《一次函数的应用》教学设计

合集下载

《一次函数的应用》教学设计

《一次函数的应用》教学设计

《一次函数的应用》教学设计4.4.一次函数的应用(1)【情景引入】观看疫情期间生产口罩的视频活动目的:动态的视频可以很快的抓住学生的眼球,能够让学生快速地进入课堂。

同时与现实密切的生活实际问题,鼓励学生乐于去思考,让学生在课堂的开始充满求知的愿望。

【探究一】确定正比例函数表达式某厂家生产口罩,他的生产数量m(个)与生产天数n(天)之间的关系如图所示.(1)写出m与n之间的关系式;(2)8天后能生产多少个?活动目的:题目文字信息给出的较少,学生获取信息的方式只能通过图象。

视察图象会发现是一条过原点的直线,意味着这是一个正比例函数,这在上一节课的学习过程中已然知晓。

根据两点确定一条直线,直线过除远点以外的一个点,那么就可以确定直线的解析式。

探究一的问题设计与生活联系密切,图象给学生视觉冲击,通过小组合作发现,探究方法的过程,让学生感受合作学习的必要性。

同时,问题的设计会让学生思考出不同的方法,发散学生的思维。

【探究二】确定一次函数表达式某口罩厂家库存口罩5000个,为了供应国家需求,经过三天的生产,口罩数量到达9500个.已知口罩数量y(个)是生产天数x(天)的一次函数.请写出y与x之间的关系式,并求出经过十天的生产后,该厂家可以供应的口罩数量.活动目的:在实际问题的情境下,接着探究一故事的编排,厂家为了提供充足物资,连夜加班,口罩的生产数量继续增长。

由题意可得出b的值,根据x、y值的确定,带入所设解析式求出具体表达式。

而在本题的思考过程中,部分学生可以将文字语言转换成图象语言,画出一次函数的图象,得出表达式。

教师对这部分学生要给予充分的肯定,八年级的学生思维相对活跃,可以有这样的思考说明上一节课的知识已经对后续的学习产生影响,进而得到提高。

小组同学各抒己见,总结出的结论可以相对全面。

思考:用待定系数法求一次函数表达式的步骤(1)(2)(3)(4)活动目的:通过两个探究问题的引入,教师板书规范步骤,学生通过视察得出求解这类问题的一般过程。

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2课时)
一、教学目标
(一)知识与技能:1.理解一次函数与一元-次方程的关系;2.会用函数的方法求解一元一次方程.
(二)过程与方法:经历探索一元一次方程与一次函数的内在联系的过程,体会数形结合的数学思想.
(三)情感态度与价值观:通过教学活动,让学生学会从不同角度认识事物本质的方法,建立自信心,提高学生自主合作探究学习的意识和能力,激发学生学习的兴趣,让学生体验数学的价值.
二、教学重点、难点
重点:1.对一次函数与一元-次方程的关系的理解;2.应用函数求解一元一次方程.
难点:对一次函数与一元一次方程的关系的理解.
三、教学过程。

