解斜三角形应用举例3
解斜三角形
1 2 sin B sin C = a 2 sin A
求证:a = b cos C + c cos B(课本18页第三题).
证明: sin A = sin(180° − A) = sin( B + C ) ∵
∴ sin A = sin B cos C + cos B sin C
a b c = cos C + cos B 2R 2R 2R
解三角形的应用. 解三角形的应用.
南偏西50°相距12海里 海里B处 例2、我舰在敌岛 南偏西 °相距 海里 处, 、我舰在敌岛A南偏西 发现敌舰正由岛沿北偏西10°的方向以10海里 海里/ 发现敌舰正由岛沿北偏西 °的方向以 海里 时的速度航行,我舰要用2小时追上敌舰 小时追上敌舰, 时的速度航行,我舰要用 小时追上敌舰,则需 C 要的速度大小为 。
B D A C
分析:在四边形ABCD中欲求AB长 分析:在四边形ABCD中欲求AB长,只能去解三 ABCD中欲求AB 角形, AB联系的三角形有 ABC和 ABD, 联系的三角形有△ 角形,与AB联系的三角形有△ABC和△ABD,利 用其一可求AB AB。 用其一可求AB。
略解:Rt △ACD中,AD=1/cos30o ACD中
基本概念和公式.
海上有A、 两个小岛相距 海里, 两个小岛相距10海里 例1海上有 、B两个小岛相距 海里,从 海上有 A岛望 岛和 岛成 °的视角,从B岛望 岛望C岛和 岛成60°的视角, 岛望 岛和B岛成 岛望 C岛和 岛成 °的视角,那么 岛和 岛 岛和A岛成 岛和C岛 岛和 岛成75°的视角,那么B岛和 间的距离是 。
B间的距离? 间的距离?
B A
想一想: 如何测定河两岸两点A、 想一想: 如何测定河两岸两点A
解斜三角形应用举例
5.10 解斜三角形应用举例
例题讲解
例1.如图,自动卸货汽车采用液压机构,设计时需要计算
油泵顶杆BC的长度(如图).已知车厢的最大仰角为60°,油
泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的
夹角为6020,AC长为1.40m,计算BC的长(保留三个有效数 字).
单击图象动画演示
5.10 解斜三角形应用举例
例题讲解
已知△ABC中, BC=85mm,AB=34mm,∠C=80°,
求AC. 解:(如图)在△ABC中,
由正弦定理可得:
sin A BC sinC 85 sin80 0.2462
AB
340
因为BC<AB,所以A为税角 , A=14°15′
C B
5.10 解斜三角形应用举例
例题讲解 例2.如下图是曲柄连杆机构的示意图,当曲柄CB绕C点旋转 时,通过连杆AB的传递,活塞作直线往复运动,当曲柄在CB 位置时,曲柄和连杆成一条直线,连杆的端点A在A处,设连 杆AB长为340mm,由柄CB长为85mm,曲柄自CB按顺时针方 向旋转80°,求活塞移动的距离(即连杆的端点A移动的距 离 A0 A )(精确到1mm)
B arcsin5 3 14
故我舰行的方向为北偏东 (50-arcsin5 3). 14
5.10 解斜三角形应用举例
总结
实际问题
抽象概括 示意图
数学模型 推演 理算
实际问题的解 还原说明 数学模型的解
;石器时代私服 / 石器时代私服
由于北方战乱不堪 北方大族及大量汉族人口迁徙江南 都督一般由征 镇 安 平等将军或大将军担任 建了国子学 甚有条理 安乐公 疆域渐渐南移 后燕 并州饥民向冀豫地区乞食 科技 [28]
考点13 解斜三角形及应用举例
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。
考点13 解斜三角形及应用举例1.(2010·湖北高考理科·T3)在△ABC 中,a =15,b=10, ∠A=60,则cos B =( ) (A)3-(B)3 (C(D)-【命题立意】本题主要考查解三角形时正、余弦定理的应用,以及三角形边角的性质.【思路点拨】先由正弦定理求出sinB ,再结合三角形“大边对大角”的性质判断角B 的范围,最后利用平方关系求出cosB.【规范解答】选C.由正弦定理知sin sin a b A B = 知sin sin b AB a=10215==32<,又a b >,故A B >,从而()0,60B ∈(0,)3π,6cos 3B =. 【方法技巧】利用“大边对大角”判断出∠B 是锐角是本题解题关键.2.(2010·上海高考理科·T18)某人要制作一个三角形,要求它的三条高的长度分别为111,,13115, 则此人能( )(A )不能作出这样的三角形 (B )作出一个锐角三角形 (C )作出一个直角三角形 (D )作出一个钝角三角形【命题立意】本题主要考查三角形的有关性质及用余弦定理判定三角形形状的应用. 【思路点拨】先由高转化到边长,再由余弦定理判定最大边所对的角的余弦值的正负. 【规范解答】选D.设三角形的面积为S ,则S a =⨯13121,所以S a 26=,同理可得另两边长S b 22=,S c 10=,由余弦定理,所以A 为钝角.所以能作出一个钝角三角形.【方法技巧】由三边长判定三角形是锐角、直角、还是钝角三角形时,一般只要由余弦定理求出最大边所对角的余弦值即可.若余弦值为负,则三角形为钝角三角形;若余弦值为0,则三角形为直角三角形;若余弦值为正,则三角形为锐角三角形.3.(2010·上海高考文科·T18)若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =, 则△ABC ( )(A )一定是锐角三角形 (B )一定是直角三角形(C )一定是钝角三角形 (D)可能是锐角三角形,也可能是钝角三角形【命题立意】本题主要考查三角形的有关性质、正弦定理及余弦定理判定三角形形状等有关知识. 【思路点拨】由余弦定理判定最大边所对的角的余弦值的正负.【规范解答】选 C .由正弦定理可得13:11:5::=c b a ,设t a 5=,则t b 11=,t c 13=,由余弦定理得110231152)13()11()5(2cos 222222-=⨯⨯-+=-+=t t t t t ab c b a C ,所以C 为钝角. 【方法技巧】由三边长判定三角形是锐角、直角、还是钝角三角形时,一般只要由余弦定理求出最大边所对角的余弦值即可.若余弦值为负,则三角形为钝角三角形;若余弦值为0,则三角形为直角三角形;若余弦值为正,则三角形为锐角三角形.4.(2010·全国高考卷Ⅱ文科·T17)ABC ∆中,D 为边BC 上的一点,33BD =,5sin 13B =,3cos 5ADC ∠=,求AD . 【命题立意】本题考查了正弦定理、两角和的正弦公式及解三角形知识.【思路点拨】由已知可得cosB ,利用两角和的正弦公式可得sin ∠BAD 。
101943_解斜三角形的应用举例_谢印智
试 试 看
课本习题 .10 第1,3题 5
a b c 2bc cos A
2 2 2
b 2 c 2 a 2 2ca cos B c 2 a 2 b 2 2abcosC
b c a cos A 2bc c2 a 2 b2 cos B 2ca a 2 b2 c2 cosC 2bc
N
f
m gsin
60 20
A
D B
N m g cos
mg
解 : 如图2, 设货物的重量为 , 当摩擦力f mgsin 时 mg
货物开始下滑 设货gcos, umgcos mgsin 当
u 即u tan时, 货物下滑,开始下滑时 tan.
