6+2=2×3+2,第三个图形中阴影部分小正方形个数为14=12+2=3×4+2,……所以第n个图形中阴影部分小正方形个数为n(n+1)+2= n2+n+2,故此题答案为n2+n+2. 答案:n2+n+27.【解析】x(x2-6x-9)-x(x2-8x-15)+2x(3-x)=x3-6x2-9x- x3+8x2+15x+6x-2x2=12x.当x=-时,原式=12×=-2.8.【解析】长方形地块的长为:(3a+2b)+(2a-b),宽为4a,这块地的面积为:4a·[(3a+2b)+(2a-b)]=4a·(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.9.【解析】(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab,当ab=3时,原式=-4×33+6×32-8×3=-108+54-24=-78.幂的乘方与积的乘方(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·遵义中考)计算的结果是( )A.-a3b6B.-a3b5C.-a3b5D.-a3b62.(2013·泸州中考)下列各式计算正确的是( )A.(a7)2=a9B.a7·a2=a14C.2a2+3a3=5a5D.(ab)3=a3b33.如果(2a m b m+n)3=8a9b15成立,则m,n的值为( )A.m=3,n=2B.m=3,n=9C.m=6,n=2D.m=2,n=5二、填空题(每小题4分,共12分)4.若(x2)n=x8,则n= .5.若a n=3,b n=2,则(a3b2)n= .6.××(-1)2013= .三、解答题(共26分)7.(8分)比较3555,4444,5333的大小.8.(8分)计算:(1)(-a3b6)2-(-a2b4)3.(2)2(a n b n)2+(a2b2)n.【拓展延伸】9.(10分)阅读材料:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log a N=b. 例如,因为54=625,所以log5625=4;因为32=9,所以log39=2.对数有如下性质:如果a>0,且a≠1,M>0,N>0,那么lo g a(MN)=log a M+log a N.完成下列各题:(1)因为,所以log28= .(2)因为,所以log216= .(3)计算:log2(8×16)= + = .答案解析1.【解析】选D.=·a3·(b2)3=-a3b6.2.【解析】选 D.根据幂的乘方法则,(a7)2=a7×2=a14,选项A错误;根据同底数幂相乘法则,a7·a2=a7+2=a9,选项B错误;2a2与3a3不是同类项,不能合并,选项C错误;选项D符合积的乘方的运算法则,是正确的,故选D.3.【解析】选A.因为(2a m b m+n)3=8a3m b3(m+n)=8a9b15,所以3m=9,3(m+n)=15,解得m=3,n=2.4.【解析】因为(x2)n=x2n=x8,所以2n=8,所以n=4.答案:45.【解析】(a3b2)n=a3n b2n=(a n)3(b n)2=33×22=27×4=108.答案:1086.【解析】原式=×=×=12013×=.答案:7.【解析】因为3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,又因为125<243<256,所以125111<243111<256111,所以5333<3555<4444.8.【解析】(1)原式=a6b12-(-a6b12)=a6b12+a6b12= 2a6b12.(2)原式=2a2n b2n+a2n b2n=3a2n b2n.9.【解析】(1)因为23=8,所以log28=3.(2)因为24=16,所以log216=4.(3)log2(8×16)=log28+log216=3+4=7.答案:(1)23=8 3 (2)24=16 4 (3)log28 log216 7单项式的乘法(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·绍兴中考)计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2.下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n43.某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元二、填空题(每小题4分,共12分)4.(2013·泰州中考)计算:3a·2a2= .5.计算:= .6.光的速度约为3×105km/s,太阳光到达地球需要的时间约为5×102s,则地球与太阳间的距离约为km.三、解答题(共26分)7.(8分)计算:(1)4y3·(-2x2y).(2)x2y3·xyz.(3)(3x2y)3·(-4xy2).(4)(-xy2z3)4·(-x2y)3.8.(8分)有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.【拓展延伸】9.(10分)已知三角表示2ab c,方框表示(-3x zω)y,求×.答案解析1.【解析】选C.3a·2b=3×2a·b=6ab.2.【解析】选 D.选项A中,(2xy)3(-2xy)2=8x3y3×4x2y2=32x5y5,故此选项正确;选项B 中,(-2ab2)2(-3a2b)3=4a2b4×(-27)a6b3=-108a8b7,故此选项正确;选项C 中,=x2y2×x2y=x4y3,故此选项正确;选项D 中,=m2n×m2n4=m4n5,故此选项错误.3.【解析】选A.由题意知bc=a.因为5月份售出该品牌衬衣3b件,每件打八折,则每件为0.8c 元.所以5月份该品牌衬衣的营业额为:3b·0.8c=2.4bc=2.4a(元).所以5月份该品牌衬衣的营业额比4月份增加2.4a-a=1.4a(元).4.【解析】3a·2a2=6a3.答案:6a35.【解析】=(a·a2)(b2·b)=-a3b3.答案:-a3b36.【解析】(3×105)×(5×102)=(3×5)×(105×102)=15×107=1.5×108.答案:1.5×1087.【解析】(1)原式=[4×(-2)]x2·(y3·y)=-8x2y4.(2)原式=(x2·x)(y3·y)·z=x3y4z.(3)原式=27x6y3·(-4xy2)=[27×(-4)](x6·x)(y3·y2)=-108x7y5.(4)原式=x4y8z12·(-x6y3)=-(x4·x6)(y8·y3)z12=-x10y11z12.8.【解题指南】由|2x-3y+1|+(x+3y+5)2=0知,2x-3y+1=0,x+3y+5=0,建立方程组,解得x,y 后,代入代数式求值.【解析】由题意得可得所以(-2xy)2·(-y2)·6xy2=4x2y2·(-y2)·6xy2=-24x3y6.当x=-2,y=-1时,原式=-24×(-2)3×(-1)6=-24×(-8)=192.9.【解析】×=2mn3·(-3n5m)2=2mn3·9n10m2=18n13m3.多项式的乘法(第2课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列计算中,正确的有( )①(2a-3)(3a-1)=6a2-11a+3;②(m+n)(n+m)=m2+mn+n2;③(a-2)(a+3)=a2-6;④(1-a)(1+a)=1-a2.A.4个B.3个C.2个D.1个2.若(x+3)(x+m)=x2+kx-15,则m-k的值为( )A.-3B.5C.-2D.23.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2D.m2-n2二、填空题(每小题4分,共12分)4.当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为.5.已知(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,则p+q的值为.6.若(x+a)(x+b)=x2-6x+8,则ab= .三、解答题(共26分)7.(8分)(1)化简(x+1)2-x(x+2).(2)先化简,再求值.(x+3)(x-3)-x(x-2),其中x=4.8.(8分)若(x-1)(x+1)(x+5)=x3+bx2+cx+d,求b+d的值.【拓展延伸】9.(10分)计算下列式子:(1)(x-1)(x+1)= .(2)(x-1)(x2+x+1)= .(3)(x-1)(x3+x2+x+1)= .(4)(x-1)(x4+x3+x2+x+1)= .用你发现的规律直接写出(x-1)(x n+x n-1+…+x+1)的结果.答案解析1.【解析】选C.因为(2a-3)(3a-1)=6a2-11a+3;(m+n)(n+m)=m2+2mn+n2;(a-2)(a+3)=a2+a-6;(1-a)(1+a)=1-a2,故正确的有2个.2.【解析】选A.因为(x+3)(x+m)=x2+(3+m)x+3m=x2+kx-15.所以m+3=k,3m=-15,解得m=-5,k=-2.所以m-k=-5-(-2)=-5+2=-3.3.【解析】选C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.4.【解析】(2x+5)(x+1)-(x-3)(x+1)=(2x2+2x+5x+5)-(x2+x-3x-3)=x2+9x+8.把x=-7代入得:原式=(-7)2+9×(-7)+8=-6.答案:-65.【解析】因为(x2+px+8)(x2-3x+q)=x4-3x3+qx2+p x3-3px2+qpx+8x2-24x+8q= x4+(p-3)x3+(q-3p+8)x2+(qp-24)x+8q,又因为(x2+px+8)(x2-3x+q)的展开式中不含x2项和x3项,所以p-3=0,q-3p+8=0,所以p=3,q=1,所以p+q=4.答案:46.【解析】因为(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab,所以x2+(a+b)x+ab= x2-6x+8,所以ab=8.答案:87.【解析】(1)原式=(x+1)(x+1)-x(x+2)=x2+x+x+1-x2-2x=x2+2x+1-x2-2x=1.(2)原式=x2-3x+3x-9-x2+2x=2x-9.