电磁场与电磁波基础(第6章)..

合集下载

电磁场原理(第二版)6章

电磁场原理(第二版)6章

• 式(6.1.5)和式(6.1.6)称为电磁波动方程,它们是波 动方程的一般形式,它们支配着无源、线性、均 匀各向同性导电媒质中电磁场的行为,是研究电 磁波问题的基础。 • 从数学上来看,H和E满足相同形式的方程,在直
角坐标系下,若用ψ(r,t)来表示电场E或磁场H的一 个分量,有方程
• 6.1.2 平面电磁波及基本性质 • 对于电磁波传播过程中的某一时刻 t ,电磁场中 E 或 H 具有相同相位的点构成的空间曲面称为等相 面,又称为波阵面。如果电磁波的等相面或波阵 面为平面,则这种电磁波称为平面电磁波。如果 在平面电磁波波阵面上的每一点处,电场 E 均相 同,磁场 H 也均相同,则这样的平面电磁波称为 均匀平面电磁波。
称为理想介质的波阻抗,单位
为欧姆,上两式均称为波的欧姆定律。 • 4)对于入射波,根据空间任意点在某一时刻 的电磁波电磁场能量密度的假设,再考虑 波的欧姆定律,有 • 相应的坡印延矢量为
• 上式表明,在理想介质中电磁波能量流动 的方向与波传播的方向一致。又坡印廷矢 量的值表示单位时间内穿过与波传播方向 相垂直的单位面积内的电磁能量,即等于 电磁能量密度ω′和能流速率ve的乘积
负方向行进的波的电场分量和磁场分量,称 为反射波。 • 2)波的传播速率 • 是一常数,它仅与媒质参数有关。 • 3)将 代入式(6.1.15)得
• 将上式对时间积分,并略去积分常数,得
• 同理可得 • (6.2.5)和(6.2.6)分别表示了入射波和反射波 中电场和磁场之间的关系。令
• 其中
• 上两式就是无限大理想介质中电磁场随时 间作正弦变化时的稳态解。此时的电场和 磁场既是时间的周期函数,又是空间坐标 的周期函数。 • 相位因子 (ωt-βx+φ) 的物理意义 ( 为方便计, 取φ =0): • 1)t=0 时,相位因子为 -βx , x=0 处的相位为 零,这时电场和磁场都处在零值。 • 2)在t时刻,波的零值点移到ωt-βx=0处,即

《电磁场与电磁波》(第四版)课后习题解答(全)

《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。

和向量错误!未找到引用源。

垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

第6章 自由空间的电磁波

第6章 自由空间的电磁波

教案课程: 电磁场与电磁波内容: 第6章自由空间的电磁波课时:4学时教师:刘岚。

)线、γ射线等也都是电磁波,科学研究证明电磁波是一个大家族。

所有这些电磁波仅在波长λ(或频率f )上有所差别,而在本质上完全相同,且波长不同的电磁波在真空中的传播速度都是8001/310c εμ=≈⨯(m/s )。

因为波的频率和波长满足关系式f c λ⋅=,所以频率不同的电磁波在真空中具有不同的波长。

电磁波的频率愈高,相应的波长就越短。

无线电波的波长最长(频率最低),而γ射线的波长最短(频率最高)。

目前人类通过各种方式已产生或观测到的电磁波的最低频率为2210f Hz -=⨯,其波长为地球半径的3510⨯倍,而电磁波的最高频率为2510f Hz =,它来自于宇宙的γ射线。

为了对各种电磁波有个全面的了解,人们按照波长或频率的顺序把这些电磁波排列起来,这就是电磁波谱。

多媒体课件展示:电磁波谱图电磁波谱无线电波微波红外线可见光紫外线X 射线伽马射线可见光: 红 | 橙 | 黄 | 绿 | 蓝 | 靛 | 紫由于辐射强度随频率的减小而急剧下降,因此波长为几百千米(105米)的低频电磁波强度很弱,通常不为人们注意。

实际使用的无线电波是从波长约几千米(频率为几百千赫)开始:波长3000米~50米(频率100千赫~6兆赫)的属于中波段;波长50米~10米(频率6兆赫~30兆赫)的为短波;波长10米~1厘米(频率30兆赫~3万兆赫)甚至达到1毫米(频率为3×105兆赫)以下的为超短波(或微波)。

