杆梁结构的有限元分析原理[详细]

合集下载

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理

e
下面考察该简单问题的FEA求解过程。 (1) 离散化
两个杆单元,即:单元①和单元②
(2) 单元的特征及表达
对于二结点杆单元,设该单元的位移场为 么它的两个结点条件为
,那
设该单元的位移场具有模式(考虑两个待定系数)
利用结点条件,可以确定系数a0和a1,即
将系数a0和a1代入
,可将
表达成结点位移(u1, u2)的关系,即
其中, 为整体坐标系下的单元刚度矩阵, 为 整体坐标系下的结点力,即
由最小势能原理(针对该单元),将 对待定的 结点位移向量 取一阶极小值,有整体坐标系中 的刚度方程
对于本节给出的杆单元,具体有
4.3.3 空间问题中杆单元的坐标变换
就空间问题中杆单元,局部坐标系下的结点位移还 是 而整体坐标系中的结点位移为
这时由全部结点位移[0 u2 u3]分段所插值 出的位移场为全场许可位移场。
由最小势能原理(即针对未知位移u2和u3求 一阶导数),有
可解出
(5) 计算每个单元的应变及应力
在求得了所有的结点位移后,由几何方程
可求得各单元的应变
由方程 可求得各单元的应力
(6) 求结点1的支反力
就单元 ①的势能,对相应的结点位移求极值,可以 建立该单元的平衡方程,即
其中
由一维问题几何方程和物理方程,则该单元 的应变和应力为
其中
单元的势能
其中 叫做单元刚度矩阵。
叫做单元结点外载。
在得到“特征单元”的单元刚度矩阵和单元 结点外载后,就可以计算该单元的势能,因 此,计算各单元的矩阵 和 是一个关 键,下面就本题给出了个单元的 和 。
具体就单元①,有 单元①的结点位移向量
(5) 单元的刚度方程

2_杆系结构有限元分析1

2_杆系结构有限元分析1

( x) Nii N j j
x x N 1 , N 其中 i 为形函数。 j l l
由材料力学扭转可知
d dN e e M GI p GI p θ GI p B θ dx dx
其中 B
dN 1 1 dx l l
§1-2 扭转杆单元
e
外力势能 V u
e

e T
fe
e
1 e T e e e T 总势能 U V u K u u f e 2
e e
§1-1 拉(压)杆单元
1 e T e e e T U V u K u u f e 2
e e e
根据最小势能原理,势能泛函取驻值的必要条件
空间杆单元坐标变换矩阵
0 T 0
单元在两个坐标系中刚度矩阵转换关系同样有
K e T T K ' T
e
矩阵中仅仅包含有坐标的倾角,仅平行移动坐标轴,刚度矩阵 中元素值不变,矩阵的阶数也不改变。
§1-2 扭转杆单元
结点位移向量θe i , j
T
结点力向量
平衡关系
杆单元结点力向量
f U i
e
Uj
T
单元在外力和内力作用下处于平衡状态,反映单元平衡状态 的关系式就是刚度方程。下面利用最小势能原理推导单元的 刚度方程。 最小势能原理:在满足连续条件和边界条件的位移中,满足 平衡条件的位移其总势能最小,反之亦然。 单元总势能
e U e V e
M e Mi , M j
T
杆件发生自由扭转时,待求位移是截面的扭转角 ( x) 在局部坐标系中,每一个点将具有一个基本未知位移,最简单 的单元位移函数可以设为

杆梁结构有限元分析

杆梁结构有限元分析

3.1 杆梁结构的直接解法
机械分社
(1)平面压杆有限元法的直接法
由节点平衡有: 即有:
U1(1)u1 U1(1)u2 N1
U
u (1)
21
(U
(2 2
)
U
(1) 2
)u2
U
(2 2
)u3
F1
U
(2 3
)
u2
U
(2 3
)
u3
F2
EA1 l1
u1
EA1 l1
u2
N1
EA1 l1
u1
( EA1 l1
3.1 杆梁结构的直接解法
机械分社
杆梁结构是指长度远大于其横截面尺寸的构件组成的杆 件系统,例如机床中的传动轴,厂房刚架与桥梁结构中的梁 杆等,可以用杆单元或梁单元来进行离散化。
空间杆系:平面杆系是指各杆轴线和外力作用线位于一 个平面内,若各杆轴线和外力作用线不在一个平面内。 (1)平面压杆有限元法的直接法
单元刚度矩阵每一列元素表示一组平衡力系,对于平面 问题,每列元素之和为零。
3.1 杆梁结构的直接解法
机械分社
(2)平面梁单元有限元法的直接法 2)节点位移与节点力之间的关系
Ui
Vi
k11
k21
M i U j
k31
k41
V
j
M j
k51
k61
他们在轴和轴的投影之和等于零:
vi
6EI l2
i
12EI l3
vj
6EI l2
j
M
j
6EI l2
vi
2EI l
i
6EI l2
vj
4EI l