当x=4时,原式=2×4-9=-1.8.【解析】(x-1)(x+1)(x+5)=(x2-1)(x+5)=x3+5x2-x-5所以b=5,c=-1,d=-5.即b+d=5-5=0.9.【解析】(1)x2-1 (2)x3-1(3)x4-1 (4)x5-1(x-1)(x n+x n-1+…+x+1)=x n+1-1.平方差公式(30分钟50分)一、选择题(每小题4分,共12分)1.化简:(a+1)2-(a-1)2=( )A.2B.4C.4aD.2a2+22.下列各式计算正确的是( )A.(x+2)(x-2)=x2-2B.(2a+b)(-2a+b)=4a2-b2C.(2x+3)(2x-3)=2x2-9D.(3ab+1)(3ab-1)=9a2b2-13.下列运用平方差公式计算错误的是( )A.(a+b)(a-b)=a2-b2B.(x+1)(x-1)=x2-1C.(2x+1)(2x-1)=2x2-1D.(-a+2b)(-a-2b)=a2-4b2二、填空题(每小题4分,共12分)4.如果x+y=-4,x-y=8,那么代数式x2-y2的值是.5.计算:= .6.观察下列各式,探索发现规律:22-1=3=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;…用含正整数n的等式表示你所发现的规律为.三、解答题(共26分)7.(8分)(1)(2013·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.8.(8分)(2013·义乌中考)如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1,S2.(2)请写出上述过程所揭示的乘法公式.【拓展延伸】9.(10分)阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(21024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21024+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21024+1)=(24-1)(24+1)(28+1)…(21024+1)=…=(21024-1)(21024+1)=22048-1.回答下列问题:(1)请借鉴该同学的经验,计算:(3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算:….答案解析1.【解析】选C.(a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a.2.【解析】选D.(x+2)(x-2)=x2-4≠x2-2;(2a+b)(-2a+b)=(b+2a)(b-2a)=b2-4a2≠4a2-b2;(2x+3)(2x-3)=4x2-9≠2x2-9;(3ab+1)(3ab-1)=9a2b2-1.3.【解析】选C.根据平方差得(2x+1)(2x-1)=4x2-1,所以C错误.而A,B,D符合平方差公式条件,计算正确.4.【解析】因为x+y=-4,x-y=8,所以x2-y2=(x+y)(x-y)=(-4)×8=-32.答案:-325.【解析】原式====1.答案:16.【解析】观察式子,每个式子中等号左边的被减数是偶数的平方,减数都是1,等号右边是此偶数前后两个连续奇数的乘积,所以用含正整数n的等式表示其规律为(2n)2-1=(2n-1)(2n+1).答案:(2n)2-1=(2n-1)(2n+1)7.【解析】原式=x2-1-(x2-3x)=x2-1-x2+3x=3x-1,当x=3时,原式=3×3-1=8.(2)解方程:(x-4)(x+3)+(2+x)(2-x)=4.【解析】去括号得x2-4x+3x-12+4-x2=4,移项得x2-4x+3x-x2=4+12-4,合并同类项得-x=12,系数化为1得x=-12.8.【解析】(1)图1中阴影部分面积为S1=a2-b2;图2中阴影部分面积为S2=(2b+2a)(a-b)=(a+b)(a-b).(2)(a+b)(a-b)=a2-b2.9.【解析】(1)(3+1)(32+1)(34+1)(38+1)=(32-1)(32+1)(34+1)(38+1)=(34-1)(34+1)(38+1)=(38-1)(38+1)=(316-1).(2)…=…=××××…××=×=.完全平方公式(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·湘西州中考)下列运算正确的是( )A.a2-a4=a8B.(x-2)(x-3)=x2-6C.(x-2)2=x2-4D.2a+3a=5a2.若a+=7,则a2+的值为( )A.47B.9C.5D.513.如图是一个正方形,分成四部分,其面积分别是a2,ab,ab,b2,则原正方形的边长是( )A.a2+b2B.a+bC.a-bD.a2-b2二、填空题(每小题4分,共12分)4.(2013·晋江中考)若a+b=5,ab=6,则a-b= .5.(2013·泰州中考)若m=2n+1,则m2-4mn+4n2的值是.6.若=9,则的值为.三、解答题(共26分)7.(10分)(1)(2013·福州中考)化简:(a+3)2+a(4-a).(2)(2013·宁波中考)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.8.(6分)利用完全平方公式计算:(1)482.(2)1052.【拓展延伸】9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c的等式吗?答案解析1.【解析】选D.A.a2与a4不是同类项,不能合并,故本选项错误;B.(x-2)(x-3)=x2-5x+6,故本选项错误;C.(x-2)2=x2-4x+4,故本选项错误;D.2a+3a=5a,故本选项正确.2.【解析】选A.因为a+=7,所以=72,a2+2·a·+=49,a2+2+=49,所以a2+=47.3.【解析】选B.因为a2+2ab+b2=(a+b)2,所以边长为a+b.4.【解析】因为(a-b)2=(a+b)2-4ab=25-24=1,所以a-b=±1.答案:±15.【解析】因为m=2n+1,即m-2n=1,所以原式=(m-2n)2=1.答案:16.【解析】由=9,可得x2+2+=9.即x2+=7,=x2-2+=7-2=5.答案:57.【解析】(1)原式=a2+6a+9+4a-a2=10a+9.(2)原式=1-a2+a2-4a+4=-4a+5,当a=-3时,原式=12+5=17.8.【解析】(1)482=(50-2)2=2500-200+4=2304.(2)1052=(100+5)2=10000+1000+25=11025.9.【解析】因为小正方形的边长为b-a,所以它的面积为(b-a)2,所以大正方形的面积为4××a×b+(b-a)2. 又因为大正方形的面积为c2,所以4××a×b+(b-a)2=c2,即2ab+b2-2ab+a2=c2,得a2+b2=c2.运用乘法公式进行计算(30分钟50分)一、选择题(每小题4分,共12分)1.若a2+ab+b2+A=(a-b)2,则A式应为( )A.abB.-3abC.0D.-2ab2.计算(m-2n-1)(m+2n-1)的结果为( )A.m2-4n2-2m+1B.m2+4n2-2m+1C.m2-4n2-2m-1D.m2+4n2+2m-13.计算(2a+3b)2(2a-3b)2的结果是( )A.4a2-9b2B.16a4-72a2b2+81b4C.(4a2-9b2)2D.4a4-12a2b2+9b4二、填空题(每小题4分,共12分)4.计算(-3x+2y-z)(3x+2y+z)= .5.矩形ABCD的周长为24,面积为32,则其四条边的平方和为.6.已知a-b=3,则a(a-2b)+b2的值为.三、解答题(共26分)7.(8分)求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=.8.(8分)计算:(x+1)(x+2)(x+3)(x+4).【拓展延伸】9.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.。
【新课标】2018年最新湘教版七年级数学下册《整式的乘法》同步练习题及答案解析
新课标 2017-2018学年湘教版七年级数学下册《整式的乘法》基础卷(含答案)一、选择题(30分)1、下列运算正确的是( )A. x 3+x =x 4;B. (x 2)3=x 6;C. 3x -2x =1;D. (a-b )2=a 2-b 2 2、下列各式中,运算结果是a 2-16b 2的是( )A. (-4b+a )(-4b-a );B. (4b-a )(-4b-a );C. (-4b+a )(4b-a );D. (4b+a )(4b-a )3、计算:(-2x 2) 3的结果是( )A. -2x 5;B. -8x 6;C. -2x 6;D. -8x 5; 4、若x 2+ax -24=(x +2)(x -12),则a 的值为( )A. ±10;B. -10;C. 14;D. -14; 5、下列式子中为完全平方式的是( )A. a 2+ab+b 2;B. a 2+2a+2;C. a 2-2b+b 2;;D. a 2+2a+1; 6、计算:0.042003×[(-52003)] 2得:( ) A. 1; B. -1; C.200315; D. -200315;7、已知(a m+1b n+2)(a 2n-1b 2m )=a 5b 6,则m+n 的值为( ) A. 1; B. 2; C. 3; D. 4;8、已知x-y =3,x-z =12,则(y-z ) 2+5(y-z )+254的值等于( )A. 254;B. 52; C. 52 ; D. 0;9、如图正方形边长为a ,以各边为直径在正方形内画半圆,则阴影部分的面积为( ) A.22142a a π-; B. 222a a π-; C. 224a a π-; D. 22a a π-;10、已知代数式3y 2-2y +6的值为8,那么代数式32y 2-y +1的值为( ) A. 1; B. 2; C. 3; D. 4; 二、填空题(24分)11、化简:6a 6·3a 3= .12、已知当x =1时,2ax 2+bx 的值是3,则当x =2时,ax 2+bx 的值是 。
湘教版七年级数学下册乘法公式练习作业