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第六章第五节的内容。

本节内容是在学生已经掌握了函数概念和一次函数的基础上,进一步探讨一次函数在实际生活中的应用。

通过本节内容的学习,使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。

二. 学情分析七年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有一定的了解。

但是,对于一次函数在实际生活中的应用,可能还存在一定的困难。

因此,在教学过程中,需要教师引导学生将理论知识与实际生活相结合,通过实际问题,引导学生理解和运用一次函数。

三. 教学目标1.知识与技能:使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题。

2.过程与方法:通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:一次函数在实际生活中的应用。

2.难点:如何将实际问题转化为一次函数问题,如何运用一次函数解决实际问题。

五. 教学方法采用问题驱动法,通过实际问题的提出,引导学生思考和探索,从而理解和掌握一次函数在实际生活中的应用。

同时,采用小组合作学习法,鼓励学生之间的交流和合作,提高学生的学习效果。

六. 教学准备教师准备一些实际问题,用于引导学生思考和探索。

同时,准备一次函数的图像,用于帮助学生理解和掌握一次函数的性质。

七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾一次函数的知识,如一次函数的定义、图像等。

然后,教师提出一个问题:“你们认为一次函数在实际生活中有什么应用呢?”让学生思考和讨论。

2.呈现(10分钟)教师呈现一些实际问题,如“小明每天骑自行车上学,他每小时行驶6公里,问小明从家到学校需要多少时间?”让学生尝试解决。

在学生解决过程中,教师引导学生将实际问题转化为一次函数问题。

八年级数学上册《一次函数的应用》优秀教学案例

八年级数学上册《一次函数的应用》优秀教学案例
在本章节的教学过程中,我将关注学生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展。通过设计有趣、富有挑战性的教学活动,激发学生的学习兴趣,引导他们在轻松愉快的氛围中掌握知识,培养能力,形成正确的价值观。同时,注重学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
三、教学策略
(一)情景创设
3.如果你需要在规定的时间内到家,如何调整自己的速度?
讨论过程中,我会巡回指导,关注每个小组的讨论情况,及时解答学生的疑问。讨论结束后,各小组汇报自己的讨论成果,共同分享学习心得。
(四)总结归纳
在总结归纳环节,我将与学生一起回顾本节课的主要内容,包括一次函数的定义、性质、图像以及在实际问题中的应用方法。通过师生互动,让学生巩固所学知识,形成知识体系。
在导入新课环节,我将利用多媒体展示一张“学生放学回家”的图片,并提出问题:“同学们,你们每天放学回家的时间一样吗?你们的速度是如何影响你们回家的时间的?”通过这个问题,引导学生思考速度、时间和距离之间的关系,从而自然地引入一次函数的应用。
接着,我会简要回顾一次函数的基本概念和性质,为学生接下来的学习做好铺垫。这样既巩固了学生的基础知识,又能激发他们对新课的兴趣。
(四)反思与评价
在教学过程中,我将注重学生的反思与评价,帮助他们总结经验,不断提高。在每个教学环节结束后,我会引导学生对自己的学习过程进行反思,思考自己在解决问题中遇到的困难和收获。此外,我还将组织学生进行互评,让他们学会欣赏他人的优点,发现自身的不足,从而实现共同进步。
四、教学内容与过程
(一)导入新课
5.知识与技能、过程与方法、情感态度与价值观的全面培养
本案例不仅关注学生知识与技能的掌握,还注重过程与方法、情感态度与价值观的培养。在教学过程中,我努力实现这三个维度的全面发展,使学生在获得数学知识的同时,形成正确的价值观和良好的学习习惯。

4.4.1一次函数的应用(教案)

4.4.1一次函数的应用(教案)
2.数学建模:使学生掌握利用一次函数对现实问题进行建模的方法,提高他们运用数学知识解决实际问题的能力。
3.逻辑推理:引导学生运用一次函数相关知识进行逻辑推理,培养他们分析问题、解决问题的逻辑思维能力。
4.数学抽象:培养学生从实际问题中抽象出数学模型,理解并运用一次函数的概念及其性质。
5.数学表达:通过一次函数图像的绘制和解释,提高学生的数学表达能力,使他们能够清晰、准确地描述数学问题和解答过程。
6.团队合作:鼓励学生在解决问题时进行合作交流,培养他们的团队协作能力和沟通能力。
三、教学难点与重点
1.教学重点
(1)一次函数的定义及其图像特点:y=kx+b(k≠0,k、b为常数),强调k、b的物理意义,斜率k代表直线的倾斜程度,截距b代表直线与y轴的交点。
-通过实例让学生理解k、b在图像中的具体表现,如:当k>0时,图像呈现上升趋势;当k<0时,图像呈现下降趋势;b>0时,图像与y轴正向相交;b<0时,图像与y轴负向相交。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)一次函数在实际问题中的应用:行程问题、价格问题、速度与时间问题等,掌握将实际问题转化为一次函数模型的方法。
-以行程问题为例,讲解如何根据速度和时间计算路程,以及如何利用一次函数图像分析物体的运动状态。
(3)一次函数图像的绘制方法:掌握根据实际问题绘制一次函数图像的步骤,包括确定坐标轴、标定关键点、绘制直线等。

《 一次函数的应用》教案

《 一次函数的应用》教案

《一次函数的应用》教案教学目标1、巩固一次函数知识,灵活运用变量关系解决相关实际问题.2、有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.3、让学生认识数学在现实生活中的意义,发展学生运用数学知识解决实际问题的能力.教学重点1.建立函数模型.2.灵活运用数学模型解决实际问题.教学难点灵活运用数学模型解决实际问题.教学过程一、创设情境复习导入做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.方案选择的问题对于我们来说并不陌生,但是书写起来比较麻烦,事实上这类问题用一次函数来解决会更好理解,书写起来也更加简捷,这节课我们就来体会一下如何运用一次函数选择最佳方案问题.二、尝试活动探索新知1.我们平时所说的鞋子大小是以“码”为单位的,而厂商对鞋子大小编号却是以“cm”为单位的,这二者有什么关系呢?下面就以我们收集到的一些数据来研究这个问题..(2)若要买39㎝的鞋子,则对应的尺码应为多少?三、动手操作,一起探究某公司与营销人员签订了这样的工资合同:工资由两部分组成,一部分是基本工资,每人每月300元;另一部分是按月销售量确定的奖励工资,每销售一件产品奖励工资4元。