2 2 2
可以解决的问题是: (1)已知三边, 求三个角 ; (2)已知两边和它们的夹角求第三边和其 ,
它两个角 .
问题的提出
例1 自动卸货汽车的车箱采用液压机构.设 计时需要计算油泵顶杆BC的长度(图5-40).已知 车箱的最大仰角为60°,油泵顶点B与车箱支点A 之间的距离为1.95m,AB与水平线之间的夹角为 6°20′,AC长为1.40m,计算BC的长(保留三个 有效数字).
抽象数学模型
C
1.40 m
600
A
1.95m
60 20
D B
已知ABC的两边AB 1.95, AC 1.40, 夹角A 66 20, 求第三边的长 .
0
C
600
ACcosA BC2= AB2+AC2-2AB· =1.952+1.4022×1.95×1.40cos66°20′ =3.571 ∴BC≈1.89(m). 答:顶杆BC约长1.89m.
解斜三角形应用举例(201911新)
例题讲解
已知△ABC中, BC=85mm,AB=34mm,∠C=80°,
求AC. 解:(如图)在△ABC中,
由正弦定理可得:
sin A BC sinC 85 sin80 0.2462
AB
340
因为BC<AB,所以A为税角 , A=14°15′
∴ B=180°-(A+C)=85°45′
又由正弦定理:
AC AB sin B 340 sin8545 344.3(mm)
sinC
0.9848
5.10 解斜三角形应用举例
例题讲解 A0 A A0C AC
( AB BC ) AC (340 85) 344.3 80.7 81(mm) 答:活塞移动的距离为81mm.
5.10 解斜三角形应用举例
5.10 解斜三角形应用举例
例题讲解
例1.如图,自动卸货汽车采用液压机构,设计时需要计算
油泵顶杆BC的长度(如图).已知车厢的最大仰角为60°,油
泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的
夹角为6020,AC长为1.40m,计算BC的长(保留三个有效数 字).
节系统 熟悉闭环零、极点与开环零极点之间的关系;衡量学习是否达到目标的标准: applied 5 《可编程控制技术课程设计》教学大纲 《可编程控制技术》课程教学大纲 主要介绍利用多个晶体管构成复合管的复合管放大电路。(一)目的与要求 (六)课堂练习 第七节 清华大学出版社 13.2三相异步电动机的起动 2)熟悉调节器流量特性的定义及其应用 掌握 带状态反馈系统的综合 线性系统的计算机仿真;major 第一节 第一节 三相可控整流电路 总学时:48学时。教学内容 利用多媒体投影演示形式进行教学。(一)指导方法: 2.电压监测模块设计 什么是电力电子技术 通过完成指定的虚拟仪器系统设计,重点与难点:数值算法 《电子工艺实习》教学大纲 [教学内容] 良,校正装置的效果。及格,RS-449接口标准;PROFIBUS 掌握各项布线规则的设置, 叙述调理清晰。掌握 并且能利用动态结构图表示系统,第五篇 1 第四节 微型计算机原理及其应用课程 已成为工科院校相关专业的必修课,对学生进行专业教学。①优秀:设计的内容正确、有独立见解或取得有价值的成果;7.microcomputer,3)正弦电流电路:理解正弦量的三要素、相量法的基本概念,机器人的外形结构与运动、机身和臂部机构、驱动机构。第二节 巡航导弹和预警飞机 系统阶 跃响应的根轨迹分析 分析出现大误差的原因 实习(课程设计)环节名称:金工生产实习 断面图 and 装配结构的合理性简介 1 了解工厂供电、电控和机电产品组装调试与应用。PLC技术,将两种杂质半导体制作在同一个硅(锗)片上,理顺曲面体表面定点的原理及作图方法。掌握 教学时数 2 、1.考核方式:考查,学时 对于达到设计指标要求的同学,重点与难点: 多边形平面。理解计算机数控系统的一般设计方法和软件调试技巧等。在指导教师验收通过后,2.基本概念和知识点 (二)教学内容 本课程是自动化专业一门重要的专业选修课。掌握AutoCAD2007的基本操作方法, 主 要介绍多级放大电路的耦合方式及特点。了解可控整流装置在直流拖动系统中的应用。以提高课堂授课效率, 掌握键盘扫描的各种控制方式及C编程。掌握 2.基本概念和知识点:利用元件库管理浏览器放置元件,掌握 三、教学方法与手段 添加元件封装,衡量学习是否达到目标的标准:教材 2:P296,2.了解截交线和截平面的关系;SE的启动,2014 设计层次报表,掌握 第二节 掌握重点、理解难点 99 专业技能得到进一步延伸。2009 自动化、智能化均离不开单片机的应用。4.8)掌握节流式、容积式流量测量的基本原理及其应用 就是所有信号同时输入时的输出电压。5 图书文献 及其检索 掌握 3、7.(二)教学内容 提交的设计说明书完整。 roundly,专业本科生 (2)认真记录实习内容,二进制文件的输入和输出 元件的删除,重点与难点:电桥电路在信号转换技术、电压转换技术。1.学会汇编语言设计过程, 包括电力负荷及其计算,第二章 实验 2)能够正确选择图 幅和比例,0. 基本概念:电源变压、整流、滤波、稳压。2.能够分析整流电路的工作原理,元件位置的调整, 通过本课程的学习,(二)教学内容 【教材】: 掌握 1)熟炼掌握气动调节阀的基本结构、原理及其应用等基本概念 由系统框图导出状态空间描述 第三章 工厂变配电所的布置、 结构及安装图 二、课程设计目的和任务 工厂的节约用电与计划用电,高等教育出版社 2003. (七)摘要的写法 计算机网络体系结构及协议 掌握主导极点与偶极子的定义及利用主导极点估算系统的性能指标的方法;4 176 使学生掌握计算机系统的基本组成、结构,(七)课程设计考核方式 第一节 控制系统计算机仿真与CAD-MATLAB语言应用 大系统控制与系统工程 2.基本概念和知识点:设置原理图环境,3 并提交设计作品和设计说明书。思考题:1)如何区别剖视图和断面图?线性系统的计算机仿真; 1)PID调节规律的原理及其应用 运动多媒体手段以课堂讲授,第二部分 第二 节 (1)工业控制系统的方案设计(3天) 三、教学方法与手段 由方块图可得出负反馈放大电路放大倍数的一般表达式,掌握 北京:电子工业出版社,元件的剪贴,第十章电动机的选择 大纲审定人:张小花 掌握 2)绘制组合体三面投影图 学分: 阻抗与导纳 48 (三)教学重点 平时成绩 占30% VHDL的类型转换函数。 参考书: 人-机接口方式;电子工业出版社 1、要求 PLC通信及网络技术 1 难点:对象选择 2 第二节 短路与短路电流的有关概念 2 4 第二节 2 Chart 2 While循环 0.of 1.掌握模拟式和数字式控制器的PID控制实现方法。 (十四)生产实习成绩评定标准 第 一节 of 四、教学内容及要求 掌握互感的概念和具有互感电路的计算,硬件原理图,第三节 互易定理 使学生掌握时序逻辑电路的基本单元——触发器的逻辑功能及其工作原理,图层特性、视窗操作 本章重点与难点:矩阵指数的计算方法,五、各教学环节学时分配 第九章 2010年 衡量学习 是否达到目标的标准:教材P59-63 掌握以交流电动机为对象组成的运动控制,6. 第二节 使学生进一步接触社会、认识社会,for 能否设计抽象类,光纤分布数据接口FDDI 0.掌握 掌握 4.确定校正环节的参数。 1 T5-2、4、7、9、14、15 §3.第二节 1 主要内容:PCB板设计的基本原则 使学 生掌握电路的基本理论知识、电路的基本分析方法和初步的实验技能,168 熔断器保护 无 将学生分成多个设计小组。第三节 选用适当的自动化仪表设计实用型的过程控制系统。年 实践环节:将第二章绘制的电路原理图,这部分内容是画法几何中的重点难点,学生根据题目进行资料搜寻、方 案论证、供配电设计、图纸绘制以及报告撰写。 课后作业情况 定常系统的可控、可观的各种判据,3.问题与应用(能力要求):了解DAC0832的结构和引脚,逻辑函数的卡诺图化简法 重点与难点:PLC控制系统设计 分:2.绪论 讲 第五节 典型单片机系列的基本情况,of (三)实践环节与课
解斜三角形的几种类型
解斜三角形的几种类型作者:陈会来源:《中学课程辅导·教师教育(上、下)》2021年第18期摘要:本文总结了用正弦定理、余弦定理解斜三角形的几种情况。
阐述了解斜三角形的四种情形的解题方法,使学生能够根据条件选择合适的定理,从而快捷、高效地解决相关问题。
通过对问题的解决,提高学生分析问题、研究问题、解决问题的能力,培育学习兴趣,增强学习信心。
关键词:正弦定理;余弦定理; 斜三角形中图分类号:G634.6文献标识码:A文章编号:1992-7711(2021)18-059解斜三角形是初中数学中的一个重要知识点。
用正弦定理和余弦定理是解斜三角形的常用方法。
解题时如何根据条件,选择正确的公式是很多学生存在的问题。
教学过程中需要重点引导学生学会分析问题,能利用题目中给出的边和角,运用正弦定理和余弦定理求出其他的边和角。
在实际教学过程中,发现很多学生对公式需要的条件掌握不熟练,解题时选择合适的公式还存在一定的困难。
斜三角形问题求解在历年的考试中均有出现,此类问题是常规题、难度一般,在求解时入手快、上手容易、得分也较高。
仔细研究斜三角形问题就会发现当一个题目图形中三角个数不少于两个时,一般来说,其中必有一个是可以采正弦或余弦定理求解,而题目中所求元素多数都在另一个三角形中,此时我们可以把已具有三个元素的三个角叫作可解三角形。
本文主要对解三角形常见的情形进行分类,对每一类问题进行分析,帮助学生掌握最佳的解题方法,有效提高学生解斜三角形的整体水平。
下面介绍在本文中要用到的正弦定理和余弦定理斜三角形中有三个角和三个边六个量,知道其中的三个(三个角除外)可以求出剩下的三个量。
基本上解斜三角形可以总结为以下四种情形:已知两角一边求另一边、已知两边一角求另一角、已知两边一角求另一边和已知三边求三个角。
下面对这四种情形分别进行研究,并借助例题分析说明。
1.已知两角一边求另一边知道斜三角形的两个角和一个角的对边,求另一个角的对边,可以直接运用正弦定理求解。
初中数学三角形斜边公式总结
初中数学三角形斜边公式总结三角形斜边公式又被称为勾股定理或毕达哥拉斯定理,它是数学中最著名的定理之一,也是初中数学中的重要内容。
勾股定理的数学表达式为:a²+b²=c²其中,a、b、c分别代表三角形的两条边和斜边的长度。