2.2 乘法公式一.选择题(共6小题)1.下列各式中,能用平方差公式计算的是()A.(p+q)(﹣p﹣q)B.(p﹣q)(q﹣p)C.(5x+3y)(3y﹣5x)D.(2a+3b)(3a﹣2b)2.计算(1﹣a)(a+1)的结果正确的是()A.a2﹣1 B.1﹣a2C.a2﹣2a﹣1 D.a2﹣2a+13.如果多项式y2﹣4my+4是完全平方式,那么m的值是()A.1 B.﹣1 C.±1D.±24.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是()(第4题图)A.a+b=12 B.a﹣b=2 C.ab=35 D.a2+b2=845.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0 B.1 C.2 D.36.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1 B.1 C.1或﹣1 D.1或﹣3二.填空题(共4小题)7.已知m2﹣n2=16,m+n=6,则m﹣n= .8.若m为正实数,且m﹣=3,则m2﹣= .9.请看杨辉三角(1),并观察下列等式(2):(第9题图)根据前面各式的规律,则(a+b)6= .10.已知a2+b2=4,则(a﹣b)2的最大值为.三.解答题(共30小题)11.(1)计算并观察下列各式:第1个:(a﹣b)(a+b)= ;第2个:(a﹣b)(a2+ab+b2)= ;第3个:(a﹣b)(a3+a2b+ab2+b3)= ;……这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)= ;(3)利用(2)的猜想计算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1= .(4)拓广与应用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1= .12.计算:(1)20132﹣2014×2012;(2)()2013×1.52012×(﹣1)2014;(3)(2+1)•(22+1)•(24+1)•(28+1)•(216+1)﹣232.13.(1)填空:(m+)(m﹣)= .(2)化简求值:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).14.化简:(1)5x+3x2﹣(2x﹣2x2﹣1);(2)x2(x﹣2y)(x+2y)﹣(x2+y)(x2﹣y).15.计算:(1)×(﹣2)2+(4﹣π)0×(﹣9)﹣1;(2)9992﹣1002×998.16.如图,图1为边长为a的大正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请用含a、b的代数式表示:S1= ,S2= (只需表示,不必化简);(2)以上结果可以验证哪个乘法公式?请写出这个乘法公式;(3)运动(2)中得到的公式,计算:20152﹣2016×2014.(第16题图)参考答案一.1.C 2.B 3.C 4.D 5.D 6.D二.7. 8. 9.a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6 10.8 三.11.解:(1)第1个:(a﹣b)(a+b)=a2﹣b2;第2个:(a﹣b)(a2+ab+b2)=a3﹣b3;第3个:(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;(2)若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)=a n﹣b n;(3)2n﹣1+2n﹣2+2n﹣3+……+23+22+1==(2﹣1)(2n﹣1+2n﹣2+2n﹣3+……+23+22+1)=2n﹣1n=2n﹣1;(4)3n﹣1+3n﹣2+3n﹣3+……+33+32+1=×(3﹣1)(3n﹣1+3n﹣2+3n﹣3+……+33+32+1)=×(3n﹣1n)=.12.解:(1)原式=20132﹣(2013+1)(2013﹣1)=20132﹣(20132﹣1)=20132﹣20132+1=1.(2)原式=×()2012×1.52012×(﹣1)2014=×(×)2012×1=×1×1=.(3)原式=(2﹣1)×(2+1)×(22+1)×(24+1)×(28+1)×(216+1)﹣232=(22﹣1)×(22+1)×(24+1)×(28+1)×(216+1)﹣232=(24﹣1)×(24+1)×(28+1)×(216+1)﹣232=(28﹣1)×(28+1)×(216+1)﹣232=(216﹣1)×(216+1)﹣232=232﹣1﹣232=﹣1.13.解:(1)原式=m2﹣(2)原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=×××…×=×=.14.解:(1)5x+3x2﹣(2x﹣2x2﹣1)=5x+3x2﹣2x+2x2+1=5x2+3x+1;(2)x2(x﹣2y)(x+2y)﹣(x2+y)(x2﹣y)=x2(x2﹣4y2)﹣(x4﹣y2)=x4﹣4x2y2﹣x4+y2=﹣4x2y2+y2.15.(1)解:原式=25×4+1×﹣()=100﹣=99;(2)原式=9992﹣(1000+2)(1000﹣2)=9992﹣10002+4=(999+1000)(999﹣1000)+4=﹣1999+4=﹣1995.16.解:(1)大正方形的面积为a2,小正方形的面积为b2,故图1阴影部分的面积值为a2﹣b2;长方形的长和宽分别为(a+b)、(a﹣b),故图2重拼的长方形的面积为(a+b)(a﹣b);(2)比较上面的结果,都表示同一阴影的面积,它们相等,即(a+b)(a﹣b)=a2﹣b2,可以验证平方差公式,这也是平方差公式的几何意义;(3)20152﹣2016×2014=20152﹣(2015+1)(2015﹣1)=20152﹣(20152﹣1)=20152﹣20152+1=1.。
初中数学 运用乘法公式进行计算经典习题及答案 (新版)湘教版
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:若a2+ab+b2+A=(a-b)2,则A式应为( )A.abB.-3abC.0D.-2ab试题2:计算(m-2n-1)(m+2n-1)的结果为( )A.m2-4n2-2m+1B.m2+4n2-2m+1C.m2-4n2-2m-1D.m2+4n2+2m-1试题3:计算(2a+3b)2(2a-3b)2的结果是( )A.4a2-9b2B.16a4-72a2b2+81b4C.(4a2-9b2)2D.4a4-12a2b2+9b4试题4:计算(-3x+2y-z)(3x+2y+z)= .试题5:矩形ABCD的周长为24,面积为32,则其四条边的平方和为.试题6:已知a-b=3,则a(a-2b)+b2的值为.试题7:求代数式(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=.试题8:计算:(x+1)(x+2)(x+3)(x+4).试题9:我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.试题1答案:B.因为(a-b)2=a2-2ab+b2,所以a2+ab+b2+A=a2-2ab+b2,所以A=-3ab.试题2答案:A.(m-2n-1)(m+2n-1)=[(m-1)-2n][(m-1)+2n]=(m-1)2-4n2=m2-2m+1-4n2=m2-4n2-2m+1.试题3答案:B.(2a+3b)2(2a-3b)2=[(2a+3b)(2a-3b)]2=(4a2-9b2)2=16a4-72a2b2+81b4.试题4答案:4y2-9x2-6xz-z2【解析】(-3x+2y-z)(3x+2y+z)=[2y-(3x+z)][2y+(3x+z)]=4y2-(3x+z)2=4y2-9x2-6xz-z2.试题5答案:160【解析】因为矩形ABCD的周长为24,面积为32,所以2AB+2BC=24,AB·BC=32,所以AB+BC=12.因为AB2+BC2+CD2+AD2=2AB2+2BC2,所以AB2+BC2+CD2+AD2=2[(AB+BC)2-2AB·BC]=2×(122-64)=160, 所以AB2+BC2+CD2+AD2=160.试题6答案:9【解析】a(a-2b)+b2=a2-2ab+b2=(a-b)2.当a-b=3时,原式=32=9.试题7答案:【解析】原式=a2-4b2+a2+4ab+4b2-4ab=2a2,当a=1,b=时,原式=2a2=2×12=2.试题8答案:【解析】原式=[(x+1)(x+4)][(x+2)(x+3)]=(x2+5x+4)(x2+5x+6)=[(x2+5x)+4][(x2+5x)+6]=(x2+5x)2+10(x2+5x)+24=x4+10x3+25x2+10x2+50x+24=x4+10x3+35x2+50x+24.试题9答案:【解析】(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5 =(2-1)5=1.。
湘教版七年级下册数学 第2章 运用乘法公式进行计算
13.计算: (1)(x-y+z)2;
解:(x-y+z)2 =[(x-y)+z]2 =(x-y)2+2(x-y)z+z2 =x2+y2-2xy+2xz-2yz+z2.
(2)(a+2b-c)(a-2b-c);
解:(a+2b-c)(a-2b-c) =[(a-c)+2b] [(a-c)-2b] =(a-c)2-(2b)2 =a2+c2-2ac-4b2.
16.已知a2+2ab+b2=0,求代数式a(a+4b)-(a+2b)(a -2b)的值.
解:a(a+4b)-(a+2b)(a-2b) =(a2+4ab)-(a2-4b2) =a2+4ab-a2+4b2 =4ab+4b2.
因为a2+2ab+b2=0, 所以(a+b)2=0, 所以a+b=0. 所以原式=4ab+4b2=4b(a+b)=0.
【点拨】若用通分法分别算出各因式的值后再相乘, 则极为烦琐复杂,若注意到各因式均为平方差形式而 逆用平方差公式求解,则会很简便.
解:原式=1-12×1+12×1-13×1+13× …×1-110×1+110 =12×32×23×43×…×190×1101=12×1101 =2101.
18.已知x2-y2=34,x-y=2,求3y-x的值.