1.设某销售员月销售产品x件,他应得的工资为y元。

求y与x的函数关系式.2.用求出的函数关系式,尝试解决以下问题:(1)该营销员某月的工资为1220元,他这个月销售了多少件产品?(2)要想使月工资超过1500元,当月的销售量应当超过多少件?结合生活情境使学生明白用一次函数解决问题的一般步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题.在实际生活问题中,如何应用一次函数知识解题,关键是建立一次函数模型.例1一种节能灯的功率为10瓦(即0.01千瓦),售价为60元;一种白炽灯的功率为60瓦(即0.06千瓦),售价为3元.两种灯的照明效果一样,使用寿命也相同(3000小时以上).如果电费价格为0.5元/(千瓦×时),消费者选用哪种灯可以节省费用?分析:1、指出问题中的常量、变量?2、变量之间存在着怎样的关系?总结:要考虑如何节省费用,必须既考虑灯的售价又考虑电费.不同灯的售价分别是不同的常数,而电费与照明时间成正比例,因此,总费用与灯的售价、功率这些常数有关,而且与照明时间有关,写出函数解析式是分析问题的关键.解:设照明时间为x小时,则:节能灯的总费用为1y=60+0.01×0.5x;即:1y=60+0.005x白炽灯的总费用为2y=3+0.06×0.5x即:2y=3+0.03x讨论:根据以上两个函数,思考解决问题方法:方法1:利用不等式的分类讨论解决问题(1)x为何值时1y=2y?(2)x为何值时1y>2y?(3)x为何值时1y<2y?如果用不等式来解决会比较麻烦,试着利用函数解析式及图象的性质来解决,感受一下.方法2:画出两个函数的图象.通过函数图形,我们可以很容易求出交点的横坐标为2280,即当使用电量为2280小时时,二者的总费用相同;同时也可以看出2280是一个分界点,低于2280时,1y>2y,使用白炽灯更省钱;高于2280时,1y<2y.使用节能灯更省钱.方法3:将两个解析式合并成一个解析式相比较1y和2y的大小,可以通过作差比较法,由此想到通过作差将两个函数解析式合并成一个解析式,y=1y-y2=57-0.025x的值表示节能灯比白炽灯总费用高多少.观察函数y=57-0.025x为减函数,图象经过点(2280,0),所以当x>2280时,y<0,此时选择节能灯更省钱;当x<2280时,y>0,此时选择白炽灯更省钱.例2某单位有职工几十人,想在节假日期间组织到外地H处旅游.当地有甲乙两家旅行社,它们服务质量基本相同,到H地旅游的价格都是每人100元,经联系协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示单位先交100元后,给予每位游客六折优惠.问该单位选择哪个旅行社,使其支付的旅游总费用较少?解法一:设该单位的职工数为x 人,那么甲旅行社应付:x 80元,乙旅行社应付:10060+x 元,记x y 801=,100602+=x y ,在同一直角坐标系内作出这两个函数的图象如下:(此时强调:①坐标系如何建立,实际问题通常画第一象限的部分;②纵横坐标轴上的单位如何确定,要结合函数式来确定,纵横坐标轴上的单位值可以不一样;③图象画多长,考虑三点:横坐标从0开始,两图象的交点要画出来,交点后的部分也要画一些.)不难发现:1y 和2y 的交点坐标为:(50,,4000)由图象可知:当人数x =50时,选择甲或乙旅行社费用都一样;当人数x 大于0而小于50时,选择甲旅行社费用较少;当人数x 大于50时,选择乙旅行社费用较少.解法二:设甲、乙旅行社的费用之差为y ,则1000-20)100060(-80-21x x x y y y =+==(此时强调:可以用代数方法来1y 和2y的大小,同学们试一试;为了熟练运用图象法来解题,下面介绍图象法)在平面直角坐标系内作出这个函数的图象如图:(此时强调:图象的作法)由图象可知:当人数x=50时,y=0,即y1=y2,选择甲或乙旅行社费用都一样;当人数x大于0而小于50时,y<0,即y1<y2,选择甲旅行社费用较少;当人数x大于50时,y>0,即y1>y2,选择乙旅行社费用较少.巩固练习某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.三、本课小结.这节课你学到了什么?。

一次函数的应用 教学设计

一次函数的应用 教学设计

一次函数的应用【教学目标】(一)知识与技能:1.经历应用一次函数解决实际问题的过程,熟悉一次函数在生活中的应用。

2.通过解决实际问题领悟函数与方程、不等式的关系及应用价值。

3.提高通过文字、表格、图像获取信息的能力。

4.在解决问题的过程中,提高综合思维的能力。

(二)过程与方法:经历探求直线解析式的过程,体验数学学习探究的方法。

(三)情感态度价值观:1.初步学会利用函数性质进行判断及决策的方法,增进应用函数思想的意识。

2.体验数学学习活动充满着探索,并在探索中感受成功,建立自信;体验数学来源于生活并应用于生活。

【教学重难点】1.重点:应有一次函数解决实际问题。

2.难点:准确的图像识别与应用,领悟函数与方程、不等式的关系。

【教学方法】启发式教学,学生探索为主。

【课时安排】2课时【教学过程】【第一课时】一、导入新课在前几节课里,我们学习了一次函数,其实一次函数在现实生活中也有着广泛的应用,现在我们就来一起探究一下。

二、试着做做(出示题目)某公司与营销人员签订了这样的工资合同,工资由两部分组成,一部分是基本工资,每人每月300元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励工资4元。