第五章杆系结构的有限元法

第五章杆系结构的有限元法

第五章 杆系结构的有限元法 5.1 引言杆系结构是工程中应用较为广泛的结构体系,包括平面或空间形式的梁、桁架、刚架、拱等。

其组成形式虽然复杂多样,但用计算机进行分析时却较为简单。

杆系结构中的每个杆件都是一个明显的单元。

杆件的两个端点自然形成有限元法的节点,杆件与杆件之间则用节点相连接。

显然,只要建立起杆件两端位移与杆端力之间的关系,则整体平衡方程的建立与前几章完全相同。

杆端位移与杆端力之间的关系,可用多种方法建立,包括前面几章一直采用的虚功原理,但是采用材料力学、结构力学的某些结论,不仅物理概念清晰、直观,而且推导过程简单明了。

因此,本章将采用这种方法进行单元分析。

至于整体平衡方程的建立,则和前面几章所讲的方法一样,即借助于单位定位向量,利用单元集成法进行。

5.2 平面桁架的有限元分析平面桁架在计算上有以下几个特点: 1. 杆件的每个节点仅有两个线位移; 2. 杆件之间的连接为理想铰,即在节点处各杆件可相对自由转动,且杆件轴线交于一点。

3. 外载荷均为作用于节点的集中力。

由于以上特点,所以在理论上各杆件只产生轴向拉、压力,截面应力分布均匀,材料可得到充分利用,因此桁架结构往往用于大跨结构。

5.2.1 局部坐标系下的单元刚度矩阵从平面桁架中任取一根杆件作为单元,称作桁架单元,单元长为L ,横截面面积为A ,图5.1。

两端节点分别用i 和j 表示,规定从i 到j 的连线方向为局部坐标x 轴,垂直于x 的方向为y 轴。

图5.1由于桁架中各杆只产生轴向力和轴向变形,所以节点i 和j 只发生沿x 方向的位移,用i u 和j u 表示,相应的杆端轴力分别用xi F 和xj F 表示。

由虎克定律可推得)()()(j i i j xj j i xi u u L EA u u L EA F u u LEAF --=-=-=将这两个式子写成矩阵形式,就是e j i exj xi u u L EA LEA L EA L EA F F ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (5.1)显然,在局部坐标系下,i 、j 两节点沿y 轴方向的位移0==j i v v ,在y 轴方向的节点力0==yj yi F F 。

桥梁结构分析的有限元原理及其程序简介

桥梁结构分析的有限元原理及其程序简介


e FEe = K E Rδ e
其中 R 为坐标变换矩阵。 若 e 号单元内还作用有跨间荷载以及给定的温 度分布,它们在局部坐标系下的单元等效结点荷载 分别记为 Pqe 和 PTe ,则
e e FE = ΚE Rδe − Pqe − Pte
以上即杆系结构有限元法的基本计算过程。
1.2 有限元软件简介
1.2有限元软件简介
与通用有限元的区别
ANSYS MIDAS/CIVIL
前处理 单元、材料、边界、荷载
前处理 单元、材料、边界、荷载、施工过程、 预应力、收缩徐变等 求解 静力、动力、稳定等 后处理 显示、列表、时程等 设计验算 基于规范的荷载组合、 设计验算
求解 静力、动力、稳定等
后处理 显示、列表、时程等
1. 桥梁结构分析的内容
• (1)桥梁一般是分阶段逐步施工完成的,结构最终受力 状态往往与施工过程有着很大的关系,因而结构分析必须 按实际的施工过程和结构形成的过程逐阶段进行分析,并 且能够自动累加各阶段的内力和位移等。 (2)计算成桥后在二期恒载,支座不均匀沉降、混凝土 长期收缩、徐变效应、温度变化等作用下的内力和位移。 (3)计算各种活载引起的内力和位移,包括影响线或影 响面的计算以及对它们进行纵向、横向的加载等。 (4)计算各种偶然荷载(加地震)等引起的内力和位移。 (5)按规范对上述各种荷载引起的内力和位移进行组 合,得出最不利的组合情况。 (6)按规范进行强度、刚度、抗裂性、稳定性以及动力 性能验算。
2.2 桥梁结构分析的施工过程及体系转换 • 比如,同为三跨连续梁,在合拢的先后顺 序上,先合拢边跨还是中跨对结构成桥内 力是有影响的; • 有时为了获得良好的成桥线形或内力,可 以在施工中采取一些辅助措施。