8.若(2a-3b)2+N=4a2+ab+9b2,则N为( D ) A.5ab B.11ab C.-11ab D.13ab
9.若a-b=1,ab=2,则(a+b)2的值为( B ) A.-9B.9C.±9D.3
10.如果a2-2ab=-10,b2-2ab=16,那么-a2+4ab
-b2的值是( ) B
XJ版七年级下
第2章整式的乘法
2.2.3 运用乘法公式进行计算
提示:点击 进入习题
1D
(新课标)湘教版七年级数学下册《公式法》同步练习题及答案解析
新课标 2017-2018学年湘教版七年级数学下册3.3 公式法第1课时用平方差公式因式分解要点感知1 把乘法公式从右到左地使用,可以把某些形式的多项式进行__________,这种__________的方法叫做公式法.要点感知2 平方差公式:a2-b2=__________.适用平方差公式因式分解的多项式特点:①必须是__________式;②两项符号__________;③能写成__________的形式.预习练习2-1 若x2-9=(x-3)(x+a),则a=__________.2-2 因式分解结果为-(2a+b)(2a-b)的多项式是( )A.4a2-b2B.4a2+b2C.-4a2+b2D.-4a2-b2知识点1 用平方差公式因式分解1.下列多项式中,不能用平方差公式因式分解的是( )A.x2-y2B.-x2-y2C.4x2-y2D.-4+y22.因式分解x2-16的结果为( )A.(x+8)(x-2)B.(x+4)(x-4)C.(x+2)(x-8)D.(x+1)(x-16)3.下列多项式中,与-x-y相乘的结果是x2-y2的多项式是( )A.y-xB.x-yC.x+yD.-x-y4.下列因式分解正确的是( )A.(x-3)2-y2=x2-6x+9-y2B.a2-9b2=(a+9b)(a-9b)C.4x6-1=(2x3+1)(2x3-1)D.-x2-y2=(x-y)(x+y)5.因式分解:(1) a2-1;(2)x2-81;(3) x2-9y2;(4)(a-2b)2-25b2.知识点2 两步因式分解6.若16-x n=(2+x)(2-x)(4+x2),则n的值为( )A.2B.3C.4D.67.因式分解a3-a的结果是( )A.a(a2-1)B.a(a-1)2C.a(a+1)(a-1)D.(a2+a)(a-1)8.(2014·中山)把x3-9x因式分解,结果正确的是( )A.x(x2-9)B.x(x-3)2C.x(x+3)2D.x(x+3)(x-3)9.因式分解:a3-4ab2=__________.10.因式分解:(1)3x2-3y2;(2)(x+p)2-(x+q)2;(3) xy2-4x;(4) 2x4-2.11.在下列各式中,①-m2-n2;②16x2-9y2;③(-a)2-(-b)2;④-121m2+225n2;⑤(6x)2-9(2y)2.可用平方差公式因式分解的有( )A.5个B.4个C.3个D.2个12.已知多项式4x2-(y-z)2的一个因式为2x-y+z,则另一个因式是( )A.2x-y-zB.2x-y+zC.2x+y+zD.2x+y-z13.因式分解:(1)(2014·怀化)2x2-8=__________;(2)(2013·绵阳)x2y4-x4y2=__________;(3)4-(3-x)2=__________;(4)16(a+b)2-9(a-b)2=__________.14.已知a+b=4,a-b=3,则a2-b2=__________.15.写出一个在有理数范围内能用平方差公式因式分解的多项式:____________________.16.因式分解:(1)9a2-4b2;(2)x4-16y4;(3)(a-b)(3a+b)2+(a+3b)2(b-a);(4)-(x2-y2)(x+y)-(y-x)3.17.用平方差公式进行简便计算:(1)4012-5992;(2)152-4×2.52.18.试说明:两个连续奇数的平方差是8的倍数.19.已知x,y为正整数,且4x2-9y2=31,你能求出x,y的值吗?20.如果在一个半径为a 的圆内,挖去一个半径为b(b<a)的圆.(1)写出剩余部分面积的代数表达式,并因式分解它;(2)当a=15.5 cm ,b=5.5 cm ,π取3时,求剩下部分面积.21.计算:(1-212)(1-213)(1-214)…(1-212014)(1-212015).参考答案要点感知1 因式分解因式分解要点感知2 (a+b)(a-b) 二项相反平方差预习练习2-1 32-2 C1.B2.B3.A4.C5.(1)原式=(a+1)(a-1).(2)原式=x2-92=(x-9)(x+9).(3)原式=(x+3y)(x-3y).(4)原式=(a-2b+5b)(a-2b-5b)=(a+3b)(a-7b).6.C7.C8.D9.a(a+2b)(a-2b)10.(1)原式=3(x2-y2)=3(x+y)(x-y).(2)原式=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).(3)原式=x(y2-4)=x(y+2)(y-2).(4)原式=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1). 11.B 12.D13.(1)2(x+2)(x-2)(2)-x2y2(x+y)(x-y)(3)(5-x)(x-1)(4)(7a+b)(a+7b)14.1215.答案不唯一,如:x 2-116.(1)原式=(3a+2b)(3a-2b).(2)原式=(x 2+4y 2)(x 2-4y 2)=(x 2+4y 2)(x+2y)(x-2y).(3)原式=(a-b)[(3a+b)2-(a+3b)2]=(a-b)[(3a+b)+(a+3b)][(3a+b)-(a+3b)]=8(a+b)(a-b)2.(4)原式=(x-y)3-(x 2-y 2)(x+y)=(x-y)3-(x+y)2(x-y)=(x-y)[(x-y)2-(x+y)2]=-4xy(x-y).17.(1)原式=(401+599)×(401-599)=-198 000.(2)原式=152-52=(15+5)×(15-5)=200.18.设两个连续奇数为2n-1,2n+1(n 为正整数).则(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n,所以两个连续奇数的平方差是8的倍数.19.等式左边因式分解,得(2x-3y)(2x+3y),右边的31是一个质数,只可分解为1×31.因为x,y 为正整数,所以231,2331.x y x y -=+=⎧⎨⎩解得8,5.x y ==⎧⎨⎩ 20.(1)πa 2-πb 2.原式=π(a 2-b 2)=π(a+b)(a-b).(2)当a=15.5 cm,b=5.5 cm,π取3时,原式=3×(15.5+5.5)×(15.5-5.5)=3×21×10=630(cm2).21.原式=(1+12)(1-12)(1+13)(1-13)(1+14)(1-14)…(1+12014)(1-12014)(1+12015)(1-12015)=32×12×43×23×54×34 (2015)2014×20132014×20162015×20142015=12×32×23×43×34×54 (2013)2014×20152014×20142015×20162015=12×20162015=10082015.第2课时用完全平方公式因式分解要点感知1 完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.适合用完全平方公式因式分解的多项式的特点:①必须是__________;②两个平方项的符号__________;③第三项是两平方项的__________.预习练习1-1 下列式子中,完全平方式有__________.(填序号)①x2+4x+4;②1+16a2;③x2+2x-1;④x2+xy+y2;⑤m2+n2+2mn.1-2 因式分解:x2+6x+9=__________.要点感知2 因式分解的一般步骤:首先__________,然后再用__________进行因式分解.在因式分解时,必须进行到每一个因式都不能分解为止.预习练习2-1 因式分解:3a2+6a+3=__________.2-2 因式分解:x2y-4xy+4y.知识点1 用完全平方公式因式分解1.下列各式能用完全平方公式进行因式分解的是( )A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+92.因式分解(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2)B.x2C.(x+1)2D.(x-2)23.因式分解:(1) x2+2x+1=__________;(2) x2-4(x-1)=__________.4.利用1个a×a的正方形,1个b×b的正方形和2个a×b的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____________________.5.因式分解:(1)-x2+4xy-4y2;(2)4a4-12a2y+9y2;(3)(a+b)2-14(a+b)+49.知识点2 综合运用提公因式法和公式法因式分解6.把x2y-2y2x+y3因式分解正确的是( )A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)27.把a3-2a2+a因式分解的结果是( )A.a2(a-2)+aB.a(a2-2a)C.a(a+1)(a-1)D.a(a-1)28.将多项式m2n-2mn+n因式分解的结果是__________.9.把下列各式因式分解:(1)2a3-4a2b+2ab2;(2)5x m+1-10x m+5x m-1;(3)(2x-5)2+6(2x-5)+9;(4)16x4-8x2y2+y4;(5)(a2+ab+b2)2-9a2b2.10.下列多项式能因式分解的是( )A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y211.(2013·西双版纳)因式分解x3-2x2+x正确的是( )A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)212.下列各式:①x2-2xy-y2;②x2-xy+2y2;③x2+2xy+y2;④x2-2xy+y2,其中能用公式法因式分解的有( )A.1个B.2个C.3个D.4个13.因式分解:4a3-12a2+9a=__________.14.多项式ax2-a与多项式x2-2x+1的公因式是__________.15.因式分解:16-8(x-y)+(x-y)2=__________.16.若m=2n+1,则m2-4mn+4n2的值是__________.17.把下列各式因式分解:(1)16-8xy+x2y2;(2)9(a-b)2+12(a2-b2)+4(a+b)2;(3)(2a+b)2-8ab; (4)3a(x2+4)2-48ax2.18.