1.设某营销员月销售产品x 件,他应得的工资为y 元,求y 与x 之间的函数关系式。

学生活动:独立阅读,领悟问题情境给出的数量关系,自己写出函数关系式。

师:让学生说出答案,并说出题中的数量关系。

营销员的月工资y(元)与他当月销售产品的件数x 之间的函数关系式为:y=4x+300。

2.用求出的函数关系式,尝试解决以下问题:(1)该营销员某月的工资为l220元,他这个月销售了多少件产品?(2)要想使月工资超过1500元,当月的销售量应当超过多少件?学生活动:积极思考,自主探究。

解:当营销员的月工资为1220元时,他当月销售的产品件数x 应当满足方程:4x+300=1220。

解这个方程,得x=230。

要想使月工资超过1500元,则当月销售的产品件数x 应当满足不等式:4x+300>1500。

北师大版数学八年级上册4《一次函数的应用》教学设计3

北师大版数学八年级上册4《一次函数的应用》教学设计3

北师大版数学八年级上册4《一次函数的应用》教学设计3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第四单元的内容。

本节课主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。

教材通过生活实例引入一次函数,让学生感受数学与生活的紧密联系,培养学生的数学应用意识。

二. 学情分析学生在七年级已经学习了直线、斜率等基本概念,对函数有了初步的认识。

但八年级的学生还未能完全将数学知识应用于实际生活中,因此,在教学过程中,教师需要引导学生将数学知识与生活实际相结合,提高学生的数学应用能力。

三. 教学目标1.让学生了解一次函数在实际生活中的应用,培养学生的数学应用意识。

2.让学生掌握一次函数的定义和性质,能运用一次函数解决实际问题。

3.培养学生的团队合作精神,提高学生的数学素养。

四. 教学重难点1.一次函数在实际生活中的应用。

2.一次函数的定义和性质。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极参与,提高学生的数学应用能力。

六. 教学准备1.准备相关的生活案例,用于引导学生思考和讨论。

2.准备一次函数的定义和性质的PPT,用于讲解和展示。

3.准备课后作业,巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如购物时如何规划路线,让学生感受数学在生活中的应用,引出一次函数的概念。

2.呈现(15分钟)呈现一次函数的定义和性质,引导学生理解并掌握一次函数的基本概念。

3.操练(10分钟)让学生通过小组合作,运用一次函数解决实际问题。

教师给予引导和指导,确保学生能够正确运用一次函数解决实际问题。

4.巩固(5分钟)通过课后作业,让学生巩固所学知识,提高学生的数学应用能力。

5.拓展(5分钟)引导学生思考一次函数在其他领域的应用,如物理学、经济学等,拓宽学生的视野。

6.小结(3分钟)对本节课的主要内容进行总结,强调一次函数在实际生活中的应用。

7.家庭作业(2分钟)布置课后作业,让学生巩固所学知识,提高学生的数学应用能力。

八年级数学上册《一次函数的应用》教案、教学设计

八年级数学上册《一次函数的应用》教案、教学设计
1.一次函数图像的特征,如斜率k、截距b对图像的影响。
2.如何根据实际问题抽象出一次函数模型。
3.一次函数在实际问题中的应用,如购物优惠、快递费用计算等。
讨论过程中,我会巡回指导,关注每个小组的讨论情况,及时解答学生疑问,引导他们深入思考。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础题:求解一次函数的解析式,分析图像特征等,以巩固学生对一次函数知识的掌握。
2.提高题:解决实际问题,如根据已知数据求解函数模型,进行数据预测等,培养学生的应用能力。
3.拓展题:设计具有一定难度的题目,如一次函数的图像变换、复合一次函数等,激发学生的思维。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的一次函数知识,强调以下几点:
1.一次函数的定义及其与一次方程的联系与区别。
3.探究题:布置一些需要学生观察、分析、探究的题目,培养学生的逻辑思维和创新能力。
例题:
探究一次函数图像的平移、压缩和伸展变换对斜率k和截距b的影响。
4.拓展题:提供一些难度较大的题目,供学有余力的学生挑战,激发他们的学习兴趣。
例题:
已知一次函数的图像经过点A(2, 4)和点B(4, 8),求该一次函数的解析式,并判断其图像与x轴、y轴的交点坐标。
3.教学过程中,设计不同层次的问题,引导学生逐步深入地探究一次函数的性质。例如,从斜率k的正负、截距b的值等方面,让学生观察图像变化,总结性质。
4.分组讨论与交流,培养学生的合作意识和团队精神。在小组内,学生可以互相解答疑惑,共同解决问题,提高解决问题的能力。
5.课后作业与拓展练习相结合,巩固学生对一次函数知识的掌握。布置一定数量的基础题,确保学生对一次函数的基本概念和性质有扎实的掌握;同时,设计一定难度的拓展题,激发学生的思维,提高他们的创新能力。