有时按照波长的数量级大小也常出现米波,分米波,厘米波,毫米波等名称。

中波和短波用于无线电广播和通信,微波用于电视和无线电定位技术(雷达)。

可见光的波长范围很窄,大约在7600~4000(在光谱学中常采用埃()作长度单位来表示波长,1=10~8厘米)、从可见光向两边扩展,波长比它长的称为红外线,波长大约从7600直到十分之几毫米。

红外线的热效应特别显著;波长比可见光短的称为紫外线,它的波长为50~4000,它有显著的化学效应和荧光效应。

电磁场与电磁波第六章

电磁场与电磁波第六章
R// ER 0 E I0 ET 0 EI0
1 H R 0 H R 0 1 cos 1 2 cos 2 1 H I 0 H I 0 1 cos 1 2 cos 2

(6-1-23)
T//
2 H T0 1 H I 0

2 2 cos 1 1 cos 1 2 cos 2
(6-1-1)
其中
k1 1 1 , k 2 2 2
入射波、反射波、折射波的电场矢量分别为
E I E I 0e j kI r , E R E R0e j kR r , ET ET 0 e j kT r
(6-1-2)
介质 1 中的总电场是入射波与反射波的叠加,即 E1= EI+ ER; 介质 2 中的仅为折射波,E2= ET 。 下面,根据电磁场的边界条件,由入射波的 kI和 EI0、HI0 来确定反射波和折射波的 kR、kT 以及 ER0、HR0、ET0、HT0。
第六章 平面电磁波的反射与折射
6.1.1 反射、折射定律
首先来确定反射波和折射波的波矢量方向。 由交界面 z = 0 处两侧的切向分量连续的边界条件和式
(6-1-2),可得
j (k Ix x k Ix y ) j ( k Rx x k Ry y ) j ( k Tx x k Ty y )
只考虑 E 和 H 的切向分量边界条件即可。
6.1 电磁波的反射、折射规律
设介质 1 和介质 2 的交界面
为无穷大平面,界面法向沿 z 方 向,平面电磁波以入射角I 由介 质 1 射向介质 2,如图所示。
第六章 平面电磁波的反射与折射
入射波、反射波、折射波的波矢量分别为
k I ekI k1 , k R ekR k1 , kT ekT k 2

电磁场与电磁波(第三版)课后答案第6章

电磁场与电磁波(第三版)课后答案第6章

第六章时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。

滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰ B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。

设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。

解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。

设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。

谢处方《电磁场与电磁波》(第4版)章节习题-第6章 均匀平面波的反射与透射【圣才出品】

谢处方《电磁场与电磁波》(第4版)章节习题-第6章 均匀平面波的反射与透射【圣才出品】

第6章 均匀平面波的反射与透射一、判断题电磁波垂直入射至两种媒质分界面时,反射系数与透射系数之间的关系为ρτ1+=。

( )ρτ【答案】√二、填空题电磁波从理想介质1垂直向理想介质2入射,介质1和2的本征阻抗分别为30Ω和70Ω,则分界面处的反射系数Γ和透射系数τ分别是_______,_______。

【答案】0.4;1.4三、简答题1.简述平面电磁波在媒质分界面处的反射现象和折射现象满足的斯耐尔(Snell )定律;并具体说明什么条件下发生全反射现象,什么是临界角,给出临界角的计算公式。

答:(1)斯耐尔(Snell )定律:①反射线和折射线都在入射面内;②反射角等于入射角,即;r i θθ=③折射角的正弦值与入射角的正弦值之比等于入射波所在的媒质的折射率与折射波所在媒质的折射率之比,即,式中sin sin ii n n ττθθ=n =(2)全反射现象:①理想导体全反射。

在电磁波入射到理想导体表面时,由理想导体表面切向电场为零的条件,反射系数为±1,称为理想导体全反射现象;②理想介质全反射。

当电磁波由光密介质入射到光疏介质时,由于,根据斯耐12n n >尔定律有。

当入射角增加到某一个角度时,折射角就可能等于。

因此,i τθθ>i θπ2c θ<τθπ2在时,就没有向介质2内传播的电磁波存在,即发生全反射现象。

c θθ>能使的入射角称为临界角,有:π2τθ=c θ21sin c n n θ==2.什么是电磁波在媒质分界面的全反射现象和全折射现象?什么是临界角和布儒斯特角?一个任意极化波由空气斜入射到一介质界面,以什么角度入射才能使反射波为线极化波?说明原因。