利用因式分解计算:(1)12×3.72-3.7×2.7+12×2.72;(2)1982-396×202+2022.19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.若|m+4|与n2-2n+1互为相反数,把多项式x2+4y2-mxy-n因式分解.21.当a,b为何值时,多项式4a2+b2+4a-6b-8有最小值,并求出这个最小值.参考答案要点感知1 三项式相同底数的积的2倍预习练习1-1 ①⑤1-2 (x+3)2要点感知2 提取公因式公式法预习练习2-1 3(a+1)22-2 原式=y(x2-4x+4)=y(x-2)2.1.D2.D3.(1)(x+1)2(2)(x-2)24.a2+2ab+b2=(a+b)25.(1)原式=-(x2-4xy+4y2)=-(x-2y)2.(2)原式=(2a2-3y)2.(3)原式=(a+b-7)2.6.C7.D8.n(m-1)29.(1)原式=2a(a2-2ab+b2)=2a(a-b)2.(2)原式=5x m-1(x2-2x+1)=5x m-1(x-1)2.(3)原式=[(2x-5)+3]2=(2x-2)2=4(x-1)2.(4)原式=(4x2-y2)2=(2x+y)2(2x-y)2.(5)原式=(a2+ab+b2+3ab)(a2+ab+b2-3ab)=(a2+4ab+b2)(a-b)2.10.C 11.B 12.B 13.a(2a-3)214.x-1 15.(x-y-4)216.1 17.(1)原式=(4-xy)2.(2)原式=[3(a-b)+2(a+b)]2=(5a-b)2.(3)原式=4a2+4ab+b2-8ab=4a2-4ab+b2=(2a-b)2.(4)原式=3a[(x2+4)2-16x2]=3a(x+2)2(x-2)2.18.(1)原式=12×(3.7-2.7)2=12.(2)原式=(198-202)2=16.19.(x2+2xy)+x2=2x2+2xy=2x(x+y);或(y2+2xy)+x2=(x+y)2;或(x 2+2xy)-(y 2+2xy)=x 2-y 2=(x+y)(x-y);或(y 2+2xy)-(x 2+2xy)=y 2-x 2=(y+x)(y-x).20.由题意可得|m+4|+(n-1)2=0,所以40,10.m n +=-=⎧⎨⎩解得4,1.m n =-=⎧⎨⎩所以,原式=x 2+4y 2+4xy-1=(x+2y )2-1=(x+2y+1)(x+2y-1). 21.4a 2+b 2+4a-6b-8=(4a 2+4a+1)+(b 2-6b+9)-18=(2a+1)2+(b-3)2-18, 当2a+1=0,b-3=0时,原多项式有最小值.这时a=-12,b=3,这个最小值是-18.。
湘教版七年级下册数学第2章2.2.3运用乘法公式进行计算习题课件1
能力提升练
12.解方程:2x(x-1)-(x-4)(x+4)=(x+2)2. 解:2x(x-1)-(x-4)(x+4)=2x2-2x-x2+16= x2-2x+16.(x+2)2=x2+4x+4. 故原方程可化为6x=12. 解得x=2.
能力提升练
13.【教材改编题】如果一个正方形的边长增加4厘米,那 么它的面积就增加40平方厘米,这个正方形的边长是 多少? 解:设这个正方形的边长是x厘米, 由题意,得(x+4)2-x2=40, 解得x=3. 答:这个正方形的边长是3厘米.
+312n)+1
能力提升练
=-1-3111+3111+3121+3141+3181+3116… 1+312n+1=-1-321n+1+1=-1+321n+1+1 =321n+1.
【答案】D
能力提升练
11.若x+1x2=9,则x-1x2的值为___5_____. 【点拨】因为x+1x2=x-1x2+4,x+1x2=9, 所以x-1x2=9-4=5.
基础巩固练
(5)【2021·武汉洪山区校级月考】(a-2b-1)(a+2b-1) -(a-2b+1)2.
原式=[(a-1)-2b][(a-1)+2b]-[(a-2b)+1]2 =(a-1)2-(2b)2-(a-2b)2-2(a-2b)-1 =a2-2a+1-4b2-a2+4ab-4b2-2a+4b-1 =-4a-8b2+4ab+4b.
能力提升练
10.【2021·福州仓山区期末】若 …1+312n+1,则 A 的值是(
)
A.0
B.1
1 C.322n
1 D.32n+1
【点拨】A=-23(1+311)(1+312)(1+314)(1+318)(1+3116)…(1
能力提升练
湘教版数学七年级下册_《运用乘法公式进行计算》提高训练
《运用乘法公式进行计算》提高训练一、选择题1.某公园要将一块长方形草地进行改造,其中长增加10%,宽减少10%,则这块草地的面积将()A.增加1%B.减少1%C.减少9%D.不发生改变2.计算﹣4a4÷2a2的结果是()A.﹣2a2B.2a2C.2a3D.﹣2a33.若a=时,则(28a3﹣28a2+7a)÷7a的值是()A.﹣4B.0.25C.﹣2.25D.6.254.下列计算正确的是()A.x2+2x2=3x4B.x2y•2x3=2x6yC.(﹣3x)2=9x2D.(6x3y2)÷(﹣2x)=﹣3x25.已知x3+(a﹣1)x﹣6能被x﹣2整除,则a的值为()A.1B.﹣1C.0D.2二、填空题6.计算:5ab2÷(﹣5b)2=.7.计算:(x3﹣2x)÷(x)=.8.如果3a2+4a﹣1=0,那么(2a+1)2﹣(a﹣2)(a+2)的结果是.9.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=.10.观察下列式:(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1;(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1.①(x7﹣1)÷(x﹣1)=;②根据①的结果,则1+2+22+23+24+25+26+27=.三、解答题11.(1)计算:3a2•(﹣2a)2÷(﹣6a3)(2)化简:(a+2)(a﹣2)﹣(a﹣2)212.(1)运用完全平方公式计算:992(2)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=.13.先化简,再求值:求5(3x2y﹣xy2﹣1)﹣(xy2+3x2y﹣5)的值,其中x=﹣,y=.14.求证:代数式(2x+3)(3x+2)﹣6x(x+3)+5x+16的值与x无关.15.(1)已知实数a、b满足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.(2)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.《运用乘法公式进行计算》提高训练参考答案与试题解析一、选择题1.某公园要将一块长方形草地进行改造,其中长增加10%,宽减少10%,则这块草地的面积将()A.增加1%B.减少1%C.减少9%D.不发生改变【分析】公园长方形草地的长为x,宽为y,则公园为改造前的面积为x•y,然后算出改造后的长方形草地的面积.从而得出答案.【解答】解:设长方形的长为x,宽为y,则改造后长方形的长为(1+10%)x=1.1x,宽为(1﹣10%)y=0.9y,所以改造后的面积为:1.1x×0.9y=0.99xy,可知这块长方形草地的面积减少了1%.故选:B.【点评】本题考查了整式的运算,关键是表示改造后面积的表达式,和改造前进行比较.2.计算﹣4a4÷2a2的结果是()A.﹣2a2B.2a2C.2a3D.﹣2a3【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:﹣4a4÷2a2=﹣2a2.故选:A.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.3.若a=时,则(28a3﹣28a2+7a)÷7a的值是()A.﹣4B.0.25C.﹣2.25D.6.25【分析】直接利用整式的除法运算法则化简,进而求出答案.【解答】解:(28a3﹣28a2+7a)÷7a=4a2﹣4a+1=(2a﹣1)2,把a=代入得:原式=.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.下列计算正确的是()A.x2+2x2=3x4B.x2y•2x3=2x6yC.(﹣3x)2=9x2D.(6x3y2)÷(﹣2x)=﹣3x2【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵x2+2x2=3x2,故选项A错误,∵x2y•2x3=2x5y,故选项B错误,∵(﹣3x)2=9x2,故选项C正确,∵(6x3y2)÷(﹣2x)=﹣3x2y2,故选项D错误,故选:C.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.5.已知x3+(a﹣1)x﹣6能被x﹣2整除,则a的值为()A.1B.﹣1C.0D.2【分析】设x3+(a﹣1)x﹣6被x﹣2整除所得的商式为x2+mx+n,计算出(x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣2n,根据x3+(m﹣2)x2+(n﹣2m)x﹣2n=x3+(a﹣1)x﹣6得,据此解之可得.【解答】解:设x3+(a﹣1)x﹣6被x﹣2整除所得的商式为x2+mx+n,(x﹣2)(x2+mx+n)=x3+mx2+nx﹣2x2﹣2mx﹣2n=x3+(m﹣2)x2+(n﹣2m)x﹣2n,则x3+(m﹣2)x2+(n﹣2m)x﹣2n=x3+(a﹣1)x﹣6,∴,解得:,故选:C.【点评】本题主要考查整式的除法,解题的关键是掌握整式的除法和多项式乘多项式的运算法则.二、填空题6.计算:5ab2÷(﹣5b)2=.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:5ab2÷(﹣5b)2=5ab2÷25b2=.故答案为:.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.7.计算:(x3﹣2x)÷(x)=2x2﹣4.【分析】根据多项式除以单项式的法则计算可得.【解答】解:原式=2x2﹣4x,故答案为:2x2﹣4x.【点评】本题主要考查整式的除法,解题的关键是掌握多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.8.如果3a2+4a﹣1=0,那么(2a+1)2﹣(a﹣2)(a+2)的结果是6.【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而根据3a2+4a﹣1=0,即3a2+4a=1,代入可得答案.【解答】解:原式=4a2+4a+1﹣(a2﹣4)=4a2+4a+1﹣a2+4=3a2+4a+5,∵3a2+4a﹣1=0,∴3a2+4a=1,则原式=1+5=6,故答案为:6.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是掌握整式的混合运算顺序和运算法则及完全平方公式、平方差公式.9.