4.4.1一次函数的应用教学设计2024-2025学年北师大版八年级数学上册

4.4.1一次函数的应用教学设计2024-2025学年北师大版八年级数学上册
在讲解过程中,注意观察学生的反应,及时解答学生的疑问。
3.巩固练习(15分钟)
a.课堂练习(5分钟):教师布置几道一次函数在实际问题中的应用题,要求学生在课堂上独立完成,巩固所学知识。
b.小组讨论(5分钟):学生分为小组,讨论解题思路,分享解题经验,互相学习。
c.课堂提问(5分钟):教师针对练习题进行提问,检查学生对一次函数应用的掌握情况。
板书设计
①重点知识点:
-一次函数的定义与图象特征
-一次函数在实际问题中的应用
-建立一次函数模型的方法
②关键词与句:
-关键词:一次函数、图象、应用、模型、实际问题
-关键句:一次函数图象是一条直线;通过一次函数解决实际问题;建立数学模型分析数量关系
③艺术性与趣味性设计:
-使用不同颜色的粉笔,突出重点知识点和关键句;
6.课后作业(5分钟)
布置与一次函数应用相关的课后作业,巩固所学知识,提高学生的实际应用能力。
教学过程中,注意以下几点:
1.教师应密切关注学生的学习情况,根据学生的反应调整教学节奏和难度。
2.创设情境和提出问题时,要贴近学生的生活实际,激发学生的学习兴趣。
3.讲解过程中,注重师生互动,鼓励学生提问,培养学生的逻辑思维和问题解决能力。
2.教学软件:运用数学软件辅助教学,让学生更直观地观察一次函数的性质,提高教学效果。
3.网络资源:引导学生查阅相关资料,拓展知识面,培养自主学习能力。
教学过程设计
1.导入环节(5分钟)
创设情境:教师展示一次函数在实际生活中的应用实例,如“小明骑自行车去公园,速度与时间的关系”,引发学生思考一次函数在现实情境中的作用。
学情分析
八年级学生在知识层面,已具备一次函数的基本概念、图象特征及简单应用能力,但在将一次函数与实际问题结合解决方面,仍需加强。在能力方面,学生的逻辑思维能力、观察能力和分析能力逐渐提升,但问题解决能力、团队合作能力有待提高。素质方面,学生具备一定的自主学习能力和探究精神,但学习习惯、时间管理等方面存在差异,对学习效果产生影响。

北师版一次函数的应用说课稿9篇

北师版一次函数的应用说课稿9篇

北师版一次函数的应用说课稿9篇北师版一次函数的应用说课稿9篇说课稿的撰写应该与教材内容有机结合,形成统一的教学体系和教学评价体系,并包括相关的教学调整和教学反思。

通过不断地讲解和反思,进一步提高自身的教学水平和教学效果。

现在随着小编一起往下看看北师版一次函数的应用说课稿,希望你喜欢。

北师版一次函数的应用说课稿精选篇1大家好!我今天说课的内容是八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。

一、教材分析1、教材地位和作用本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。

2、教学目标分析根据新课程标准,我确定以下教学目标:知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。

过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。

情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。

3、教学重难点本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。

二、教法学法分析八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。

根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术————多媒体和实物投影。

三、教学过程分析本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。

为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:(1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为m=6t(2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走x小时,则他离开广场中心的距离y与x之间的函数关系式为y=—2x (3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则x天后小芳的储蓄罐里有y元钱,那么y与x之间的函数关系式为y=2x+3 (4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为Q=936—312t然后请学生观察这些函数,它们有哪些共同特征?m=6t;y=—2x;y=2x+3;Q=936—312t学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。

鲁教版数学七年级上册6.5《一次函数的应用》教学设计2

鲁教版数学七年级上册6.5《一次函数的应用》教学设计2

鲁教版数学七年级上册6.5《一次函数的应用》教学设计2一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第6.5节的内容。

本节课主要让学生掌握一次函数的应用,学会解决实际问题。

教材通过简单的实例,引导学生理解一次函数在实际生活中的应用,培养学生的数学应用能力。

二. 学情分析七年级的学生已经学习了初中数学的一些基本概念和运算,但对一次函数的应用还不够熟练。

因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.理解一次函数的概念,掌握一次函数的性质。

2.学会将实际问题转化为一次函数问题,能运用一次函数解决实际问题。

3.提高学生的数学应用能力,培养学生的逻辑思维能力。

四. 教学重难点1.一次函数的概念和性质。

2.如何将实际问题转化为一次函数问题。

3.运用一次函数解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究一次函数的应用。

2.利用实例分析,让学生直观地理解一次函数在实际生活中的应用。

3.采用小组合作学习,培养学生的团队协作能力。

4.利用多媒体辅助教学,提高教学效果。

六. 教学准备1.准备相关的一次函数实例,用于讲解和练习。

2.准备一次函数的图片或实物模型,帮助学生直观地理解一次函数。

3.准备教学课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折,求打折后的价格。

”引导学生思考如何用数学知识解决实际问题。

2.呈现(10分钟)呈现一次函数的定义和性质,让学生了解一次函数的基本概念。

通过示例,讲解一次函数在实际生活中的应用,让学生直观地理解一次函数。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数解决。