有限元分析梁单元内力计算

有限元分析梁单元内力计算

1.385 0 3.462 1.385 0 3.462 0 0 0
0 252 0 0 252 0 0 0 0
3.462 0 11.541 3.462 0 5.711 0 0 0
K
103
1.385 0
0 252
3.462 0
253.385 0 0 253.385
3.462 3.462
py3 m3
px3
6.25
5.208
py3 m3
6. 引入约束条件, 构成总体方程
2 px1 p y1
2.5 m1 3
4.25
1.385
0
3.462
103
1.385 0
0 252 0 0 252
3.462 0
11.541 3.462
0
1.385 0
0
0 1.385 3.462 0 1.385 3.462
[
K112
]
[
K
2 23
]
103
0 252
3.462 0
11.542 0
0 252
3.462 0
5.771 0
0 1.385 3.462 0 1.385 3.462
0 3.462 5.771 0 3.462 11.542
3. 单元刚度矩阵的座标变换
求:每根梁的内力。
P2 1kN P1 4kN
2.5m
解:
1.建座标系,对梁单元各节点编号 如图所示。
2.5m
2单元,三节点系统(即自然划分。也可以在集中 力作用处设一节点)。由于每一节点有3个自由度 ,故系统有9个自由度。总刚度矩阵[K]为9×9阶
y 2
5m
②3

梁的有限元分析原理

梁的有限元分析原理
y
j
·
x

Chapter 5 Bernoulli-Euler Beam
z
27
福州大学研究生课程-有限元程序设计
平面桁架杆单元(2D LINK1)
空间杆单元(3D
LINK8)
平面刚架,BEAM3 空间梁单元(BEAM4)
Chapter 5 Bernoulli-Euler Beam
28
福州大学研究生课程-有限元程序设计
举例说明
Chapter 5 Bernoulli-Euler Beam
18
福州大学研究生课程-有限元程序设计
这种高斯积分阶数低于被积函数所有项次精确 积分所需要阶数的积分方案称之为减缩积分。 实际计算表明:采用缩减积分往往可以取得较 完全积分更好的精度。这是由于: 精确积分常常是由插值函数中非完全项的 最高方次要求,而决定有限元精度的是完全多 项式的方次。这些非完全的最高方次项往往不 能提高精度,反而可能带来不好的影响。取较 低阶的高斯积分,使积分精度正好保证完全多 项式方次的要求,而不包括更高次的非完全多 项式的要求,其实质是相当用一种新的插值函 数替代原来的插值函数,从而一定情况下改善 19 Chapter 5 Bernoulli-Euler Beam 了单元的精度。
福州大学研究生课程-有限元程序设计
有限元程序设计
——梁单元,静力问题
谷 音 福州大学土木工程学院
2012
1
福州大学研究生课程-有限元程序设计
§1. 介绍. 框架结构,例如桁架、桥梁 轴力构件 axial elements 杆 受弯构件 flexural elements 梁 平面梁单元 plane beam element
Chapter 5 Bernoulli-Euler Beam

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理杆梁结构是工程中常用的一种结构形式,它由多个杆件或梁组成,用于承担载荷和传递力量。