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=﹣2x+5.【分析】原式利用题中的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:(x﹣1)△(2+x)=(x﹣1)2﹣(x﹣1)(2+x)+2+x=x2﹣2x+1﹣x2﹣x+2+2+x=﹣2x+5,故答案为:﹣2x+5【点评】此题考查了整式的混合运算,新定义的理解和运用,理解新定义是解本题的关键.10.观察下列式:(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1;(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1.①(x7﹣1)÷(x﹣1)=x6+x5+x4+x3+x2+x+1;②根据①的结果,则1+2+22+23+24+25+26+27=28﹣1.【分析】①根据上面的规律直接得出(x7﹣1)÷(x﹣1)=x6+x5+x4+x3+x2+x+1即可;②根据(28﹣1)÷(2﹣1)=27+26+25+24+23+22+2+1,直接得出答案即可.【解答】解:(1)由已知得(x7﹣1)÷(x﹣1)=x6+x5+x4+x3+x2+x+1,故答案为x6+x5+x4+x3+x2+1;(2)∵(28﹣1)÷(2﹣1)=27+26+25+24+23+22+2+1,∴28﹣1=27+26+25+24+23+22+2+1,故答案为28﹣1.【点评】本题考查了整式的除法,有理数的乘方,掌握规律是解题的关键.三、解答题11.(1)计算:3a2•(﹣2a)2÷(﹣6a3)(2)化简:(a+2)(a﹣2)﹣(a﹣2)2【分析】(1)先计算乘方,再计算乘法,最后计算除法即可得;(2)先根据平方差公式和完全平方公式,然后去括号,合并同类项即可得.【解答】解:(1)原式=3a2•(4a2)÷(﹣6a3)=12a4÷(﹣6a3)=﹣2a;(2)原式=a2﹣4﹣(a2﹣4a+4)=a2﹣4﹣a2+4a﹣4=4a﹣8.【点评】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.12.(1)运用完全平方公式计算:992(2)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=.【分析】(1)原式变形为(100﹣1)2,再利用完全平方公式计算可得;(2)先利用完全平方公式和平方差公式展开,再去括号、合并同类项化简原式,继而将x,y的值代入计算可得.【解答】解:(1)原式=(100﹣1)2=1002﹣2×100×1+12=10000﹣200+1=9801;(2)原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=,y=时,原式=12××+10×()2=2+10×=2+=.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则及完全平方公式与平方差公式.13.先化简,再求值:求5(3x2y﹣xy2﹣1)﹣(xy2+3x2y﹣5)的值,其中x=﹣,y=.【分析】根据单项式乘多项式和合并同类项可以对题目中的式子化简,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:5(3x2y﹣xy2﹣1)﹣(xy2+3x2y﹣5)=15x2y﹣5xy2﹣5﹣xy2﹣3x2y+5=12x2y﹣6xy2,当x=﹣,y=时,原式=12×(﹣)2×﹣6×(﹣)×()2=1+=.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.14.求证:代数式(2x+3)(3x+2)﹣6x(x+3)+5x+16的值与x无关.【分析】原式利用多项式乘以多项式,单项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.【解答】证明:∵(2x+3)(3x+2)﹣6x(x+3)+5x+16=6x2+4x+9x+6﹣6x2﹣18x+5x+16=22,∴代数式(2x+3)(3x+2)﹣6x(x+3)+5x+16的值与x无关.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.15.(1)已知实数a、b满足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.(2)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【分析】(1)直接利用完全平方公式化简进而得出答案;(2)直接去括号合并同类项,再把已知代入求出答案.【解答】解:(1)∵(a+b)2=3,(a﹣b)2=27,∴a2+2ab+b2=3①,a2﹣2ab+b2=27②,∴①+②得:2a2+2b2=30,∴a2+b2=15;(2)3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣98.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.。
湘教版数学七年级下册_《运用乘法公式进行计算》拓展训练
《运用乘法公式进行计算》拓展训练一、选择题1.下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b22.下列计算中正确的个数有()①3a+2b=5ab;②4m3n﹣5mn3=﹣m3n;③3x3•(﹣2x2)=﹣6x5;④4a3b÷(﹣2a2b)=﹣2a;⑤(a3)2=a5;⑥(﹣a)3÷(﹣a)=﹣a2A.1个B.2个C.3个D.4个3.计算:(4x3﹣2x)÷(﹣2x)的结果是()A.2x2﹣1B.﹣2x2﹣1C.﹣2x2+1D.﹣2x2 4.下列各式中,相等关系一定成立的是()A.(x+6)(x﹣6)=x2﹣6B.(x+y)2=x2+y2C.6(x﹣2)+x(2﹣x)=(x﹣2)(x﹣6)D.(x﹣y)2=(y﹣x)25.已知被除式是x3+2x2﹣1,商式是x,余式是﹣1,则除式是()A.x2+3x﹣1B.x2+2x C.x2﹣1D.x2﹣3x+1 6.若a=1.6×109,b=4×103,则a÷b等于()A.4×105B.4×106C.6.4×106D.6.4×1012 7.任意给一个非零数,按下列程序进行计算,则输出结果为()A.0B.1C.m D.m2 8.(﹣15a3b2+8a2b)÷()=5a2b﹣a,括号内应填()A.3ab B.﹣3ab C.3a2b D.﹣3a2b9.计算[(a+b)2﹣(a﹣b)2]÷(4ab)的结果()A.2ab B.1C.a﹣b D.a+b10.若规定m⊕n=mn(m﹣n),则(a+b)⊕(a﹣b)的值()A.2ab2﹣2b2B.2a2b﹣2b3C.2a2b+2b2D.2ab﹣2ab2二、填空题11.若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为.12.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.13.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为.14.对于正数a,b,现用“☆”定义一种运算:a☆b=a2﹣b2,根据这个定义,有下列结论:①a☆b=a☆(﹣b);②b☆a=﹣(a☆b);③若a=b,则a☆b=b☆a;④若a=﹣b,则a☆b=a2+b2,其中正确结论的序号是(把所有正确结论的序号都填在横线上)15.叫做二阶行列式,它的算法是:ad﹣bc,请计算=.三、解答题16.先化简,再求值:2(a﹣3)(a+2)﹣(3+a)(3﹣a)﹣3(a﹣1)2,其中a=﹣217.已知(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项.(1)分别求m,n的值;(2)先化简再求值:2n2+(2m+n)(m﹣n)﹣(m﹣n)218.计算:(1)(﹣2x3y)2•(﹣2xy)+(﹣2x3y)3÷2x2(2)20202﹣2019×2021(3)(﹣2a+b+1)(2a+b﹣1)19.对于任何数,我们规定:=ad﹣bc.例如:=1×4﹣2×3=﹣2.(1)按照这个规定,请你化简;(2)按照这个规定,请你计算,当a=﹣1时,的值.20.(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.《运用乘法公式进行计算》拓展训练参考答案与试题解析一、选择题1.下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b2【分析】根据合并同类项法则、单项式乘以单项式、完全平方公式、幂的乘方和积的乘方分别求出每个式子的值,再进行判断即可.【解答】解:A、结果是2a2,故本选项不符合题意;B、结果是2a5,故本选项不符合题意;C、结果是a2+2a+1,故本选项不符合题意;D、结果是4a2b2,故本选项符合题意;故选:D.【点评】本题考查了合并同类项法则、单项式乘以单项式、完全平方公式、幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.2.下列计算中正确的个数有()①3a+2b=5ab;②4m3n﹣5mn3=﹣m3n;③3x3•(﹣2x2)=﹣6x5;④4a3b÷(﹣2a2b)=﹣2a;⑤(a3)2=a5;⑥(﹣a)3÷(﹣a)=﹣a2A.1个B.2个C.3个D.4个【分析】根据各个小题中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵3a+2b不能合并,故①错误,∵4m3n﹣5mn3不能合并,故②错误,∵3x3•(﹣2x2)=﹣6x5,故③正确,∵4a3b÷(﹣2a2b)=﹣2a,故④正确,∵(a3)2=a6,故⑤错误,∵(﹣a)3÷(﹣a)=a2,故⑥错误,故选:B.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.3.计算:(4x3﹣2x)÷(﹣2x)的结果是()A.2x2﹣1B.﹣2x2﹣1C.﹣2x2+1D.﹣2x2【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选:C.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.下列各式中,相等关系一定成立的是()A.(x+6)(x﹣6)=x2﹣6B.(x+y)2=x2+y2C.6(x﹣2)+x(2﹣x)=(x﹣2)(x﹣6)D.(x﹣y)2=(y﹣x)2【分析】根据平方差公式、完全平方公式、多项式乘以单项式分别求出每个式子的值,再判断即可.