教师巡回指导,帮助学生解决问题。

4.巩固(10分钟)选取几组学生的作品,进行展示和讲解。

让学生分享自己的解题过程和心得,加深对一次函数应用的理解。

北师大版数学八年级上册4《一次函数的应用》教案3

北师大版数学八年级上册4《一次函数的应用》教案3

北师大版数学八年级上册4《一次函数的应用》教案3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。

本节课主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。

通过本节课的学习,学生能够理解一次函数的定义,掌握一次函数的图像特征,并能运用一次函数解决实际问题。

二. 学情分析学生在七年级时已经学习了平面直角坐标系,对坐标系中的点、直线有所了解。

但他们对一次函数在实际生活中的应用还不够明确,需要通过本节课的学习,让学生感受到数学与生活的紧密联系,提高他们学习数学的兴趣。

三. 教学目标1.了解一次函数在实际生活中的应用。

2.学会用一次函数解决实际问题。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.一次函数在实际生活中的应用。

2.如何引导学生将实际问题转化为一次函数问题。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数的应用。

六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)利用PPT展示生活中的一些场景图片,如购物、出行等,引导学生发现这些场景中存在数学问题。

让学生举例说明,并提问:如何用数学知识解决这些问题?2.呈现(10分钟)呈现一次函数的定义和图像特征,引导学生理解一次函数的概念。

通过PPT展示一次函数在实际生活中的应用案例,如购物问题、出行问题等,让学生直观地感受一次函数的应用。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试用一次函数解决。

教师巡回指导,帮助学生解决问题。

学生汇报解题过程和结果,教师点评并给予鼓励。

4.巩固(10分钟)出示一组练习题,让学生独立完成。

教师选取部分学生的作业进行点评,指出解题过程中的优点和不足,并进行讲解。

5.拓展(10分钟)让学生思考:一次函数在实际生活中还有哪些应用?引导学生从不同角度发现一次函数的应用,如环保、生产等。

有关八年级数学一次函数的应用教案4篇

有关八年级数学一次函数的应用教案4篇

有关八年级数学一次函数的应用教案4篇【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。

原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。

【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。

过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。

情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。

教学难点:在理解的基础上结合数学思想分析、解决问题。

【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。

因此我选用了以下教学方法:1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。

10.6一次函数的应用教案

10.6一次函数的应用教案

10.6一次函数的应用教案一、教学目标1.了解一次函数的概念和特征。

2.了解一次函数的应用,掌握一次函数在实际生活中的应用。

3.能够利用一次函数解决实际问题。

二、教学重难点1.了解一次函数的概念和特征。

2.掌握一次函数在实际生活中的应用。

三、教学准备1.课件与PPT。

2.多媒体设备。

3.小黑板、彩色粉笔。

4.教材、作业纸。

四、教学过程1.导入教师问学生,是否知道什么是函数?什么是一次函数?如果学生不知道,老师要给予简单的解释和例子,以方便后面学习的推进。

2.新知识的讲解(1)一次函数的定义和特征函数是两个数集之间的一种对应关系。

如果对于一个数x,在另一个数y上对应的规律为y=kx+b,则y与x之间的关系就可以被称为一次函数。

k是一次函数的斜率,b是一次函数的截距。

一次函数的性质:1.唯一性x取任何一个值,y都只有一个值与之对应。

2.奇偶性一次函数在直线y=x上是对称的。

3.正比例关系斜率k就是比例系数,斜率越大,函数变化的越快。

(2)一次函数的应用在生活中,一次函数有着广泛的应用,例如:1.行进的路程与时间的关系2.体重与身高的关系3.速度与时间的关系4.温度与时间的关系5.压强与温度的关系6.利润与销售量的关系7.成本与销售量的关系8.收入与工龄的关系(3)应用例题解析例1:某公司的销售员底薪为5000元,每售出一件商品可获得200元的提成。