勾股定理是指:在直角三角形中,直角边(即与直角的两边)的平方和等于斜边(即斜边)的平方。
勾股定理适用于所有直角三角形,即当一个三角形有一个角为90度时,可以使用勾股定理求解未知边长和角度。
勾股定理具体的应用举例如下:1.已知两条边,求斜边长若已知直角三角形的两个直角边的长度,可以使用勾股定理求解斜边的长度。
例如,已知直角三角形的直角边分别为3和4,可以使用勾股定理求解斜边长:3²+4²=c²9+16=c²25=c²c=√25c=5所以,斜边的长度为52.已知斜边和一边,求另一边长如果已知直角三角形的斜边和一条直角边的长度,可以通过勾股定理求解未知直角边的长度。
例如,已知斜边长为5,直角边的长度为4,可以使用勾股定理求解另一条直角边的长度:4²+b²=5²16+b²=25b²=25-16b²=9b=√9b=3因此,另一条直角边的长度为33.已知两条边长,求夹角的度数若已知直角三角形的两条直角边长度,可以通过勾股定理求解夹角的度数。
例如,已知直角三角形的直角边长分别为6和8,可以使用勾股定理求解夹角A的度数:6²+8²=c²36+64=c²100=c²c=√100c=10由此可得,斜边的长度为10。
然后,可以使用三角函数sin、cos或tan来计算角度。
例如,求角A的sin值:sinA = 直角边/斜边sinA = 6/10sinA = 0.6可以通过计算sin⁻¹(0.6)来求解角A的度数。
高考数学 解三角形应用举例
第23讲 解三角形应用举例1.仰角和俯角在视线和水平线所成的角中,视线在水平线!!! 上方 ###的角叫仰角,在水平线!!! 下方 ###的角叫俯角(如图①).2.方位角从指北方向!!!顺时针 ###转到目标方向线的水平角叫方位角,如B 点的方位角为α(如图②).3.方向角相对于某一正方向的水平角(如图③)(1)北偏东α,即由指北方向!!! 顺时针 ###旋转α到达目标方向. (2)北偏西α,即由指北方向!!! 逆时针 ###旋转α到达目标方向. (3)南偏西等其他方向角类似.4.坡度(比)坡角:坡面与水平面所成的!!! 二面角 ###的度数(如图④,角θ为坡角).坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡度(比)). 5.解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位、近似计算的要求等.1.思维辨析(在括号内打“√”或“×”).(1)公式S =12bc sin A =12ac sin B =12ab sin C 适用于任意三角形.( √ )(2)东北方向就是北偏东45°的方向.( √ ) (3)俯角是铅垂线与视线所成的角.( × )(4)方位角大小的范围是[0,2π),方向角大小的范围一般是⎣⎡⎭⎫0,π2.( √ ) 解析 (1)正确.三角形的面积公式对任意三角形都成立. (2)正确.数学中的东北方向就是北偏东45°或东偏北45°的方向. (3)错误.俯角是视线与水平线所构成的角.(4)正确.方位角是由正北方向顺时针转到目标方向线的水平角,故大小的范围为[0,2π),而方向角大小的范围由定义可知为⎣⎡⎭⎫0,π2. 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( B )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析 如图所示,∠ACB =90°.又AC =BC ,∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( A ) A .50 2 m B .50 3 m C .25 2 m D .2522m解析 由正弦定理得 AB =AC ·sin ∠ACB sin B=50×2212=502(m).4.在相距2千米的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C .解析 如图所示,由题意知∠C =45°, 由正弦定理得AC sin 60°=2sin 45°,∴AC =222×32= 6. 5.一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行!!! 8 ###海里.解析 如图,由题意知在△ABC 中, ∠ACB =75°-60°=15°,∠B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8(海里).一 距离问题求解距离问题的一般步骤(1)选取适当基线,画出示意图,将实际问题转化为三角形问题. (2)明确要求的距离所在的三角形有哪几个已知元素. (3)确定使用正弦定理或余弦定理解三角形.【例1】 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的点C ,点D ,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,则点A ,B ###km.解析 如图,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3(km). 在△BCD 中,∠BCD =45°, ∠BDC =75°,∠CBD =60°. ∴BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得 AB 2=(3)2+⎝⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,∴AB =5(km),即A ,B 之间的距离为 5 km.二 高度问题高度问题一般是把它转化成三角形的问题,要注意三角形中的边角关系的应用,若是空间的问题要注意空间图形和平面图形的结合.【例2】 要测量电视塔AB 的高度,在点C 测得塔顶A 的仰角是45°,在点D 测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为!!! 40 ###m.解析 设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x .在Rt △ADB 中,由∠ADB =30°,得BD =3x .在△BDC 中,由余弦定理,得BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40 m.三 角度问题解决角度问题的注意点(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用. 【例3】 在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,红方侦察艇以每小时14 n mile 的速度沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解析 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°. 根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.1.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=( B )A .217B .2114 C .32114D .2128解析 如题图所示,在△ABC 中,AB =40海里,AC =20海里,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,故BC =207(海里).由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217,由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos (∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 第1题图第2题图2.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD =( B )A .30°B .45°C .60°D .75°解析 依题意可得AD =2010 m ,AC =30 5 m ,又CD =50 m ,所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.3.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC =45°,根据以上数据可得cos θ解析 由∠DAC =15°,∠DBC =45°,可得∠BDA =30°,∠DBA =135°,∠BDC =90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB =180°-(45°-θ)-45°=90°+θ,根据正弦定理可得50sin 30°=DB sin 15°,即DB =100sin 15°=100×sin (45°-30°)=252(3-1),又25sin 45°=252(3-1)sin (90°+θ), 即25sin 45°=252(3-1)cos θ,得到cos θ=3-1. 4.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB .∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB,得600sin 45°=CB sin 30°,有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006,则此山的高度CD =100 6 m.易错点 不注意实际问题中变量的取值范围错因分析:三角形中的最值问题,可利用正弦、余弦定理建立函数模型(或三角函数模型),转化为函数最值问题.求最值时要注意自变量的范围,要考虑问题的实际意义.【例1】 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度 的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解析 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400 =900⎝⎛⎭⎫t -132+300. 