有限元分析是一种通过将结构离散为许多小单元,利用数学方法对结构进行分析的技术。

下面将详细介绍杆梁结构的有限元分析原理。

一、杆件离散化在有限元分析中,首先需要将杆梁结构离散化为一组子结构,即离散化为一组离散的杆件。

离散后的每个杆件可以看作是一个子系统,每个子系统由两个节点组成,节点之间以杆件连接。

通过节点与杆件的连接方式,能够模拟出整个杆梁结构的受力特点。

离散化的过程中,需要确定杆件的几何形状、截面以及材料特性等参数,并根据实际情况设置合适的杆件单元数目。

通常,单元数目越多,离散程度越高,结果越接近真实情况,但计算成本也会增加。

二、有限元法的基本原理有限元方法的基本原理是将结构分成许多小的单元,每个单元内的行为可以用简单的数学函数来表示。

对于杆梁结构,常用的单元有梁单元和杆单元。

梁单元适用于承受弯曲强度较大的杆件,而杆单元适用于承受轴向载荷的杆件。

通过将结构分成小单元后,可以建立一个与原结构相似的离散模型,并在每个单元上建立相应的方程。

三、应力应变关系在进行有限元分析时,需要获得每个杆件的应变和应力。

应变与杆件的变形有关,而应力与应变之间的关系则与材料的本构关系有关。

对于线弹性材料,应力与应变之间可以通过胡克定律来描述。

胡克定律表明,应力与应变之间成线性关系,材料的弹性模量E、泊松比ν以及应变关系能够决定应力。

应根据结构中不同材料的应变特性来选择相应的材料模型。

四、施加边界条件在进行有限元分析前,需要施加适当的边界条件。

边界条件用于模拟实际情况中的约束和限制。

常见的边界条件有固定边界、弹性边界和施工阶段边界。

五、求解位移和应力当离散化杆梁结构、建立了位移和应变关系、施加了边界条件之后,可以通过数值求解方法,例如有限元法中的坐标变形法,计算得到结构的位移和应力。

坐标变形法能够基于得到的位移结果,进一步计算应力。

第二章-杆和梁结构的有限元法案例

第二章-杆和梁结构的有限元法案例

第二章
杆和梁结构的有限元法
§2.1.2 弹簧系统分析
注意: 上述弹簧系统的分析求解原理和过程就是有限元 法求解连续体力学问题时对离散后系统的分析求 解原理和过程。
第二章
杆和梁结构的有限元法
§2.1.2 弹簧系统分析
例题1:弹簧系统
已知条件:
求:(a) 系统总刚度矩阵 (b) 节点2,3的位移
单元特性
系统平衡方程
第二章 杆和梁结构的有限元法
KD F
2)单元方程扩大相加法 单元特性
F1 f11
相加
F2 f 21 f12 F3 f 22
系统节点 平衡条件
引入系统节点平衡条件
KD F
系统节点平衡方程
第二章 杆和梁结构的有限元法
2.2 杆单元和平面桁架
杆单元
2.2.1 一维等截面 杆单元
fi k f j k
第二章
k ui k u j
f kd
杆和梁结构的有限元法
2、弹簧系统的集成 1)列节点平衡方程法
F1 f11 F2 f 21 f12 F3 f 22
系统节点 平衡条件
F1 k1u1 k1u2 F2 k1u1 ( k1 k2 )u2 k2u3 F3 k2u2 k2u3
第二章 杆和梁结构的有限元法
k k k
k k
fi k f j k
k ui k u j
kii k k ji
kij k jj
§2.1.2 弹簧系统分析
求解一个弹簧系统:
1)各单元的特性分别为:
第二章 杆和梁结构的有限元法

杆梁结构的有限元分析

杆梁结构的有限元分析

【典型例题】3.1.2(2) 变截面杆单元的推导
如图3-5所示,有一受轴载荷的线性变截面杆件,两端的截 面积为A1和A2,长度为l,材料的弹性模量为E,试建立描述该 杆件的一个杆单元。
3.1.3 杆单元的坐标变换
1. 平面杆单元的坐标变换
在工程实际中,杆单元可能处于整体坐标系(global coordinate system)中的任意一个位置,如图3-6所示,这需要 将原来在局部坐标系(local coordinate system)中所得到的单元 表达等价地变换到整体坐标系中,这样,不同位置的单元才 有公共的坐标基准,以便对各个单元进行集成(即组装)。图3-6 中的整体坐标系为( ),杆单元的局部坐标系为(ox)。
下面针对图3-2所示的一端固定的拉杆问题,分别讨论 基于直接求解方法以及基于试函数的间接方法的求解过程。
【求解原理】3.1.1(3) 1D问题的直接求解
【求解原理】3.1.1(4) 1D问题的虚功原理求解
先以一个简单的结构静力平衡问题来描述虚功原理的基本思 想,然后再具体求解一端固定的拉杆问题。
【基本变量】3.1.1(1) 1D问题的基本变量 由于该问题是沿x方向的一维问题,因此只有沿x
方向的基本变量,即 定义沿x方向移动为位移: u(x) 定义沿x方向的相对伸长(或缩短)量为应变: εx(x) 定义沿x方向的单位横截面上的受力为应力:
【基本方程】3.1.1(2) 1D问题的基本方程 该问题的三大类基本方程和边界条件如下:
第3章 杆梁结构的有限元分析
3.1 杆件有限元分析的标准化表征与算例
3.1.1 杆件分析的基本力学原理
杆件是最常用的承力构件,它的特点是连接它的 两端一般都是铰接接头,因此,它主要是承受沿轴线 的轴向力,因两个连接的构件在铰接接头处可以转动, 则它不传递和承受弯矩。