设其本月销售额为x元,则其本月工资总额为y元,求一次函数及其表达式。

当销售额为0的时候,y = 5000;当销售额为x的时候,y = 5000 + 200x该销售员本月总工资可用y = 5000 + 200x表示。

例2:一辆汽车从A到B,全程120km。

如果以每小时60km的速度行驶,则行驶时间为2小时。

如果行驶速度为50km/h,则行驶时间为多少?设x为行驶时间,那么行驶路程y就是一次函数。

设当速度为60km/h时,行驶时间为2小时,那么此时有y = 120km。

一次函数的应用教案

一次函数的应用教案

一次函数的应用教案一、教学目标1. 了解一次函数的定义和性质。

2. 掌握一次函数的图像特点。

3. 学会应用一次函数解决实际问题。

二、教学重点1. 一次函数的定义和性质。

2. 一次函数的图像特点。

三、教学难点1. 如何应用一次函数解决实际问题。

四、教学准备1. 教科书和课件。

2. 黑板和粉笔。

3. 实际应用问题的例子。

五、教学过程Step 1:导入教师可以通过提问的方式引导学生回顾一次函数的定义和性质,并与学生一起讨论一次函数存在的意义和应用领域。

Step 2:讲解一次函数的定义和性质1. 教师通过示例解释一次函数的定义:f(x) = ax + b,其中a和b是常数,且a≠0。

2. 强调一次函数的线性关系,即函数图像为一条直线。

3. 讲解一次函数的性质:线性关系、正比例关系及其相关性质。

Step 3:展示一次函数的图像特点1. 通过具体的函数表达式和图像展示,说明一次函数在直角坐标系中的图像特点。

2. 强调斜率和截距对图像的影响。

Step 4:应用一次函数解决实际问题1. 教师选取一些实际问题的例子,如汽车行驶问题、成本与产量问题等,让学生思考如何建立一次函数模型。

2. 学生分组合作,利用一次函数的知识,解决所给问题,并将答案展示给其他同学。

Step 5:巩固和扩展1. 教师提供更多的应用问题,让学生继续运用一次函数的知识解决。

2. 学生进行小组讨论,找出多种解决方法,并分析不同解决方法的适用性。

六、教学延伸1. 学生可以通过使用计算机软件绘制一次函数的图像,进一步理解函数的性质。

2. 学生可以深入研究一次函数在经济学、物理学等领域的应用,扩展应用知识。

七、课堂总结通过本节课的学习,我们了解了一次函数的定义和性质,掌握了一次函数的图像特点,并学会了应用一次函数解决实际问题。

一次函数作为数学中的重要工具,在实际应用中具有广泛的应用价值。

八、课后作业1. 完成课本上的练习题。

2. 搜集一些实际应用问题,尝试用一次函数解决。

第12讲《一次函数的应用》教案

第12讲《一次函数的应用》教案
其次,案例分析环节,我选择了物体匀速运动作为例子,但可能有学生对此并不感兴趣。我意识到,选择与学生生活密切相关的案例更能激发他们的学习兴趣。下次我会尝试引入购物、交通等与学生日常生活紧密相关的案例,以提高他们的参与度。
在实践活动方面,学生们在分组讨论和实验操作中表现出较高的积极性,但有些小组在讨论过程中偏离了主题。为了提高讨论效果,我计划在下次活动中明确讨论主题,并在讨论过程中适时给予指导和提示,引导学生围绕主题展开讨论。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
-难点内容:一次函数图像的绘制及其在实际问题中的应用。
-图像绘制:如何准确地根据函数表达式在坐标系中绘制出一次函数的图像。
-实际应用:将实际问题转化为数学模型,利用一次函数解决问题。
-举例解释:
-图像绘制难点:学生可能会在坐标系的选择、点与线的关系等方面感到困惑。需讲解如何选取合适的点来绘制直线,例如选取x=0和y=0时的点,以及如何理解任意两点确定一条直线的原理。
此外,我发现部分学生在绘制一次函数图像时,对坐标系的选择和点与线的关系掌握不够熟练。针对这一问题,我打算在接下来的教学中,增加一些图像绘制的练习,让学生在实际操作中熟悉和掌握这一技能。
在小组讨论环节,学生们表现出了较好的思考和分析能力,但在分享成果时,有些学生表达不够清晰。为了提高学生的表达能力,我会在今后的教学中加强口语表达训练,鼓励学生在课堂上多发言,提高他们的自信心。

北师大版数学八年级上册4《一次函数的应用》教学设计1

北师大版数学八年级上册4《一次函数的应用》教学设计1

北师大版数学八年级上册4《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。

本节课的主要内容是一次函数在实际生活中的应用,通过实例让学生了解一次函数的性质,学会用一次函数解决实际问题。

教材通过丰富的实例,引导学生探究一次函数的图象和性质,培养学生的动手操作能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了函数的概念、一次函数的定义和图象,具备了一定的函数知识基础。

但学生对实际问题与函数关系的理解还不够深入,解决实际问题的能力有待提高。

因此,在教学过程中,教师需要关注学生的认知基础,通过实例引导学生将实际问题转化为函数问题,培养学生解决实际问题的能力。

三. 教学目标1.知识与技能:让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。

2.过程与方法:通过实例分析,让学生掌握一次函数的图象和性质,提高学生解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生运用数学解决实际问题的意识。

四. 教学重难点1.重点:一次函数在实际生活中的应用。

2.难点:如何将实际问题转化为函数问题,并运用一次函数解决。

五. 教学方法1.情境教学法:通过生活实例,引导学生了解一次函数在实际中的应用。

2.启发式教学法:引导学生主动探究一次函数的图象和性质,培养学生解决问题的能力。

3.小组合作学习:让学生在小组内讨论实际问题,共同寻找解决方法,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示一次函数的图象和实例。

2.实例材料:准备一些实际问题,作为教学案例。

3.练习题:准备一些练习题,巩固学生对一次函数应用的理解。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如身高与年龄的关系、商品价格与数量的关系等,引导学生思考这些实际问题是否可以用一次函数来表示。