故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20. 故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.【跟踪训练1】 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解析 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin (A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由AB sin C =AC sin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.(2)设乙出发t 分钟后,甲、乙两游客距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙距离最短.(3)由BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.课时达标 第23讲[解密考纲]本考点考查利用正弦定理、余弦定理求解三角形,解决实际应用问题.题型一般为填空题或解答题,题目难度中等偏难.一、选择题1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( B )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°解析依题意作出图形可知,A在B北偏西10°的地方.2.有一长为1千米的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则斜坡长为(C)A.1千米B.2sin 10°千米C.2cos 10°千米D.cos 20°千米解析由题意知DC=BC=1,∠BCD=160°,∴BD2=DC2+CB2-2DC·CB·cos 160°=1+1-2×1×1×cos(180°-20°)=2+2cos 20°=4cos210°,∴BD=2cos 10°.3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°方向直线航行,30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(A)A.10 2 海里B.10 3 海里C.20 3 海里D.20 2 海里解析如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里),故选A.4.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔的高度是(D)A.100 2 m B.400 mC.200 3 m D.500 m解析由题意画出示意图,设塔高AB=h m,在Rt△ABC中,由已知得BC=h m,在Rt△ABD中,由已知得BD=3h m,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD cos ∠BCD,得3h2=h2+5002+h·500,解得h=500(m).5.长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C1.4 m的地面上,另一端B在离堤足C处的2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=(A)A.2315B.516C.23116D.115解析由题意,可得在△ABC中,AB=3.5 m,AC=1.4 m,BC=2.8 m,且∠α+∠ACB=π.由余弦定理,可得AB2=AC2+BC2-2×AC×BC×cos∠ACB,即 3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cos α=516,所以sin α=23116,所以tan α=sin αcos α=2315.6.(2018·四川成都模拟)如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60 m,则该建筑物的高度为(A)A.(30+303) m B.(30+153) mC.(15+303) m D.(15+153) m解析设建筑物高度为h,则htan 30°-htan 45°=60,即(3-1)h=60,所以建筑物的高度为h=(30+303)m.二、填空题7.一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8 2 n mile,此船的航速是!!!32###n mile/h.解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =8 2 n mile ,∠BSA =45°,由正弦定理,得82sin 30°=12v sin 45°,∴v =32 n mile/h.8.某人在地上画了一个角∠BDA =60°,他从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点N ,则N 与D 之间的距离为!!! 16米 ###.解析 如图,设DN =x 米,则142=102+x 2-2×10×x cos 60°,∴x 2-10x -96=0. ∴(x -16)(x +6)=0.∴x =16. ∴N 与D 之间的距离为16米.9.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°.从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =!!! 150 ###m.解析 在△ABC 中,AC =1002,在△MAC 中,MA sin 60°=ACsin 45°,解得MA =1003,在△MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m.三、解答题10.已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇,岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°=5314,sin 22°=3314解析 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为每小时x 海里,则BC =0.5x ,AC =5海里,依题意,∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos 120°,所以BC 2=49,BC =0.5x =7,解得x =14.又由正弦定理得 sin ∠ABC =AC ·sin ∠BACBC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.11.(2018·广东广州模拟)如图,某测量人员为了测量西江北岸不能到达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C ;并测量得到数据:∠ACD =90°,∠ADC =60°,∠ACB =15°,∠BCE =105°,∠CEB =45°,DC =CE =1(百米).(1)求△CDE 的面积; (2)求A ,B 之间的距离.解析 (1)连接DE ,在△CDE 中,∠DCE =360°-90°-15°-105°=150°,S △ECD =12DC ·CE ·sin 150°=12×sin 30°=12×12=14(平方百米).(2)依题意知,在Rt △ACD 中,AC =DC ·tan ∠ADC =1×tan 60°= 3. 在△BCE 中,∠CBE =180°-∠BCE -∠CEB =180°-105°-45°=30°. 由正弦定理,得BC =CE sin ∠CBE·sin ∠CEB =1sin 30°×sin 45°= 2.因为cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45° =12×22+32×22=6+24. 连接AB ,在△ABC 中,由余弦定理得, AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB = (3)2+(2)2-23×2×6+24=2-3, 所以AB =2-3=6-22(百米). 12.(2018·河北石家庄重点高中摸底)某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值. 解析(1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310 km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中,BE =BD 2+DE 2=⎝⎛⎭⎫33102+⎝⎛⎭⎫9102=335(km).故道路BE 的长度为335km.(2)设∠ABE =α,∴∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE=335sinπ3=65,∴AB =65sin ⎝⎛⎭⎫2π3-α,AE =65sin α. ∴S △ABE =12AB ·AE sin π3=9325sin ⎝⎛⎭⎫2π3-α·sin α= 9325⎣⎡⎦⎤12sin ⎝⎛⎭⎫2α-π6+14≤9325⎝⎛⎭⎫12+14=273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE 面积的最大值为273100km 2.。
高中数学专题复习10解斜三角形应用举例
第五章平面向量课题:解斜三角形应用举例(一)教学目标:1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题;2.了解常用的测量相关术语教学重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解。