答:(1)当电磁波由光密介质入射到光疏介质时,由于,根据斯耐尔定律有12n n >。

当入射角增加到某一个角度时,折射角就可能等于。

因此,在i τθθ>i θπ2C θ<τθπ2时,就没有向介质2内传播的电磁波存在,即发生全反射现象。

电磁场与电磁波(第4版)第6章部分习题参考解答

电磁场与电磁波(第4版)第6章部分习题参考解答

G
G E(z)
G
=
eGx100e− j(β z+90D )
+
G ey
200e− jβ z
由 ∇ × E = − jωμ0H 得
G H
(z)
=

1 jωμ0
∇×
G E(z)
=

1 jωμ0
⎡ ⎢
G ex
⎢∂
⎢ ⎢
∂x
G ey ∂ ∂y
G ez ∂ ∂zຫໍສະໝຸດ ⎤ ⎥ ⎥ ⎥ ⎥=

1 jωμ0
G (−ex
∂Ey ∂z
G (1) 电场 E = 0 的位置;(2) 聚苯乙烯中 Emax 和 Hmax 的比值。
解:(1)

z
'
=
z

0.82
,设电场振动方向为
G ex
,则在聚苯乙烯中的电场为
G E1 ( z
')
=
G Ei
(z
')
+
G Er
(z
')
=
G −ex
j2Eim
sin
β
z
'
G 故 E1(z ') = 0 的位置为 β z ' = −nπ, (n = 0,1, 2,")
G ex
G × Ei (x)
G = ez
1
− j2 πx
e3
12π
A/m
G
G
(2) 反射波电场 Er 和磁场 Hr 的复矢量分别为
G Er (x) =
G
j2 πx
−ey10e 3
G V/m , Hr (x)

电磁场与电磁波-第六章-均匀平面波的反射和透射

电磁场与电磁波-第六章-均匀平面波的反射和透射

(
z)
z 0
Er (z) (ex jey )Eme
jz
0
所以反射波是沿-z方向传播的左旋圆极化波
电磁场与电磁波
第6章 均匀平面波的反射与透射
16
(2)在z<0区域的总电场强度
E1(z,
Re
Re
t()ex RejeyE)ie(zj)zE(r(ezx)
(ex
je
y
)
j2 sin
1= 2= 0

1 j1 j 11
2 j2 j 22
1c 1
1 1
, 2c
2
2 2
2 1 , 22
2 1
2 1
讨论
x
介质1:
1, 1
Ei
ki
Hi
kr
Er Hr
介质2:
2, 2
Et
kt
Ht
y
z
z=0
当η2>η1时,Γ> 0,反射波电场与入射波电场同相
当η2<η1时,Γ< 0,反射波电场与入射波电场反相
ex
Eim
(e
j1z
e
) j1z
H1(z) Hi (z) Hr (z) ey
媒质2中的透射波:
E2
(z)
Et
(z)
ex
Eime
j2 z
Eim
1
(e j1z
e j1z )
H2(z)
Ht
(z)
ey
Eim 2
e
j2 z
电磁场与电磁波
第6章 均匀平面波的反射与透射
20
合成波的特点
E1(z) ex Eim (e j1z e ) j1z ex Eim (1 )e j1z (e j1z e j1z ) ex Eim (1 )e j1z j2 sin 1z

谢处方《电磁场与电磁波》(第4版)课后习题-第6章 均匀平面波的反射与透射【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第6章 均匀平面波的反射与透射【圣才出品】

第6章 均匀平面波的反射与透射(一)思考题6.1 试述反射系数和透射系数的定义,它们之间存在什么关系?答:(1)反射波电场振幅E rm与入射波电场振幅E im的比值为分界上的反射系数;透射波电场振幅E tm与入射波电场振幅E im的比值为分界面上的透射系数。

(2)反射系数Γ和透射系数τ之间的关系为:6.2 什么是驻波?它与行波有何区别?答:频率和振幅均相同,振动方向一致,传播方向相反的两列波叠加后形成的波叫驻波。

行波在介质中传播时,其波等相面随时间前移,而驻波的波形不向前推进。

6.3 均匀平面波垂直入射到两种理想媒质分界面时,在什么情况下,反射系数大于0?在什么情况下,反射系数小于0?答:均匀平面波垂直入射到两种理想媒质分界时,当时,反射系数Γ>0;当时,反射系数Γ<0。

6.4 均匀平面波向理想导体表面垂直入射时,理想导体外面的合成波具有什么特点?答:均匀平面波向理想导体表面入射时,理想导体外面的合成波具有特点如下:合成波电场和磁场的驻波在时间上有的相移,在空间上也错开了且在导体边界上,电场为零。