【解答】解:A、(x+6)(x﹣6)=x2﹣36,故本选项不符合题意;B、(x+y)2=x2+2xy+y2,故本选项不符合题意;C、6(x﹣2)+x(2﹣x)=﹣x2+8x﹣12,(x﹣2)(x﹣6)=x2﹣8x+12,两个不相等,故本选项不符合题意;D、(x﹣y)2=[﹣(y﹣x)]2=(y﹣x)2,故本选项,符合题意;故选:D.【点评】本题考查了平方差公式、完全平方公式、多项式乘以单项式等知识点,能正确求出每个式子的值是解此题的关键.5.已知被除式是x3+2x2﹣1,商式是x,余式是﹣1,则除式是()A.x2+3x﹣1B.x2+2x C.x2﹣1D.x2﹣3x+1【分析】根据除式=进行计算即可.【解答】解:∵被除式是x3+2x2﹣1,商式是x,余式是﹣1,∴除式==x2+2x.故选:B.【点评】本题考查的是整式的混合运算,熟知除式=是解答此题的关键.6.若a=1.6×109,b=4×103,则a÷b等于()A.4×105B.4×106C.6.4×106D.6.4×1012【分析】将a与b的值代入按照整式的除法计算即可求出值.【解答】解:∵a=1.6×109,b=4×103,∴a÷2b=(1.6×109)÷(4×103)=0.4×106=4×105.故选:A.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.7.任意给一个非零数,按下列程序进行计算,则输出结果为()A.0B.1C.m D.m2【分析】按照规定的运算顺序与计算方法列出代数式(m2+m)÷m﹣1,计算即可得出结果.【解答】解:根据题意得:(m2+m)÷m﹣1=m+1﹣1=m,故选:C.【点评】此题考查了整式的混合运算,弄清题中的计算程序是解本题的关键.8.(﹣15a3b2+8a2b)÷()=5a2b﹣a,括号内应填()A.3ab B.﹣3ab C.3a2b D.﹣3a2b【分析】根据除式=被除式÷商,即可解决问题.【解答】解:由题意:(﹣15a3b2+8a2b)÷(5a2b﹣a)=﹣3ab故选:B.【点评】本题考查整式的除法,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.计算[(a+b)2﹣(a﹣b)2]÷(4ab)的结果()A.2ab B.1C.a﹣b D.a+b【分析】直接利用完全平方公式化简进而利用整式除法运算法则求出答案.【解答】解:[(a+b)2﹣(a﹣b)2]÷(4ab)=(a2+b2+2ab﹣a2﹣b2+2ab)÷4ab=4ab÷4ab=1.故选:B.【点评】此题主要考查了整式除法运算以及完全平方公式,正确化简完全平方公式是解题关键.10.若规定m⊕n=mn(m﹣n),则(a+b)⊕(a﹣b)的值()A.2ab2﹣2b2B.2a2b﹣2b3C.2a2b+2b2D.2ab﹣2ab2【分析】原式利用题中的新定义变形,再利用平方差公式及单项式乘以多项式法则计算即可得到结果.【解答】解:根据题中的新定义得:(a+b)⊕(a﹣b)=(a+b)(a﹣b)(a+b﹣a+b)=2b(a2﹣b2)=2a2b﹣2b3.故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题11.若规定符号的意义是:=ad﹣bc,则当m2﹣2m﹣3=0时,的值为9.【分析】结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解即可.【解答】解:由题意可得,=m2(m﹣2)﹣(m﹣3)(1﹣2m)=m3﹣7m+3,∵m2﹣2m﹣3=0,解得:x1=﹣1,x2=3,将x1=﹣1,x2=3代入m2﹣2m﹣3=0,等式两边成立,故x1=﹣1,x2=3都是方程的解,当x=﹣1时,m3﹣7m+3=﹣1+7+3=9,当x=3时,m3﹣7m+3=27﹣21+3=9.所以当m2﹣2m﹣3=0时,的值为9.故答案为:9.【点评】本题考查了整式的混合运算﹣化简求值,解答本题的关键在于结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解.12.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10.【分析】直接利用完全平方公式将原式变形,进而求出答案.【解答】解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.【点评】此题主要考查了整式的混合运算,正确运用完全平方公式是解题关键.13.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为0.【分析】原式利用多项式乘以多项式法则计算,整理后把a+b与ab的值代入计算即可求出值.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=1,ab=﹣2时,原式=1﹣2+1=0,故答案为:0【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.14.对于正数a,b,现用“☆”定义一种运算:a☆b=a2﹣b2,根据这个定义,有下列结论:①a☆b=a☆(﹣b);②b☆a=﹣(a☆b);③若a=b,则a☆b=b☆a;④若a=﹣b,则a☆b=a2+b2,其中正确结论的序号是①②③(把所有正确结论的序号都填在横线上)【分析】根据规定的运算法则分别计算四个结论中左右两边的结果,看是否相等即可判断.【解答】解:①∵a☆b=a2﹣b2,a☆(﹣b)=a2﹣(﹣b)2=a2﹣b2,∴a☆b=a☆(﹣b),此结论正确;②∵b☆a=b2﹣a2,﹣(a☆b)=﹣(a2﹣b2)=b2﹣a2,∴b☆a=﹣(a☆b),此结论正确;③若a=b,则a☆b=a2﹣b2=0,b☆a=b2﹣a2=0,∴a☆b=b☆a,此结论正确;④若a=﹣b,则a☆b=(﹣b)2﹣b2=0,a2+b2=(﹣b)2+b2=b2+b2=2b2,此结论不正确;故答案为:①②③.【点评】本题主要考查整式的混合运算,解题的关键是理解新定义,并熟练掌握新定义规定的运算法则及其运用.15.叫做二阶行列式,它的算法是:ad﹣bc,请计算=2a﹣7.【分析】根据二阶行列式的计算法则列出算式,再利用整式的混合运算顺序和运算法则化简即可得.【解答】解:原式=(a+1)(a﹣3)﹣(a﹣2)2=a2﹣3a+a﹣3﹣(a2﹣4a+4)=a2﹣3a+a﹣3﹣a2+4a﹣4=2a﹣7,故答案为:2a﹣7.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则及二阶行列式的计算法则.三、解答题16.先化简,再求值:2(a﹣3)(a+2)﹣(3+a)(3﹣a)﹣3(a﹣1)2,其中a=﹣2【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:2(a﹣3)(a+2)﹣(3+a)(3﹣a)﹣3(a﹣1)2=2a2+4a﹣6a﹣12﹣9+a2﹣3a2+6a﹣3=4a﹣24,当a=﹣2时,原式=﹣8﹣24=﹣32.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.17.已知(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项.(1)分别求m,n的值;(2)先化简再求值:2n2+(2m+n)(m﹣n)﹣(m﹣n)2【分析】(1)先根据多项式乘以多项式法则展开,再合并同类项,最后求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.【解答】解:(1)(x2+mx+1)(x2﹣2x+n)=x4﹣2x3+nx2+mx3﹣2mx2+mnx+x2﹣2x+n=x4+(﹣2+m)x3+(n﹣2m+1)x2+(mn﹣2)x+n,∵(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项,∴﹣2+m=0,n﹣2m+1=0,解得:m=2,n=3;(2)2n2+(2m+n)(m﹣n)﹣(m﹣n)2=2n2+2m2﹣2mn+mn﹣n2﹣m2+2mn﹣n2=m2+mn,当m=2,n=3时,原式=4+6=10.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.计算:(1)(﹣2x3y)2•(﹣2xy)+(﹣2x3y)3÷2x2(2)20202﹣2019×2021(3)(﹣2a+b+1)(2a+b﹣1)【分析】(1)先算乘方,再算乘法,最后算加减即可;(2)先变形,再根据平方差公式求出即可;(3)先根据平方差公式进行计算,再根据完全平方公式求出即可.【解答】解:(1)原式=4x6y2•(﹣2xy)+(﹣8x9y3)÷2x2=﹣8x7y3+(﹣4x7y3)=﹣12x7y3;(2)20202﹣2019×2021=20202﹣(2020﹣1)×(2020+1)=20202﹣20202+1=1;(3)(﹣2a+b+1)(2a+b﹣1)=[b﹣(2a﹣1)][b+(2a﹣1)]=b2﹣(2a﹣1)2=b2﹣4a2+4a﹣1.【点评】本题考查了整式的混合式运算,能正确根据运算法则进行化简是解此题的关键.19.对于任何数,我们规定:=ad﹣bc.例如:=1×4﹣2×3=﹣2.(1)按照这个规定,请你化简;(2)按照这个规定,请你计算,当a=﹣1时,的值.【分析】(1)原式利用题中的新定义化简即可求出值;(2)原式利用题中的新定义化简,将a的值代入计算即可求出值.【解答】解:(1)根据题中的新定义得:原式=﹣5xy﹣4xy=﹣9xy;(2)根据题中的新定义得:原式=a2﹣1﹣3a2+6a=﹣2a2+6a﹣1,当a=﹣1时,原式=﹣2﹣6﹣1=﹣9.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(1)求x的值:2x•43﹣x•81+x=32;(2)已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.【分析】(1)将原式左右两边利用幂的乘方与同底数幂的乘法都变形为以2为底数的幂,据此由指数相等得出关于x的方程,解之可得;(2)将原式利用完全平方公式和平方差公式计算,再去括号、合并同类项化简后,根据已知条件将x2﹣3x=1整体代入计算可得.【解答】解:(1)∵2x•43﹣x•81+x=32,∴2x•(22)3﹣x•(23)1+x=25,2x•26﹣2x•23+3x=25,2x+6﹣2x+3+3x=25,即22x+9=25,则2x+9=5,解得:x=﹣2;(2)原式=3x2+x﹣3x﹣1﹣(x2+4x+4)+5=3x2+x﹣3x﹣1﹣x2﹣4x﹣4+5=2x2﹣6x,∵x2﹣3x﹣1=0,∴x2﹣3x=1,则原式=2(x2﹣3x)=2.【点评】此题主要考查了整式的加减﹣化简求值,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标2017-2018学年湘教版七年级数学下册
2.2.3 运用乘法公式进行计算
要点感知(1)平方差公式是:(a+b)(a-b)=__________;
(2)完全平方公式是:(a±b)2=__________.