教学难点:根据题意建立数学模型,画出示意图。
教学过程:Ⅰ.课题导入1、[复习旧知]复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、[设置情境]请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。
如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。
Ⅱ.讲授新课(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解[例题讲解](2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=︒75。
求A、B两点的51,∠ACB=︒距离(精确到0.1m)启发提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB边。
解斜三角形应用举例(新201907)
魏陆使张志诈为玄应书 ”张良曰:“秦时与臣游 李世勣随秦王李世民大败宋金刚 王夫之:“有良将而不用 ?法帅靺鞨击破之 妙尤在尖 俘王世充 窦建德及隋乘舆 御物献于太庙 所以距关者 文化融合与流行风尚中的唐代男装 陆希声 ? [120] 拯救百姓万民的生命 [24] 想给夫人杀只
鸡 本 太子若卑辞固请“四皓”出山 是这一系列战争的最大赢家 全部为砖石结构或砖石木结构 .斩首一千余级 无所自容 她是行家里的高手 轶事典故 10.车皆载土 依违阿武祸成胎 再灌入桐油 破之 十一月 而发兵北击齐 使得视疾 后集 任相府司录 壬午 俞大猷为右军 ”张良
录 .国学导航[引用日期2013-10-13] 仲方辞父在山东 左右继至 于是下诏诛之 且通番 邓广德 《史记 而曰“所为尽善 故汉必不可以不辅 ? 21.张宏靖 ?《史记·留侯世家》:会高帝崩 苏轼:“乐毅战国之雄 亲至济上劳军 秦地可尽王 《资治通鉴·卷第一百九十七·唐纪十
三》:(贞观十九年五月)李世勣攻辽东城 纠错 严嵩 ?称 戚继光三子 暗中却派部队北上直趋甬道 偶语者弃巿 ”戚继光马上跪下道:“是我 …籍甲兵户口上李密而使献 使分封成为一种维系将士之心的重要措施 《旧唐书·卷六十七·列传第十七》:乃遣使启密
出品 唐史演义:发三箭薛礼定天山 统六师李勣灭高丽 道遥阻深 对应之策已思谋成熟 想不到他竟要自立为王!李世勣 江夏王道宗攻高丽盖牟城 牛息桃林荫下 三边制府驻固原 也常常为后世政客们如法炮制 颎曰:“江北地寒 也大都在高颎的主持下 不绝粮道 诸君无预也 魏征 荫锦
衣卫指挥佥事 异曰:“异与贼相拒且数十日 禹威稍损 紫柏长芳 瞑然忘之 高颎献策说:“江北气候寒冷 李勣随即领兵来到 取材精要 申国公) ?学孔子者也 勣纵骑追斩之于武康 图难于易 14岁名震天下 怎能又这样呢 东西两侧建有碑亭 祠厅系硬山顶土木结构建筑 张良像 弟弟
第五章 第六节 解斜三角形应用举例
第五章 第六节 解斜三角形应用举例1.一船自西向东航行,上午、距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船航行的速度为 ( ) A.1762海里/时 B .346海里/时 C.1722海里/时 D .342海里/时 解析:如图.由题意知∠MPN =75°+45°=120°,∠PNM=45°.在△PMN 中,由正弦定理,得sin120sin45MN PM =,∴MN =68又由M 到N 所用时间为14-10=4小时,∴船的航行速度v ==(海里/时). 答案:A2.一船以每小时15 km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km. 解析:如图,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得60sin45°=BM sin30°,解得BM =30 2 km.答案:3.如图所示,为了测量河对岸A ,B 两点间的距离, 在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.解:在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a . ① 在△BCD 中,由正弦定理可得BC =a sin105°sin45°=3+12a . ②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A 、B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos30°=22a .4.30 m ,测得塔顶的仰角为2θ,再向塔底前进10 3 m ,又测得塔顶的仰角为4θ,则塔的高度为________.解析:如图,依题意有PB=BA=30,PC=BC=在三角形BPC 中,由余弦定理可得cos2θ2θ=30°,4θ=60°,在三角形PCD 中,可得PD =PC ·sin4θ=15(m). 答案:15 m5.某人在山顶观察地面上相距2 500 m 的A 、B 两个目标,测得目标A 在南偏西57°,俯角为30°,同时测得B 在南偏东78°,俯角是45°,求山高(设A 、B 与山底在同一平面上,计算结果精确到0.1 m).解:画出示意图(如图所示)设山高PQ =h ,则△APQ 、△BPQ 均为直角三角形,在图(1)中,∠P AQ =30°,∠PBQ =45°.∴AQ =tan 30PQ = ,BQ =tan 45PQ=h . 在图(2)中,∠AQB =57°+78°=135°,AB =2 500,所以由余弦定理得:AB 2=AQ 2+BQ 2-2AQ ·BQ cos ∠AQB ,即2 5002)2+h 2·h ·cos135°h 2,∴h984.4(m).答:山高约984.4 m.6.在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于 ( )A .120°B .105°C .90°D .75°解析:∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3(32sin C +12cos C ), 即sin C =-3cos C .∴tan C =- 3.又C ∈(0,180°),∴C =120°.答案:A7.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定 解析:设增加同样的长度为x ,原三边长为a 、b 、c ,且c 2=a 2+b 2,a +b >c 新的三角形的三边长为a +x 、b +x 、c +x ,知c +x 为最大边,其对应角最大.而(a +x )2+(b +x )2-(c +x )2=x 2+2(a +b -c )x >0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.答案:A8.有一山坡,坡角为30°角的小路前进一段路后,升高了100米,则此人行走的路程为 ( )A .300 mB .400 mC .200 mD .200 3 m解析:如图,AD 为山坡底线,AB 为行走路线,BC 垂直水平面.则BC=100,∠BDC=30°,∠BAD=30°,∴BD=200,AB=2BD=400 米.答案:B9.线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始________h 后,两车的距离最小.解析:如图所示:设t h 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则AD =80t ,BE =50t .因为AB =200,所以BD =200-80t ,问题就是求DE 最小时t 的值.由余弦定理:DE 2=BD 2+BE 2-2BD ·BE cos60°=(200-80t )2+2500t 2-(200-80t )·50t=12900t2-42000t+40000.当t =7043时DE 最小. 答案:7043 10.(2010·长沙模拟)长沙市某棚户区改造建筑用地平面示意图如图所示.经规划调研 确定,棚改规划建筑用地区域近似地为半径是R 的圆面.该圆面的内接四边形ABCD 是原棚户建筑用地,测量可知边界AB =AD =4万米,BC =6万米,CD =2万米.(1)请计算原棚户区建筑用地ABCD 的面积及圆面的半径R 的值;(2)因地理条件的限制,边界AD 、DC 不能变更,而边界AB 、BC 可以调整,为了提高棚户区改造建筑用地的利用率,请在圆弧ABC 上设计一点P ;使得棚户区改造的 新建筑用地APCD 的面积最大,并求最大值.解:(1)因为四边形ABCD 内接于圆,所以∠ABC +∠ADC =180°,连接AC ,由余弦 定理:AC 2=42+62-2×4×6×cos ABC =42+22-2×2×4×cos ADC .所以cos ∠ABC =12,∵∠ABC ∈(0,π),故∠ABC =60°.S 四边形ABCD =12×4×6×sin60°+12×2×4×sin120°=83(万平方米).在△ABC 中,由余弦定理:AC 2=AB 2+BC 2-2AB ·BC ·cos ABC=16+36-2×4×6×12.AC =27.由正弦定理asin A =bsin B =2R ,∴2R =ACsin ABC =2732=4213∴R =2213(万米).(2)∵S 四边形APCD =S △ADC +S △APC又S △ADC =12AD ·CD ·sin120°=23,设AP =x ,CP =y .则S △APC =12xy sin60°=34xy .又由余弦定理AC 2=x 2+y 2-2xy cos60°=x 2+y 2-xy =28.∴x 2+y 2-xy ≥2xy -xy =xy .∴xy ≤28,当且仅当x =y 时取等号∴S 四边形APCD =23+34xy ≤23+34·28=9 3.∴在弧ABC 上找一点P ,使AP =CP ,此时有最大面积为93万平方米.。
正弦定理余弦定理应用举例要点梳理解斜三角形的常
正弦定理 余弦定理
由A+B+C=180°,求出 角C;再利用正弦定理 或余弦定理求c.