驻波的坡印廷矢量的平均值为零,不发生电磁能量的传输过程,仅在两个波节之间进行电场能量和磁场能量的交换。

6.5 均匀平面波垂直入射到两种理想媒质分界面时,在什么情况下,分界面上的合成波电场为最大值?在什么情况下,分界面上的合成波电场为最小值?答:当均匀平面波垂直入射到两种理想媒质分界面时,的位置时,分界面上的合成波电场为最大值。

的位置时,分界面上的合成波电场为最小值。

6.6 一个右旋圆极化波垂直入射到两种媒质分界面上,其反射波是什么极化波?答:右旋圆极化。

6.7 试述驻波比的定义,它与反射系数之间有什么关系?答:驻波比的定义是合成波的电场强度的最大值与最小值之比,即6.8 什么是波阻抗?在什么情况下波阻抗等于媒质的本征阻抗?答:在空间任意点,均匀平面波的电场与磁场强度的模值之比称为自由空间的波阻抗,在均匀无耗各向同性的无界媒质中,均匀平面波的电场与磁场的模值之比称为媒质中的阻波抗。

电磁场与电磁波课程教学大纲

电磁场与电磁波课程教学大纲

《电磁场与电磁波》课程教学大纲一、课程基本信息课程代码:课程名称:电磁场与电磁波英文名称:Electromagnetic Fields and Electromagnetic Waves课程类别:专业基础课学时:63学分:3适用对象: 电子信息专业考核方式:考试先修课程:大学物理、高等数学与工程数学(包括矢量分析,场论和数理方程等)二、课程简介电磁场与电磁波是通信技术的理论基础,是电子信息专业本科学生的知识结构中重要组成部分。

本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。

使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。

培养学生正确的思维方法和分析问题的能力,使学生学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。

为后续课程打下坚实的理论基础。

Electromagnetic Field and Electromagnetic Wave is the theoretical foundation of communication technology, it is one of the most important components of the knowledge structerue for undergraduate students who major in information and electronic. Electromagnetic Field and Electromagnetic Wave make students grasp the theorem and the physical meaning of the Maxwell equations and mathematical expressions. It also make students grasp building method and analyzing method of some important mathematical model (such as wave equation,Laplace equation). This course trains students on the proper ways of thinking and ability to analyze issues, It also provides a solid theoretical foundation for following courses.三、课程性质与教学目的一切电现象,都会产生电磁场,而电磁波的辐射与传播规律,更是一切无线电活动的基础。

电磁场与电磁波(第6章)

电磁场与电磁波(第6章)
由导线构成的天线,具有结构简单、成本低、易于制造等优点, 广泛应用于通信、广播等领域。
面天线
由金属面或金属网构成的天线,具有增益高、方向性强等优点,常 用于卫星通信等领域。
阵列天线
由多个天线单元组成的阵列,通过相位和振幅的调整实现定向辐射 和接收,具有较高的增益和方向性。
天线接收原理
电磁波接收
天线通过感应电磁场中的变化,将电磁波转化为电流或电压信号。
波的极化
电磁波的极化是指电场矢量的方向随时间变化的方式,可以分为线极化、圆极化和 椭圆极化等类型。
极化的方向和方式由波源和传播介质共同决定,不同的极化方式会导致电磁波与物 质的相互作用方式不同。
在某些情况下,极化方式的变化可以用于信息传输和信号处理等领域,例如在雷达、 卫星通信和无线通信等领域的应用。
屏蔽是利用导电或导磁材料将需要保 护的电子设备或系统包围起来,以减 少外界电磁场对它们的干扰。
接地是将电子设备或系统的接地端子 与大地连接起来,以减少外界电磁场 对它们的干扰。
THANKS FOR WATCHING
感谢您的观看
电磁场与电磁波(第6 章
目录
• 电磁场的基本性质 • 电磁波的传播 • 电磁波的应用 • 电磁波的吸收与散射 • 电磁波的辐射与接收 • 电磁波的干扰与防护
01
电磁场的基本性质
电场与磁场的关系
电场与磁场是电磁场的两个基本组成部 分,它们之间存在相互依存的关系。变 化的电场会产生磁场,变化的磁场又会 产生电场,它们相互激发,形成电磁波
反射等。
05
电磁波的辐射与接收
天线辐射原理
电磁波辐射
天线通过电流在空间中产生变化的磁场,进而产生电 磁波辐射。
辐射效率