《有限元理论与数值方法》第三讲-杆、梁结构有限元分析

《有限元理论与数值方法》第三讲-杆、梁结构有限元分析
杆件结构可分为桁杆和梁两类。 由杆件组成的结构体系称为杆系。由桁杆组成的杆系称为桁架; 由梁组成的杆系称为刚架。若杆系和作用力均位于同一平面内,则称 为平面桁架或平面刚架,否则称为空间桁架或空间刚架。
Finite Element Theory and Numerical Method
一、杆、梁的物理力学模型
拉压杆单元如图3-6所示,已知等直杆件杆长为 l 横截面面积为 A 材料弹性模量为 E 所受轴向分布载荷集度为 p(x) 杆端位移分别为 u1 u2
杆端力分别记为 F1 F2
1、建立位移场
F1, u1 xa
1
a p(x)
2 F2 , u2
x
设局部坐标系下杆中任意点a的坐标为 xa
因为只有两个边界条件 u1
形函数具有如下性质: 1)本端为1,它端为0 2)单元内任意一点总和为1
N1(0) 1
N1(1) 0
N2 (0) 0 N2 (1) 1
N1() N2 () 1
2、应变分析
du dx
dN dx
ue
dN1 dx
B为应变矩阵或者几何矩阵。
dN2 dx
u
e
1 l
1 l
ue
[B1
B2 ]ue Bue
图示所示桁架 l 2m
EA 1.2106 kN
试求1-2杆和1-4杆单元的局部坐标单元 刚度矩阵
1-2杆:抗拉刚度 EA / l 6106 kN/m
F1 10N 3
1
F2 20N 4
2
ke1
EA l
1 1
1
1
6
105
1 1
1
1
kN
/
m
1-4杆:抗拉刚度 EA /( 2l) 4.24264 105 kN/m

有限单元法课件第四章 杆件系统的有限元法

有限单元法课件第四章 杆件系统的有限元法
桁杆 梁
(a)
(b)
由杆件组成的结构体系称为杆系,如起重机,桥梁等。
由桁杆组成的杆系称为桁架。
由梁组成的杆系成为刚架。
若杆系和作用力均位于同一平面内,则称为平面桁架 或平面刚架,否则称为空间桁架或空间刚架。
由于杆件结构采用一维单元进行离散,所以杆系的网 格划分容易用半自动方法实现。当采用自动网格划 分方法时,杆系的几何模型是由杆件轴线构成的线框 模型。
R
e P
RiP R jP
R
lP
R
R
e F
RiF R jF
Rlx Rly NlT l R l
lF T l
Px dx (l i, j ) Py
e T
Bj dx
kii k ji
kij k jj
其中矩阵元素为
kst D Bt dx B as 0 EA 0 at 0 0 0 bs dx 0 EI 0 bt ct 0 cs 0 0 EAas at dx 0 EIb b EIb c s t s t EIcs bt EIcs ct 0
e
du dx e x 2 B Bi q x d v dx 2
Bj q
e
其中
ai 0 0 Bi 0 b c i i a j 0 0 Bj 0 b c j j 1 12 6 ai a j bi b j 3 x 2 l l l 4 6 2 6 ci 2 x cj 2 x l l l l

杆梁结构的有限元分析原理[详细]

杆梁结构的有限元分析原理[详细]

形函数矩阵
根据几何方程可得应变的表达
x
du dx
a1
1 le
u j ui
写成矩阵形式为
Niu
简记为
N ju
ui u j
1 le
1
1
ui u j
Bqe
几何函数矩阵或者是应变转换矩阵
根据物理方程可得应力的表达
x
E
du dx
E le
u j ui
写成矩阵形式为
E Niu
简记为
1 2
u1
EA1
u2
l1 EA1
l1
EA1
l1
EA1
u1 u2
R1
l1
0
u1 u2
1 2
u2
EA2
u3
l2 EA2
l2
EA2
l2
EA2
u2 u3
0
l 2
F3
u2 u3
EA1
l1
1 2
u1
u2
u3
EA1 l1
0
EA1 l1
EA1 l1
EA2 l2
EA2 l2
0
EA2 l2
EA2
u1 u2 u3
R1
0
u1
F3
u2
u3
l2
4)边界条件的处理
处理边界条件是获取可能位移场,将左端的约束条件,即u1=0代入 上式可以得到简化的势能表达式
e 1 2
1 q1T K1q1 q2T K 2q2 P1Tq1 P2Tq2 2
x
du dx
a2
1 l
uj
ui
根据物理方程得
x
E