预习练习1-1 在式子:①(-2y-1)2;②(-2y-1)·(-2y+1);③(-2y+1)(2y+1);④(2y-1)2;⑤(2y+1)2中,相等的是( )
A.①④
B.②③
C.①⑤
D.②④
1-2计算:(2x-y-1)(2x+y-1).
知识点运用乘法公式进行计算
1.计算(x+2y-1)(x-2y+1)的变形正确的是( )
A.[x-(2y+1)]2
B.[x+(2y+1)]2
C.[x-(2y-1)][x+(2y-1)]
D.[(x-2y)+1][(x-2y)-1]
2.计算(-a+1)(a+1)(a2+1)的结果是( )
A.a4-1
B.a4+1
C.a4+2a2+1
D.1-a4
3.下列各式中,计算结果正确的是( )
A.(a+b)(-a-b)=a2-b2
B.(a2-b3)(a2+b3)=a4-b6
C.(-2a-b)(-2a+b)=-2a2-b2
D.(a2-3b)(a2+3b)=a4-3b2
4.计算(a+1)2(a-1)2的结果是( )
A.a4-1
B.a4+1
C.a4+2a2+1
D.a4-2a2+1
5.若一个正方形的边长增加3 cm,它的面积增加45 cm2,则此正方形原来的边长为( )
A.6 cm
B.9 cm
C.12 cm
D.无法确定
6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2256),则x+1是( )
A.一个奇数
B.一个质数
C.一个整数的平方
D.一个整数的立方
7.已知x=y+4,则代数式x2-2xy+y2-25的值为__________.
8.多项式16x2+1加上一个单项式后,使它构成一个完全平方式,那么加上的这个单项式可以是__________(写出一个即可).
9.化简:(a+b)2-(a-b)2+a(1-4b).
10.先化简,再求值:
(1) (2a-b)2-b2.其中a=-2,b=3;
(2) (1+a)(1-a)+(a-2)2,其中a=-3;
(3) 2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=1 2 .
11.一个正方形的一边增加3 cm,另一边减少3 cm,所得到的长方形与这个正方形的每一边减少1 cm所得到的正方形的面积相等,求原来正方形的面积.
12.计算(2x-3y+1)(2x+3y-1)的结果是( )
A.4x2-12xy+9y2-1
B.4x2-9y2-6y-1
C.4x2+9y2-1
D.4x2-9y2+6y-1
13.计算(x-1)(x+1)(x2+1)-(x4+1)的值是( )
A.-2x2
B.0
C.-2
D.-1
14.如果a2-b2=4,那么(a+b)2(a-b)2的结果是( )
A.32
B.16
C.8
D.4
15.若M=(a2-a+1)(a2+a+1),N=(a+1)2(a-1)2,其中a≠0,则M,N的大小的关系是( )
A.M>N
B.M<N
C.M=N
D.不能确定
16.设正方形的面积为S1 cm2,长方形的面积为S2 cm2,如果长方形的长比正方形的边长多3 cm,宽比正方形的边长少3 cm.那么S1与S2的大小关系是( )
A.S1>S2
B.S1<S2
C.S1=S2
D.不能确定
17.两个连续奇数的平方差是( )
A.6的倍数
B.8的倍数
C.12的倍数
D.16的倍数
18.由m(a+b+c)=ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即:(a+b)(a2-ab+b2)=a3+b3.①
我们把等式①叫做多项式乘法的立方公式.
下列应用这个立方公式进行的变形不正确的是( )
A.(a+1)(a2+a+1)=a3+1
B.(2x+y)(4x2-2xy+y2)=8x3+y3
C.(a+3)(a2-3a+9)=a3+27
D.(x+4y)(x2-4xy+16y2)=x3+64y3
19.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为4,则另一边长为__________.
20.计算:
(1)(a-2b-3c)2;(2)(x+2y-z)(x-2y-z)-(x+y-z)2.
21.(2013·北京)已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.
22.已知x2+y2=25,x+y=7,且x>y,求x-y的值.
23.若n满足(n-2 013)2+(2 014-n)2=1,求(2 014-n)(n-2 013)的值.
参考答案
要点感知(1)a2-b2(2)a2±2ab+b2
预习练习1-1 C
1-2原式=(2x-1)2-y2=4x2-4x+1-y2.
1.C
2.D
3.B
4.D
5.A
6.C
7.-9
8.答案不唯一,如±8x
9.原式=a2+2ab+b2-(a2-2ab+b2)+a-4ab=a2+2ab+b2-a2+2ab-b2+a-4ab=a.
10.(1)原式=4a2-4ab+b2-b2=4a2-4ab.
当a=-2,b=3时,原式=4×(-2)2-4×(-2)×3=40.
(2)原式=1-a2+a2-4a+4=-4a+5.
当a=-3时,原式=-4×(-3)+5=17.
(3)原式=2b2+a2-b2-a2+2ab-b2=2ab.
当a=-3,b=1
2
时,原式=2×(-3)×
1
2
=-3.
11.设原来正方形的边长为x cm,根据题意,得
(x-3)(x+3)=(x-1)2.解得x=5.
所以x2=25.
答:原来正方形的面积是25 cm2.
12.D 13.C 14.B 15.A 16.A 17.B 18.A 19.2m+4
20.(1)原式
=(a-2b)2-2·(a-2b)·3c+9c2=a2+4b2-4ab-6ac+12bc+9c2=a2+4b2+9c2-4ab-6ac+12bc.
(2)原式
=[(x-z)+2y][(x-z)-2y]-[(x-z)+y]2=(x-z)2-4y2-(x-z)2-2(x-z)y-y2=-5y2-2xy+2yz.
21.原式=4x2-12x+9-x2+y2-y2=3x2-12x+9=3(x2-4x+3).
因为x2-4x-1=0,所以x2-4x=1.
所以原式=3×(1+3)=12.
22.因为x+y=7,所以(x+y)2=49.即x2+2xy+y2=49. 因为x2+y2=25,所以xy=12.
所以x2-2xy+y2=25-2×12=1.即(x-y)2=1.
因为x>y,所以x-y=1.
23.设2 014-n=a,n-2 013=b,则a+b=1,a2+b2=1. 又因为(a+b)2-(a2+b2)=2ab,
所以ab=1
2
[(a+b)2-(a2+b2)]=0.
即(2 014-n)(n-2 013)=0.。