《电磁场与电磁波》(陈抗生)习题解答选

《电磁场与电磁波》(陈抗生)习题解答选

《电磁场与电磁波》(陈抗生)习题解答第一章 引言——波与矢量分析1.1.,,/)102102cos(1026300p y v k f E m V x t y y E E 相速度相位常数度,频率波的传播方向,波的幅的方向,,求矢量设解:m /V )x 102t 102cos(10y y E z E y E x E E 26300y 0z 0y 0x矢量E 的方向是沿Y 轴方向,波的传播方向是-x 方向;波的幅度m /V 10E E 3y。

s /m 10102102k V ;102k ;MHZ 1HZ 1021022f 826P 2661.2写出下列时谐变量的复数表示(如果可能的话))6sin()3sin()()6(cos 1)()5()2120cos(6)()4(cos 2sin 3)()3(sin 8)()2()4cos(6)()1(t t t U t t D t t C t t t A tt I t t V(1)解:4/)z (vj 23234sin j 64cos6e6V 4j(2)解:)2t cos(8)t (I2)z (vj 8e 8I j 2(3)解:)t cos 132t sin 133(13)t (Aj32e13A 2)z ()2t cos(13)t (A 133cos )2(j v则则令 (4)解:)2t 120cos(6)t (Cj 6e6C 2j(5)(6)两个分量频率不同,不可用复数表示1.3由以下复数写出相应的时谐变量])8.0exp(4)2exp(3)3()8.0exp(4)2(1)1(j j C j C jC(1)解:t sin t cos j t sin j t cos )t sin j t )(cos j 1(e )j 1(t jt sin t cos )Ce (RE )t (C t j(2)解:)8.0t cos(4)e e 4(RE )Ce (RE )t (C t j 8.0j t j(3)解:)8.0t (j )2t (j tj 8.0j j tj e 4e3e)e4e3(Ce2得:)t cos(3)8.0t cos(4)8.0t cos(4)2t cos(3)Ce (RE )t (C tj1.4]Re[,)21(,)21(000000B A B A B A B A z j y j x B z j y j x A ,,,求:假定解:1B A B A B A B A z z y y x x0000000000z y x z y x 000z y x 6)B A (RE j)j 21(1j 21j 1z y x B A j 21B A z )j 21(x B z )j 1(y )j 31(x )4j 4(B B B A A A z y x B A得到:则:1.5计算下列标量场的梯度xyzu xy y x u xz yz xy u z y x u z y x u )5(2)4()3(2)2()1(22222222(1)解:u u grad )(22022022022202220222222z z y x y yz x x z xy z z z y x y y z y x x x z y x(2)解:u u grad )(000224z z y y x x(3) 解:u u grad )(000)()()(z x y y z x x z y(4)解:u u grad )(00)22()22(y x y x y x(5)解:u u grad )(000z xy y xz x yz1.6)处的法线方向,,在点(求曲面21122y x z解:梯度的方向就是电位变化最陡的方向令z y x T22则代入锝:将点)2,1,1(22000z y y x x T法线方向与00022z y x同向1.7求下列矢量场的散度,旋度200022000002020265)4()()()3()()()()2()1(z x y yz x A y y x x y x A z y x y z x x z y A z z y y x x A(1)解:zA y A x A A A div zy x)(z y x 2220)(222000z y x z y x z y x A A curl(2)解:div(A)=0curl(A)=0(3)解:div(A)=1+2y022000)12(0)(z x y x yx z y x z y x A A curl(4)解:div(A)=6z002002665)(y x x y x yz z y x z y x A A curl1.11Sh z z r y x S S d A x x A 组成的闭合曲面是由其中,求若矢量场,0,,2220解:由散度定理可得:hr dV dVx x h z r y x V dV A dS A VV s V20222)]([),()(围成的体积为1.12)()()(,,000000B A A B B A z B y B x B B z A y A x A A z y x z y x试证明:假定证明:)(B AzB A B A y B A B A xB A B A B A B A z B A B A y B A B A x B B B A A A z y x x y y x z x x z y z z y x y y x z x x z y z z y z y x zy x)()()()]()()([000000)()()()()()()()(B A A B y B x B A x B z B A z B y B A yA x AB x A z A B z A y A B zB A B A A B A B yB A B A A B A B xB A B A A B A B x y z z x y yz x x y z z x y yz x xy y x y x x y zx y z x z z x y z z y z y y z1.13AA A A A A)()2()()1(证明:(1)证明:证毕右边左边右边左边z A y A x A z A A y A A x A A zA y A x A z z y y x x z A y A x A zA y A x A z A y A x A z y x z z y y x x z y x z y x zy x z y x )()()()(000000000(2)证明:证毕左边右边左边zyx z y x zy xA A A z y x z y x A A A z y x z y x A A A A A z y x z y x A 000000000)(1.14 证明:)()2(0)()1( A(1)证明:证毕)]()()([)(222222000000y z A z x A y x A y z A z x A y x A yA x A z x A z A y z A y A x A A A z y x z y x A x y z x y z xy z x y z zy x(2)证明:证毕0)()(000000zy x z y x z y x z zy y x x第二章 传输线基本理论与圆图2.1710'0.042/'510/'510/'30.5/R m L H m G S mC pF mk Z 市话用的平行双导线,测得其分布电路参数为:求传播常数与特征阻抗。