梁的有限元分析原理

梁的有限元分析原理

Advantages of 2D Storage 1)Space-saving; 2)Easy to be computerized Disadvantages of 2D Storage Enormous storage is required when local bandwidth is large.
输入基本数据 计算单元刚度矩阵 形成总体刚度矩阵 形成结点荷载向量
3、系统分析
(1)整体刚度矩阵[K]的组装; (2)整体载荷列阵{P}的形成;
引入约束条件 求解方程组,输出结点位移 计算单元应力,输出结果
[K]的存储;约束引入;求解
结束
40
总刚存贮
全矩阵存贮法:不利于节省计算机的存贮 空间,很少采用。K[i,j] 对称三角存贮法:存贮上三角或下三角元 素。 半带宽存贮法 :存贮上三角形(或下三角 形)半带宽以内的元素 。 一维压缩存贮法 :半带宽存贮中仍包含了 许多零元素。存贮每一行的第一个非零元 素到主对角线元素。
有限元程序设计
——梁单元,静力问题
谷 音 福州大学土木工程学院
2012
1
§1. 介绍. 框架结构,例如桁架、桥梁 轴力构件 axial elements 杆 受弯构件 flexural elements 梁 平面梁单元 plane beam element
2
§2. 经典梁单元 (Bernoulli-Euler) Beam : 梁在纯弯曲时的 平面假设 平面-梁-假设 Plane-beam-assumption 梁的各个横截面在变形后仍保持为平
除非ψ是常数(没有弯曲变形),否则, dw/dx-ψ不会为零。这种现象称为剪切闭锁。 shear-locking
17

桥梁结构分析的杆系有限元法及结构模型的建立2015

桥梁结构分析的杆系有限元法及结构模型的建立2015

结构的离散化
确定了结构的全部 节点,也就确定了 结构的单元划分, 然后对结构进行单 元编号和节点编号, 通常单元编号用①, ②,……表示,节 点编号用1, 2,……表示,如图 所示。
6 67
5
4
3
5
4
1
2
1
2
3
单元杆端力与杆端位移的表示方法
• 平面桁架单元的局部坐标和整体坐标:
y
y
x
3
x2
2
y
1
结构分析的杆系有限元法
• 概述 • 有限单元法的概念及应用 • 结构的离散化 • 单元杆端力与杆端位移 • 逆步变换 • 单元刚度矩阵 • 总刚度矩阵 • 边界条件的后处理法 • 线性代数方程组的数值解法
结构分析的含义
• 结构分析的含义,不仅指在一定的已知条件下对结构的变 形和内力等进行计算,而且包括分析构件刚度变化对内力 变化的影响,对结构的几何组成进行分析,以及选择合理 的结构形式等等。
结构分析的有限元法
• 美国20世纪70年代推出的至今仍然是世界销售量最大的 NASTRAN(NAsa STRuctural Analysis,美国国家航空和 宇宙航行局结构分析程序系统)程序与当时西德推出的 ASKA(Automatic System for Kinematics Analysis,运动 分析的自动程序系统)齐名,同为当时最为著名和广泛应 用的程序,但几十年后的现在,ASKA已无法与 NASTRAN相比。原因是ASKA后来没有大规模的资金投 入,使程序不断得到滚动发展(维护)和组织推广、剌激 程序在竞争中不断改进各种功能。
向量
X
e i
Yi e
F
e
Fi e Fje

有限单元法 第2章 杆系结构的有限元法分析

有限单元法 第2章 杆系结构的有限元法分析

义 & 可以进一步求得单元刚度矩阵为 )
( & # 0# ( $’ $ % 8 . ! 1 # $ ’ 0# # 同时 & 我们可以根据式 $ % 求出等 效 结 点 荷 载 矩 阵 ’ 这 里 要 指 出 的 是 ) 分 布 荷 载 ! .$
! # !! !
! # $! !
! 第 ! 章 ! 杆系结构的有限元法分析 # #! ! """""""""""""""""""""""""""""""""""""""""""
不适定的 " 第九步 # 求解方程组 " 计算结构的整体结点位移列阵 ## 并 进一步 计算各 单元 的应力 分量及主应力 $ 主向 " 第十步 # 求单元内力 # 对计算成果进行整理 $ 分析 # 用表格 $ 图线标示出所需的位移 及应力 " 大型商业软件 % 如 )* + , + 等 & 一般都具有强大的后处理功能 # 能够 由计算 机自 动绘制彩色云图 # 制作图线 $ 表格乃至动画显示 "
矩阵 ’ $ %进行应力 ( 应变分析 ’ 根据材料力学中应变的定义 & 有 ) ! # # $’ 2 + 2 $ ( ( ( ( $’ $’ $’ . 0 ! ! . " 3 3 .% ". . ! ! ! !! "# ’ ’ 2 # 2 #