2.呈现(10分钟)教师展示一次函数的图象,引导学生观察图象,了解一次函数的性质。

八年级数学下册《一次函数的应用》教案、教学设计

八年级数学下册《一次函数的应用》教案、教学设计
2.互动交流:鼓励学生提问,解答学生的疑问,促进课堂互动。
“如果大家对一次函数的性质和应用有任何疑问,请大胆提出来。我们可以一起讨论,共同解决问题。”
3.总结反馈:在小组讨论的基础上,总结一次函数的性质和应用,加深学生的理解。
(四)课堂练习
1.设计习题:根据一次函数的知识点,设计不同类型的习题,让学生进行课堂练习。
1.思维能力:学生具备一定的逻辑思维能力,能够理解抽象的数学概念,但部分学生对函数概念的理解尚显不足,需要进一步引导和巩固;
2.学习兴趣:学生对数学学科的兴趣有所差异,部分学生对函数学习充满热情,另一部分学生可能对函数概念感到困惑,需要激发兴趣;
3.学习方法:学生在学习过程中,对探究、合作等学习方法有所了解,但实际操作中仍需教师引导,提高学习效率;
1.重点:一次函数的定义、性质、图像及其在实际问题中的应用。
2.难点:
(1)理解一次函数图像的斜率与截距的几何意义;
(2)建立一次函数模型解决实际问题,尤其是涉及两个变量之间的线性关系问题;
(3)对一次函数图像的绘制和解读,以及从图像中分析一次函数的性质。
(二)教学设想
1.教学方法:
(1)采用情境教学法,通过实际问题引入一次函数的概念,让学生在具体情境中感知数学知识;
"请同学们认真完成课本上的练习题,特别是涉及到一次函数图像绘制和性质分析的问题,这些题目将帮助你们巩固基础知识。"
2.实践应用题:结合生活实际,设计一个一次函数模型解决实际问题,并撰写解题报告。
"选择一个你们生活中的问题,比如计算商品的打折价格、分析速度和时间的关系等,运用一次函数的知识建立模型,并详细记录解题过程,形成解题报告。"
“数学知识来源于生活,我们要学会用数学的眼光看待生活中的问题。一次函数作为解决实际问题的有力工具,希望同学们能够掌握好。”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的应用
1、教学容
本节课是学习了人教版义务教育课程标准实验教材《数学》八年级上册第十一章《一次函数》后设计的一节复习课。

主要学习容是把实际问题建立函数模型和根据函数图象的信息,运用数形结合的思想来解决问题。

2、学生分析
学习本节课前学生已经学习了一次函数的概念、图象、性质以及一次函数与方程(组)、不等式的关系,对一次函数的知识已经有了全面的了解。

但还不能灵活运用所学知识来解决实际问题,特别是把实际问题建立函数模型的能力和运用数形结合的思想来解决问题的意识还比较弱。

学生最感兴趣的是用函数知识解决发生在身边的实例。

3、设计思想
本节课的特色是充分应用信息技术(如多媒体课件,播放翔奥运夺冠过程的录像,播放“龟兔赛跑”的Flash动画等)来创设问题的情境,激发学生的学习兴趣,激活学生的思维。

本节课精心设计了七个题目,由浅入深,让学生探究,把学生的思维不断引向深入……,通过老师的点拨使学生的思维得到升华,努力培养学生掌握基本的数学思想,提高学生的数学活动能力。

在整个教学过程中,贯彻“教师为主导,学生为主体,探索为主线,思维为核心”的教学思想。

通过引导学生积极探索、讨论和交流,使全体学生能充分动手、动脑、动口,参与教学的整个过程,使数学课堂真正成为学生亲自参与的、生动活泼的数学思维活动场所。

本节课把教师的“教”和学生的“学”有机结合起来,真正体现“学生是数学学习的主人,教师是数学活动的组织者、引导者与合作者”这一新型的师生关系,体现了创新教育、主体教育和成功教育这一改革与发展的时代精神。

4、教学目标
(1)知识与技能
①会画实际问题的函数图象;
②会根据函数图象的信息,运用数形结合的思想来解决问题。

(2)过程与方法
经历画实际问题的函数图象,从实际问题函数图象中发现信息,运用数形结合的思想来解决问题,通过合作、交流编写故事等过程培养学生数形结合的思想,形成利用函数观点认识现实世界的意识和能力。

(3)情感态度与价值观
通过观看翔奥运夺冠的录像,让学生体会到数学来源于生活,并树立努力拼搏为国争光的理想;在探究问题的过程中体会数学的应用价值;通过与同学合作编写故事,感受成功的喜悦,并建立自信心。

5、教学的重点和难点
重点:会画实际问题的函数图象;会根据实际问题函数图象的信息,运用数形结合的思想来解决问题。

难点:培养学生数形结合的思想。

6、教学过程
学习评价表
学生:年级:时间:年月日。

相关文档
最新文档