电磁场与电磁波(第六章)

电磁场与电磁波(第六章)
E
2
t

H

E
2
t
2
0
二、H 的波动方程
同E 的波动方程,有
H
2
H
2
t
2
0
三、直角坐标系下的波动方程

2
为矢量的拉普拉斯算符,则有 磁场
2 2 2
电场
Ex Ex Ex Ex 0 2 2 2 2 x y z t 2 2 2 2E Ey Ey Ey y 0 2 2 2 2 x y z t 2 2 2 2E Ez Ez Ez z 0 2 2 2 2 x y z t
三、媒质的本构关系式 对于线性各向同性媒质有
D E 0 r E B H 0 r H J E
四、麦克斯韦方程组的限定形式 ◇ 麦氏方程的非限定形式:用E、D、B、H四个场量写出的方程。 ◇ 麦氏方程的限定形式:用E、H 二个场量写出的方程。 微分形式
H E E t
in
E dl
C
◇ 穿过回路的磁通量为 综上可得
m
B d S
S
法拉第电磁感应定律的积分形式

C
E dl =
B dS dt
S
d
法拉第电磁感应定律的微分形式 E 五、意义
B t
◇ 积分形式:感应电场在时变磁场中沿闭合曲线的线积分等于该曲线所围曲面 上穿过磁通的负变化率。 ◇ 微分形式: 1.感应电场是涡旋场,不是保守场; 2.感应电场的源是时变的磁场。
1
l
H 1t
H1

C
H dl JS dS +

电磁场与电磁波第6章习题答案

电磁场与电磁波第6章习题答案

第6章习题答案6-1 在1=r μ、4=r ε、0=σ的媒质中,有一个均匀平面波,电场强度是)3sin(),(πω+-=kz t E t z E m若已知MHz 150=f ,波在任意点的平均功率流密度为2μw/m 265.0,试求:(1)该电磁波的波数?=k 相速?=p v 波长?=λ波阻抗?=η (2)0=t ,0=z 的电场?)0,0(=E(3)时间经过μs 1.0之后电场)0,0(E 值在什么地方?(4)时间在0=t 时刻之前μs 1.0,电场)0,0(E 值在什么地方? 解:(1))rad/m (22πεπμεω===r cfk )m/s (105.1/8⨯==r p c v ε)m (12==kπλ )Ω(60120πεμπη=rr=(2)∵ 6200210265.02121-⨯===m rm av E E S εεμη∴ (V/m)1000.12-⨯=m E)V/m (1066.83sin)0,0(3-⨯==πm E E(3) 往右移m 15=∆=∆t v z p(4) 在O 点左边m 15处6-8微波炉利用磁控管输出的2.45GHz 频率的微波加热食品,在该频率上,牛排的等效复介电常数)j 3.01(40~-=rε。

求: (1)微波传入牛排的穿透深度δ,在牛排内8mm 处的微波场强是表面处的百分之几?(2)微波炉中盛牛排的盘子是发泡聚苯乙烯制成的,其等效复介电常数=r ε~ )103.0j 1(03.14-⨯-。

说明为何用微波加热时,牛排被烧熟而盘子并没有被毁。

解:(1)20.8mm m 0208.011211212==⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+==-ωεσμεωαδ%688.20/8/0===--e e E E z δ(2)发泡聚苯乙烯的穿透深度(m)1028.103.1103.01045.22103212213498⨯=⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛===-πμεωεσωμεσαδ可见其穿透深度很大,意味着微波在其中传播的热损耗极小,所以不会被烧毁。