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理杆梁结构是一种常见的工程结构,广泛用于建筑、桥梁、机械等领域。

为了研究杆梁结构的力学性能和设计优化,常用的方法之一是有限元分析。

有限元分析是一种数值计算方法,通过将连续结构离散化为一个个有限的单元(元素),再通过计算单元之间的相互作用来近似表示整个结构的力学性能。

下面将逐步介绍杆梁结构的有限元分析原理。

1.离散化:首先,将杆梁结构离散化为一个个的单元,通常可以选择线性单元、二次单元等。

线性单元简单且计算效率高,而二次单元更准确但计算开销较大。

根据具体工程需求和分析要求,选择合适的单元进行离散化。

每个单元由节点和单元梁组成。

2.建立本地坐标系:为了方便计算,对于每个单元,可建立本地坐标系。

本地坐标系是以单元的一个节点为原点,并建立与该节点有关的坐标轴。

通过本地坐标系可以方便地描述单元内部的各种力和力矩。

3.单元刚度矩阵计算:对于每个单元,需要计算其刚度矩阵。

刚度矩阵描述了单元内部的相互作用,包括节点间的弯曲刚度和剪切刚度等。

通过根据材料的力学特性和几何信息,可以得到单元刚度矩阵。

4.装配全局刚度矩阵:将所有单元的刚度矩阵按照它们的几何关系组装成全局刚度矩阵。

全局刚度矩阵描述了整个杆梁结构的力学行为。

5.施加边界条件和加载情况:根据具体问题的边界条件和加载情况,在全局刚度矩阵中添加与之对应的约束和加载项。

边界条件通常涉及到约束的位移和力的平衡,加载情况则涉及到外界施加在结构上的力。

6.求解杆梁结构的位移:通过求解全局刚度矩阵与位移的乘积等式,可以得到结构的位移。

位移是描述结构变形的重要参数,可以用来计算应力、应变和变形等。

7.计算应力和应变:通过已知的位移以及杆梁的几何信息,可以计算单元内部的应力和应变。

应力和应变是评估杆梁结构受力情况的重要指标,在结构设计和安全评估中具有重要作用。

8.结果后处理:最后,可以通过后处理技术对有限元分析的结果进行处理和展示。

例如,可以绘制位移云图、应力云图等,以方便工程师对结构的力学性能进行评估和优化。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