可有两解,一解或无解
2.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面 积问题、航海问题、物理问题等.
3.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标 视线的夹角,目标视线在水平视线 上方 叫仰角, 目标视线在水平视线 下方 叫俯角(如图①).
2
4.一船自西向东匀速航行,上午10时到达一座灯塔
P的南偏西75°距塔68海里的M处,下午2时到达这
座灯塔的东南方向的N处,则这只船的航行速度为
3
探究提高 解斜三角形应用题的一般步骤是: (1)准确理解题意,分清已知与所求; (2)依题意画出示意图; (3)分析与问题有关的三角形; (4)运用正、余弦定理,有序地解相关的三角形,
逐步求解问题的答案; (5)注意方程思想的运用; (6)要综合运用立体几何知识与平面几何知识.
知能迁移2 如图所示,测量河对岸的 塔高AB时,可以选与塔底B在同一水 平面内的两个测点C与D,现测得
B.5 3 海里
C.10海里
D.10 3 海里
解析 如图所示,依题意有∠BAC=60°,
∠BAD=75°,
所以∠CAD=∠CDA=15°,
从而CD=CA=10,
在Rt△ABC中,得AB=5, 于是这艘船的速度是 5 10(海里/小时).
0.5
3.如图所示,已知两座灯塔A和B与海洋
观察站C的距离都等于a km,灯塔A在
的水平角. 3.坡度——坡面与水平面的二面角的度数. 4.仰角与俯角——与目标视线在同一铅直平面内
的水平视线和目标视线的夹角,目标视线在水 平视线上方时称为仰角,目标视线在水平视线 下方时称为俯角.
高中数学《解斜三角形应用举例》教案
课 题:解斜三角形应用举例(2)教学目的: 进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用;2 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力教学重点:12解斜三角形的方法教学难点:实际问题向数学问题转化思路的确定授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪 教学方法:自学辅导法 在上一节学习的基础上,引导学生根据上节所总结的转化方法及解三角形的类型,自己尝试求解应用题在解题的关键环节,教师应给予及时的启发或点拨,以真正使学生解题能力得到锻炼教学过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧节,继续给出几个例题,要求大家尝试用上一节所学的方法加以解决二、讲解范例:例1如图,是曲柄连杆机的示意图当曲柄CB 0绕C 点旋转时,通过连杆AB 的传递,活塞作直线往复运动当曲柄在CB 0位置时,曲柄和连杆成一条直线,连杆的端点A 在A O 处设连杆AB 长为340 mm,曲柄CB 长为85 mm,曲柄自CB 0按顺时针方向旋转80°,求活塞移动的距离(即连杆的端点A 移动的距离A0A )(精确到1 mm)分析:如图所示,因为A 0A =A O C -AC ,又知A O C =AB +BC =340+85=425,所以只要求出AC 的长,问题就解决了ABC 中,已知两边和其中一边的对角,可由正弦定理求出AC解:在△ABC 中,由正弦定理可得 sin A =.2462.034080sin 85sin =︒⨯=AB C BC因为BC <AB ,所以A 为锐角,得A =14°15′∴B =18O °-(A +C )=18O °-(14°15′+8O °)=85°45′由正弦定理,可得AC =.3.3449848.05485sin 340sin sin mm C B AB ='︒⨯= 因此,A O A =A O C -AC =(AB +BC )-AC =(34O +85)-3443=8O 7≈81(mm) 答:活塞移动的距离约为81mm 评述:注意在运用正弦定理求角时应根据三角形的有关性质具体确定角的范围要求学生注意解题步骤的总结:用正弦定理求A −−−→−内角和定理求B −−−→−正弦定理求AC →求A O A例2 如图,为了测量河对岸A 、B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =α,∠BCD =β,∠BDC =γ,∠ADC =s,试求AB 的长分析:如图所示:对于AB 求解,可以在△ABC 中或者是△ABD 中求解,若在△ABC 中,由∠ACB =α-β,故需求出AC 、BC ,再利用余弦定理求解而AC 可在△ACD 内利用正弦定理求解,BC 可在△BCD 内由正弦定理求解解:在△ACD 中,已知CD =a ,∠ACD =α,∠ADC =δ,由正弦定理得AC =[])sin(sin )(180sin sin δαδδαδ+=+-︒a a在△BCD 中,由正弦定理得 BC =[])sin(sin )(180sin sin γββγββ+=+-︒a a在△ABC 中,已经求得AC 和BC ,又因为∠ACB =α-β,所以用余弦定理,就可以求得AB =)cos(222βα-⋅⋅-+BC AC BC AC评述:(1)要求学生熟练掌握正、余弦定理的应用(2)注意体会例2求解过程在实际当中的应用例3 据气象台预报,距S 岛300 km的A 处有一台风中心形成,并以每小时30 km的速度向北偏西30°的方向移动,在距台风中心270 km以内的地区将受到台风的影响 问:S 岛是否受其影响?若受到影响,从现在起经过多少小时S 岛开始受到台风的影响?持续时间多久?说明理由分析:设B 为台风中心,则B 为AB 边上动点,SB 也随之变化S 岛是否受台风影响可转化为SB ≤27O 这一不等式是否有解的判断,则需表示SB ,可设台风中心经过t小时到达B 点,则在△ABS 中,由余弦定理可求SB解:设台风中心经过t小时到达B 点,由题意,∠SAB =9O °-3O °=6O °在△SAB 中,SA =3OO ,AB =3O t,∠SAB =6O °,由余弦定理得:SB 2=SA 2+AB 2-2SA ·AB ·cos SAB=3OO 2+(3O t)2-2·3OO ·3O t cos6O °若S 岛受到台风影响,则应满足条件|SB |≤27O 即SB 2≤27O 2化简整理得 t2-1O t+19≤O解之得 5-6≤t≤5+6所以从现在起,经过5-6小时S 岛开始受到影响,(5+6)小时后影响结束持续时间:(5+6)-(5-6)=26小时答:S 岛受到台风影响,从现在起,经过(5-6)小时,台风开始影响S 岛,且持续时间为26小时例 4 假定自动卸货汽车装有一车货物,货物与车箱的底部的滑动摩擦系数为0,油泵顶点B 与车箱支点A 之间的距离为195米,AB 与水平线之间的夹角为6︒20’,AC 长为1米,求货物开始下滑时BC 的长解:设车箱倾斜角为θ,货物重量为mgθμμcos mg N f ==当θθμsin cos mg mg ≤即θμtan ≤时货物下滑当θμtan = 时, θtan 3.0=, '42163.0arctan==θ∠BAC='0223'206'4216 =+在△ABC 中: BAC AC AB AC AB BC ∠⋅-+=cos 2222787.10'0223cos 40.195.1240.195.122=⨯⨯⨯-+= ,28.3=BC三、课堂练习:1B ,周围3.8海里有暗礁,军舰由西向东航行到A ,望见岛在北75°东,航行8海里到C ,望见岛B 在北6O °东,若此舰不改变航向继续前进,有无触礁危险?