电磁场与电磁波课后答案_郭辉萍版1-6章

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:⑴矢量A 的单位矢量A a ; ⑵矢量A 和B 的夹角AB θ; ⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B )·C ;⑸A ⨯(B ⨯C )和(A ⨯B )⨯C解:⑴A a =A A=149A++=(x a +2y a -3z a )/14⑵cos AB θ=A ·B /A BAB θ=135.5o⑶A ·B =-11, A ⨯B =-10x a -y a -4z a ⑷A ·(B ⨯C )=-42(A ⨯B )·C =-42⑸A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。

解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。

解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z -x)⑵验证散度定理。

电磁场与电磁波理论第6章习题解答

电磁场与电磁波理论第6章习题解答

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第6章习题解答(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第6章习题解答已知空气中存在电磁波的电场强度为 ()80cos 6π102πy E e E t z =⨯+V /m试问:此波是否为均匀平面波传播方向是什么求此波的频率、波长、相速以及对应的磁场强度H 。

解:均匀平面波是指在与电磁波传播方向相垂直的无限大平面上场强幅度、相位和方向均相同的电磁波。

电场强度瞬时式可以写成复矢量j 0e kz y E e E -=。

该式的电场幅度为0E ,相位和方向均不变,且0z E e ⋅=⇒z E e ⊥,此波为均匀平面波。

传播方向为沿着z -方向。

由时间相位86π10t t ω=⨯ ⇒ 86π10ω=⨯ 波的频率Hz 1038⨯=f 波数2πk =波长2π 1 m k λ== 相速p 310 m/s v kω==⨯ 由于是均匀平面波,因此磁场为j 0w w1() e kz z x E H e E e Z Z -=-⨯=有一频率为600MHz 的均匀平面波在无界理想介质(r r 4,1εμ==)中沿x +方向传播。

已知电场只有y 分量,初相位为零,且010t t ==s 时,1x =m 处的电场强度值为800kV /m 。

试写出E 和H 的瞬时表达式。

解:根据题意,角频率812π10ω=⨯,r r 0028πk cωωεμεμεμ====,因此 80cos(12π108π)y E e E t x =⨯-由s 10=t ,m 1=x 处的电场强度值为kV/m 800,可以得到kV/m 8000=E8800cos(12π108π) kV/m y E e t x =⨯-根据电场的瞬时表达式可以写出电场的复矢量为j8π800e kV/m x y E e -=波阻抗为()0r w r 060π ΩZ μμμεεε===。

高中物理必修三第六章 第四节 电磁波及其应用

高中物理必修三第六章 第四节 电磁波及其应用
1.麦克斯韦电磁场理论 (1) 变化 的电场产生磁场. (2) 变化 的磁场产生电场 2.电磁场:变化的 电场 和变化的 磁场 构成了一个不可分离的统一的场. 3.电磁波 变化的电磁场在空间中的传播形成电磁波.
二、电磁场的物质性
1.微波炉利用电磁波加热食物,说明电磁场具有 能量 . 2.彗星尾是太阳光的光压压迫彗星尘埃物质形成的,表明电磁场具有与 其他物质 相互作用 的属性. 3.电磁场具有能量、具有运动 质量 .光压现象说明电磁场具有质量. 4.电磁场和电荷系统相互作用时遵守 动量 守恒定律和 能量 守恒定律. 5.电磁场具有质量、能量,物质间可以相互作用,遵守动量守恒定律和 能量守恒定律,所以电磁场是一种 物质 .
例4 电磁波在真空中传播的速度c=3×108 m/s,有一个广播电台的频率f=
90.0 MHz,这个电台发射的电磁波的波长λ为
A.2.70 m C.3.00 m
B.270 m
√D.3.33 m
根据 c=λf 可得,λ=903.×0×101806 m≈3.33 m.
三、电视广播、雷达、移动电话、电磁波谱
(2)不同频率的电磁波的比较
名称 特性
主要应用
无线 电波
红外线 可见光 紫外线 X射线 γ射线
灭菌、
通信、 红外探测器、 引起
医学透 治疗疾病、
消毒、
广播 红外体温计 视觉
视、安检 金属探伤
防伪
真空中的速度
c=3×108 m/s
频率
小→大
例5 雷达向远处发射无线电波,每次发射的时间是1 μs,两次发射的时间 间隔为100 μs,在指示器的荧光屏上呈现出的尖形波如图所示,已知图 中ab=bc,则障碍物与雷达之间的距离是多大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(三个一维波叠加)
2 2 2 2 2 2 x 2 y 2 z 2 x 2 y 2 z 2 X x vt Y y vt Z z vt
2 X x vt 2Y y vt 2 Z z vt 2 2 2 2 x y 2 z2
X x vt Y y vt Z z vt
(代入三维波动方程)
类似地有
2 2 2 2 v X x vt v Y y vt v Z z vt 2 t
这样便证明了函数:
X x vt Y y vt Z z vt
沿着 Z 方向传播的行波
以速度v向前传播的波
任何变量为(z-vt)的函数所描述的波是随时间变化沿着z轴正方向传播; 任何变量为(z+vt)的函数所描述的波则是随时间变化沿着z轴负方向传播
问 题