le
EAe
le
EAe
u1 u2
P1
le
P2
u1 u2
1 qeTK eqe PeTqe 2
刚度矩阵
节点力列阵
3)离散单元的装配
在得到各个单元的势能表达式后,需要进行离散单元的装配,以
求出整个系统的总势能,对于该系统,总势能包括两个单元部分
e 1 2
1 q1T K1q1 q2T K 2q2 P1Tq1 P2Tq2 2
第4章 杆系结构的有限元分析原理
杆梁单元概述
讨论杆梁单元和由它们组成的平面和空间杆梁结构系统. 从构造上来说其长度远大于其截面尺寸的一维构件 承受轴力或扭矩的杆件成为杆 杆梁问题都有精确解 承受横向力和弯矩的杆件称为梁 平面桁架 平面刚架 连续梁 空间刚架 空间桁架等 承受轴力或扭矩的杆件称为杆 将承受横向力和弯矩的杆件称为梁 变截面杆和弯曲杆件
单元节点条件:u(0)=u1, u(l)=u2
从而得
a0 ui ,
a1
uj
le
ui
i
1,
j
2
回代得
u(x) a0 a1x
ui
u j ui le
x
1
x le
ui
x le
u
j
Niui N ju j
其中Ni,Nj是形函数。
写成矩阵形式为
q Niu Nqe
N
ju
ui u j
1 2
u1
EA1
u2
l1 EA1
l1
EA1
l1
EA1
u1 u2
R1
l1
0
u1 u2
1 2
u2
EA2
u3
l2 EA2
l2
EA2
l2
EA2
u2 u3
0
l 2
F3
u2 u3
EA1
l1
1 2
u1
u2
u3
EA1 l1
0
EA1 l1
EA1 l1
EA2 l2
2 E Niu
N
ju
2
ui u j
2
E l2
1
1
uu32
0.1Mpa
9)计算支反力 对于单元势能的表达,对其取极值有
K eqe Pe
具体地对于单元1,有
EA1 1 l1 1
1
1
u1 u2
R1
P2
其中R1是节点1的支反力,P2是单元1的节点2所受的力,即单元2对该节
点的作用力,将前面求得的节点位移代入上式可得支反力大小。
本章主要内容
4.1有限元分析的完整过程 4.2有限元分析的基本步骤及表达式 4.3杆单元及其坐标变换 4.4梁单元及其坐标变换
4.1有限元分析的完整过程
E1=E2=2E7Pa A1=A2=2cm2 l1=l2=10cm
P3为10N作用下二杆结构的变形。
问题的解题思路: 1)用标准化的分段小单元来逼近原结构 2)寻找能够满足位移边界条件的许可位移场 3)基于位移场的最小势能原理来求解
EA2 l2
0
EA2 l2
EA2
u1 u2 u3
R1
0
u1
F3
u2
u3
l2
4)边界条件的处理
处理边界条件是获取可能位移场,将左端的约束条件,即u1=0代入 上式可以得到简化的势能表达式
e 1 2
1 q1T K1q1 q2T K 2q2 P1Tq1 P2Tq2 2
N
ju
ui u j
E le
1
1
ui u j
Sqe
节点位移列阵
应力矩阵或者是应力转换矩阵
势能的表达
e U e W e
1 2
e ij ij d
P1u1 P2u2
1 2
le 0
Bq e
T
Sqe
Aedx
P1u1
P2u2
1 2
le qeT BT EBqe Aedx
0
2.5E 7.5E
4 4
7)计算单元应变
1 Niu
N
ju
ui u j
1
1 l1
1
1
uu12
2.5E 3
2 Niu
N
ju
2
ui u j
2
1 l2
1
1
uu32
5E 3
8)计算单元应力
1 E Niu
N
ju
ui u j
1
E l1
1
1
uu12
0.05Mpa
讨论2:由前面的步骤,我们也可以直接将各个单元的刚度矩阵按照节 点编号的对应位置来进行装配,即在未处理边界条件之前,先形成整 体刚度矩阵。
Kq P
其物理意义是,表示在未处理边界条件前的基于节点描述的总体平衡 关系。在对该方程进行位移边界条件的处理后就可以求解,这样与先 处理边界条件再求系统势能的最小值所获得的方程完全相同。
形函数矩阵
根据几何方程可得应变的表达
x
du dx
a1
1 le
u j ui
写成矩阵形式为
Niu
简记为
N ju
ui u j
1 le
1
1
ui u j
Bqe
几何函数矩阵或者是应变转换矩阵
根据物理方程可得应力的表达
x
E
du dx
E le
u j ui
写成矩阵形式为
E Niu
简记为
以上是一个简单结构有限元方法求解得完整过程,对于复杂结构,其 求解过程完全相同,由于每一个步骤都具备标准化和规范性的特征, 所以可以在计算机上编程而自动实现。
讨论1:对于一个单元的势能取极值,所得到的方程为节点的位移和节 点力之间的关系,也称为单元的平衡关系,由此可以求出每一个单元 所受的节点力。
P1u1 P2u2
1 qeT BT EBqe Aele
2
P1u1 P2u2
写成矩阵形式为
e 1 qeT BT EBqe Aele
2
P1u1 P2u2
1 2
u1
u2
1 le
1
1
EAel e
1 le
1
1
u1 u2
P1
P2
u1 u2
1 2
u1
EAe
u2
le EAe
基本变量为:
节点 位移
(1)
内部各 点位移
(2)
应变
(3)
应力
完整的求解过程
1)离散化 该构件由两根杆件做成,因此可以自然离散成2个杆单元。
假定以这类单元位移的特征为两个端点位移,就这两个离散单元给出 节点编号和单元编号。
单元1:i=1,j=2 单元2:i=2,j=3
2)单元分析
单元位移模式:u(x)=a0+a1x
EA1 l1
EA2 l2
EA2 l2
EA2 l2
EA2
u2 u3
0
F3
l2
6)求解节点位移 将结构参数和外载荷代入上式有
3EA2
l2
EA2 l2
EA2 l2
EA2
u2 u3
0Leabharlann F3l2 2E4
3 1
1
1
u2 u3
0 10
求解得(单位m)
u2 u3
1 2
u2
u3
EA1 l1
EA2 l2
EA2 l2
EA2 l2
EA2
u2 u3
0
l 2
F3
u2 u3
5)建立刚度方程 由于上式是基于许可位移场的表达的系统势能,这是由全部节点位
移分段所插值出的位移场为全场许位移场,且基本未知量为节点位 移,根据最小势能原理(即针对未知位移求一阶导数)有
相关文档
最新文档