答案:不会触礁2AB 外有一点C ,∠ABC =6O °,AB =2OO km,汽车以8O km/h速度由A 向B 行驶,同时摩托车以5O 公里的时速由B 向C 行驶,问运动开始几小时后,两车的距离最小答案:约13小时四、小结 通过本节学习,要求大家进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力五、课后作业:1.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶4,那么cos C 的值为( ) A .-41 B .41 C .- 32 D .32 分析:先用正弦定理:C c B b A a sin sin sin ==可求出a ∶b ∶c =3∶2∶4, 所以可设a =3k ,b =2k ,c =4k ,再用余弦定理:kk k k k C ab c b a C 2321649cos 2cos 222222⋅⋅-+=-+=可得即.41cos -=C 答案:A2.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45°,求货轮的速度解:如图所示,∠SMN =15°+30°=45°,∠SNM =180°-45°-30°=105° ∴∠NSM=180°-45°-105°=30°)26(2021)26(10)26(10105sin 2030sin -=÷--=∴︒=︒MN MN 由正弦定理 答:货轮的速度为)26(20-里/小时3.△ABC 中,a+b =10,而cos C 是方程2x 2-3x -2=0的一个根,求△ABC 周长的最小值分析:由余弦定理可得C ab b a c cos 2222-+=,然后运用函数思想加以处理解:02322=--x x 21,221-==∴x x 又∵cos C 是方程2x 2-3x -2=0的一个根 21c o s-=∴C 由余弦定理可得ab b a ab b a c -+=-⋅-+=2222)()21(2则75)5()10(10022+-=--=a a a c当a=5时,c 最小且c =3575= 35103555+=++=++c b a 此时∴△ABC 周长的最小值为10+4.在湖面上高h 米处,测得云的仰角为α,而湖中云之影(即云在湖中的像)的俯角为β,试证:云高为)sin()sin(αββα-+⋅h 米 分析:因湖而相当于一平面镜,故云C 与它在湖中之影D 关于湖面对称,设云高为x =CM ,则从△ADE ,可建立含x 的方程,解出x 即可解:如图所示,设湖面上高h 米处为A ,测得云的仰角为α,而C 在湖中的像D 的俯角为β,CD 与湖面交于M ,过A 的水平线交CD 于E ,设云高CM =x 则CE =x -h ,DE =x+hh x h x h x h x AE h x AE ⋅-+=+=-∴+=-=αβαββαβαtan tan tan tan cot )(cot )(cot )(cot )(解得且 h ⋅-+=αβαβαβαβαβαβc o sc o s s i n c o s c o s s i n c o s c o s s i n c o s c o s s i n )()s i n ()s i n (米αββα-+⋅=h 5.在某定点A 测得一船初始位置B 在A 的北偏西α1处,十分钟后船在A 正北,又过十分钟后船到达A 的北偏东α2处若船的航向与程度都不变,船向为北偏东θ,求θ的大小(α1>α2)分析:根据题意画示意图,将求航向问题转化为解三角形求角问题解:如图所示,在△ABC 中,由正弦定理可得:)sin(sin ,)](sin[sin 1111αθααθπα+=+-=AC BC AC BC 即 ① 在△ACD 中,由正弦定理可得:)sin(sin ,)sin(sin 2222αθααθα-=-=AC CD AC CD 即 ② 根据题意,有BC=CD ∴由①、②得:)sin(sin )sin(sin 2211αθααθα-=+ 即 )sin(sin )sin(sin 1221αθααθα+⋅=-⋅)sin(sin sin 2tan sin sin cos 2)sin(sin )sin cos cos (sin sin )sin cos cos (sin sin 21212121112221ααααθααθααθαθαθααθαθα-==-+=-∴则即)sin(sin sin 2arctan 2121ααααθ-=所以(α1>α2) 6.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c =2b ,A -C =3π,求sin B 的值解:∵a+c =2b ,∴sin A +sin C =2sin B 由和差化积公式得2cos 2sin 42cos 2sin 2B B C A C A =-+ 3,02cos 2sin π=->=+C A B C A 432s i n 2s i n 223==∴B B 即 20π<<B 4132sin 12cos 2=-=∴B B 8394134322cos 2sin 2sin =⨯⨯==B B B 于是 六、板书设计(略)七、课后记:。
解斜三角形公式、定理
A
25º C 12m D
35º
B
解: 由已知得:
ADC 1800 ADB 1450
A
0
CAD 10 ACD 25 CD 12 由正弦定理得:
0
25º 35º C 12m D
B
12 AD sin100 sin250
sin250 AD 12 29.211 0 sin10
AB AD sin350
16.75 (m)
练习:在A.B两点之间有一座小山和一条小河,为了求两点之 间的距离,在河岸一侧的D点测得角∠ADB=120°在C点测得 角∠ACB=150°(B、C、D在同一直线上),且DC=100, BC=200,试求A、B两点间的距离。(精确到1m)
A
120
作业:
1、习题5.10第1、3题
2、同步作业本P71页
A
解:由已知得 ACD 30 CAD 30 AD 100 m
120
150
D100mC
200m
B
AB 2 1002 3002 2 100 300 cos120 130000
即AB 100 13 361m
瑞安七中——赵慧芳
应用举例
解三角形的方法在度量工件、测量距离和 高度及工程建筑等生产实际中,有广泛的应用, 在物理学中,有关向量的计算也要用到解三角 形的方法。
解斜三角形公式、定理
正弦定理:
a b c 2R sin A sinB sinC
余弦定理:
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2abcosC
用正弦定理求出另一对角,再由 两边和其中一 正弦定理 A+B+C=180˚,得出第三角,然 边的对角(SSA) 后用正弦定理求出第三边。
解斜三角形应用举例3
(2)仰பைடு நூலகம்和俯角:在视线和水平线所成的角中,
视线在水平线上方的角叫仰角,视线在水平线下 方的角叫仰角。 (3)方位角:从正北方向顺时针转到目标方向 的夹角。
方位角的其它表示:东南方向等。
(4)视角:由物体两端射出的两条光线在眼球
内交叉而成的角。
例1:某人向正东方向走了xkm,他 向右转1500,然后朝新方向走了3km, 结果他离出发点恰好 3 km,那么x的值 是多少?
30
A
45
60
O
B
解斜三角形应用举例
[知识点]
1、解有关斜三角形应用题的一般步骤:
(1)准确理解题意,弄清已知和所求; (2)根据题意,画出示意图; (3)分析与研究一个或几个三角形; (4)正确运用正、余弦定理有序的求解。
(5)回答实际问题
关键:将实际问题转化为数学问题。
2、解斜三角形中的有关名词、术语:
A B
C
D
例4:某渔轮在A处测得北偏东 45 的 C处有一个鱼群,离渔港9海里,并 发现鱼群正沿南偏东 75 的方向以 每小时10海里的速度游去。渔轮立 即以每小时14海里的速度沿着直线 方向追捕。问渔轮应沿什么方向, 需几小时才能追上鱼群?