z vt 和 z vt 为变量的函数满足一维波动方程?
1 2 2 z v t 2
假设 B 是空间和时间无关的函数,那么我们就可以将上式右边的运
算顺序交换,并在其左边运用矢量三重积恒等式,有
2 ( E )- E - ( B ) t
1 E 2 E 2 2 c t
2
1 E - 2 E - ( 2 ) t c t
亥姆霍兹方程
在时谐时情况下,将 、 ,即可得到复 复矢量
矢量的亥姆霍兹方程。 瞬时矢量
理想介质
6.4 自由空间中的均匀平面波
设在无限大的无源空间中,充满线性、各向同性的均匀理想 介质。均匀平面波沿 z 轴传播,则电场强度和磁场强度均不是 x 和 y 的函数,即
面上的一小部分可视为平面,该处的电磁波可
称为均匀平面电磁波。
三维波动方程:
2 2 2 1 2 2 2 2 2 2 x y z v t

1 2 2 v t
2 2
三个一维波叠加起来所得到结果也将会满足三维波动 方程 证明:
2
X x vt Y y vt Z z vt
2 2
则表示一个随时间和空间变化的任意函数,例如,力、
v
位移或概率。 表示函数 的传播速度
试证
例:
f z vt g z vt
满足一维波动方程
证明: 首先考虑函数 f f z vt
则有
f z vt z
f z vt
2 1 2 2 v t 2
满足三维波动方程
6.3 电波与磁波 关于电波 已知
E 0 E B / t
方程二两边取旋度得
B 0
2
c B E / t
( E) (B / t )
第6章 自由空间中的 电磁波
J
自由空间是一个没有电荷因而也就
自由空间?
不存在电流的空间。 这并不是说在 整个空间中没有源存在,而只是指 在我们所感兴趣的区域不存在源,
这个区域应有=0和 J =0。
这样,一般形式的麦克斯韦方程式组就变得特别简单,即为:
E 0 E B / t
二阶导数
2 f z
2
f z vt
函数 f f z vt 对时间的导数则为 f z vt v f z vt t 2 f 2 2 f z vt v f z vt 2 并且 t t 2 所以有
2 2 f 1 f 2 2 v t z 2
这就是一维 波动方程
g 对于函数,
g z vt 也可以得出类似的结果。
根据叠加定理,我们就证明了 f z vt g z vt 满足一维波动方程。
6.2 均匀平面波与三维波动方程
定义
与上一节中给出的三维波动方程形式相同
由于
1
0 0
c2
上式还可表示为
E 2 E 0 0 2 0 t
2
此式又被称为亥姆霍兹方程(Helmholtz equation)。
关于磁波
亥姆霍兹磁场方程的导出
c B E / t
2
两边取旋度得
变化的电场产生磁场 2 c ( B) E / t NhomakorabeaB 0
2
c B E / t
表明:变化的电场产生变化的磁场,变化的磁场产生变化的 电场,二者相互依存。
自由空间中存在着电波( E 波)和磁波( B 波)?
电场与磁场
λ(波长)
观看波形图
J
6.1 波的数学描述
1. 波的数学形式
自变量为(z-vt)的函数f(z-vt)表示以速度 v 沿着 Z 方向传播的行波(Traveling wave)
假设 E 是空间和时间无关的函数, 左边运用矢量三重积恒等式,有
2 c B B E t
2




2
与上一节相类似的推导,我们可以推断在自由空间中也存在着以 光速传播的磁波
亥姆霍兹磁场方程
B 2 B 0 0 2 0 t
平面波,是三维波中最简单的一种。这个波在空间 传播过程中,对应于任意时刻t,在其传播空间具 有相同相位的点所构成的等相位面(也称为波阵面 即波源发出的电磁波经相同时间到达的各点组成的 面。 )为平面,于是就称其为平面波。
观看波形图
理解
均匀平面波是研究起来最简单同时也是最 容易理解的。 均匀(Uniform):在任意时刻,在所在的 平面中场的大小和方向都是不变的。 在距离电磁波的激励源很远处,球面波阵
相关文档
最新文档