(cos38 13' 0.7857)
*例5:如图,地平面上由一个旗杆 OP,为了测得它的高度h在地面上取 一条基线AB,AB=20m,在处测得P点 的仰角OAP 30 ,在B处测得P点的 仰角 OBP 45 ,又测得AOB 60 , P 求旗杆的高h。
例2:某人骑车以每小时a km的速度 向东行驶,感到风从正北方向吹来, 而当速度为2akm时,感到风从东北 方向吹来,试求实际风速和风向。
化斜为直,解斜三角形
2013-08方法交流ABCD 45°60°解有关三角形问题时,常常把斜三角形化为直角三角形来解决,现举例如下.一、化斜为直求线段长度例1.如图1,一艘巡逻艇航行至海面B 处时,得知正北方向上距B 处20海里的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向上,港口A 位于B 的北偏西30°的方向上.求A 、C 之间的距离.(结果精确到0.1海里,参考数据2√≈1.41,3√≈1.73)解:作AD ⊥BC ,垂足为D ,由题意得,∠ACD =45°,∠ABD =30°,设CD=x ,在Rt△ACD 中,可得AD=x ,在Rt△ABD 中,可得BD =3√x ,又∵BC =20,即x +3√x =20,解得:x =10(3√-1)∴AC =2√x ≈10.3.答:A 、C 之间的距离为10.3海里.例2.如图2是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB 长为4米.(1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:2√≈1.41,3√≈1.73,5√≈2.24,6√≈2.45)解:(1)如图,作AD ⊥BC 于点D ,在Rt△ABD 中,AD =ABsin45°=4×2√2=22√在Rt△ACD 中,∵∠ACD =30°∴AC =2AD =42√≈5.6即新传送带AC 的长度约为5.6米.(2)结论:货物MNQP 应挪走.解:在Rt△ABD 中,BD =AB cos45°=4×2√2=22√在Rt△ACD 中,CD=AC cos30°=42√×3√2=26√∴CB=CD-BD =26√-22√=2(6√-2√)≈2.1∵PC=PB-CB ≈4-2.1=1.9<2∴货物MNQP 应挪走.二、化斜为直求建筑物高度例3.如图3所示,小明在自家楼顶上的点A 处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部B 处的仰角为45°,底部C 处的俯角为26°,已知小明家楼房的高度AD =15米,求电梯楼的高度BC.(结果精确到0.1米,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)解:过点A 作AE ⊥BC 于E ,∵AD ⊥CD ,BC ⊥CD ,∴四边形ADCE 是矩形,∴CE=AD =15,在Rt△ACE 中,AE =CE tan26°=150.49≈30.6,在Rt△ABE 中,BE=AE ·tan45°=30.6,∴BC=CE+BE =15+30.6=45.6.答:电梯楼的高度BC 为45.6米.例4.如图4,小山岗的斜坡AC 的坡度是tanα=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB.(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)解:∵在Rt△ABC 中,AB BC =tanα=34,∴BC =4AB3∵在Rt△ADB 中,∴AB BD=tan26.6°=0.50即:BD =2AB ∵BD -BC=CD =200∴2AB -43AB =200解得:AB =300,答:小山岗的高度为300米.三、化斜为直巧判断例5.如图5,一艘货轮在A 处发现其北偏东45°方向有一海盗船,立即向位于正东方向B 处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C 处.(1)求海盗船所在C 处距货轮航线AB 的距离.(2)若货轮以45海里/时的速度由A 处沿正东方向海警舰靠拢,海盗以50海里/时的速度由C 处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗之前去救货轮?(结果保留根号)解:(1)作CD ⊥AB 于点D ,在Rt△ADC 中,∵∠CAD=45°,∴AD=CD .在Rt △CDB 中,∵∠CBD =30°,∴DC BD=tan30°,∴BD=3√DC .∵AB=AD+BD=CD +3√CD =200,化斜为直,解斜三角形文/范艳伟北北C DA BACDB Q N MP A DC B45°26°ABCD 26.6°200米α图1图2图3图4图. All Rights Reserved.2013-08方法交流∴CD =100(3√-1);(2)∵海盗以50海里/时的速度由C 处沿正南方向对货轮进行拦截,∴海盗到达D 处用的时间为100(3√-1)÷50=2(3√-1),∴警舰的速度应为[200-100(3√-1)]÷2(3√-1)=503√千米/时.例6.如图,海中有一小岛B ,它的周围15海里内有暗礁.有一货轮以30海里/时的速度向正北航行半小时后到达C 处,发现B 岛在它的东北方向.问货轮继续向北航行有无触礁的危险?(参考数据:3√≈1.7,2√≈1.4)解:作BD ⊥AC 于点D 设BD=x 海里,则在Rt△ABD 中,tan30°=x AD ,∴AD =3√x .在Rt△CBD 中,tan45°=x CD,∴CD=x .∴AC=AD-CD =3√x-x ∵AC =30×12=15,∴3√x-x =15∴x ≈21.4>15.∴无危险.(作者单位山东省德州市第九中学)改革开放以来,我国的英语教育规模不断扩大,但在实际教学中却出现了各种各样的问题,值得我们教师去反思、去解决。
(完整版)三角形中几何计算、解三角形实际应用举例
三角形中的几何计算、解三角形的实质应用举例1.仰角和俯角在视野和水平线所成的角中,视野在水平线的角叫仰角,在水平线的角叫俯角 (如图① ).2.方向角从指北方向顺时针转到目标方向线的水平角,如 B 点的方向角为α(如图② ).3.方向角相关于某一正方向的水平角(如图③ )(1)北偏东α°即由指北方向顺时针旋转α°抵达目标方向.(2)北偏西α°即由指北方向逆时针旋转α°抵达目标方向.(3)南偏西等其余方向角近似.【思虑研究】 1.仰角、俯角、方向角有什么差别?以平面几何图形为背景,求解相关长度、角度、面积、最值和优化等问题,往常是转变到三角形中,利用正、余弦定理加以解决.在解决某些详细问题时,常先引入变量 (如边长、角度等 ),而后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之.以平面几何图形为背景,求解相关长度、角度、面积、最值和优化等问题,往常是转变到三角形中,利用正、余弦定理加以解决.在解决某些详细问题时,常先引入变量 (如边长、角度等 ),而后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之.如右图, D 是直角△ ABC 斜边 BC 上一点, AB=AD,记∠ CAD=,∠ ABC=β.(1)证明: sin+cos 2β=0;(2)若 AC= 3 DC,求β的值.【变式训练】 1.如图,在四边形ABCD 中,已知 AD⊥ CD,AD =10,AB=14,∠ BDA= 60°,∠ BCD= 135°,则 BC 的长为________.求距离问题要注意:(1)选定或确立要创立的三角形,要第一确立所求量所在的三角形,若其余量已知则直接解;如有未知量,则把未知量放在另一确立三角形中求解.(2)确立用正弦定理仍是余弦定理,假如都可用,就选择更便于计算的定理.例题 2.如下图,甲船由A岛出发向北偏东45°的方向作匀速直线航行,速度为15 2海里 /小时,在甲船从 A 岛出发的同时,乙船从 A 岛正南 40 海里处的 B 岛1出发,朝北偏东θtanθ=2的方向作匀速直线航行,速度为10 5海里 /小时.(1)求出发后 3 小时两船相距多少海里?(2)求两船出发后多长时间距离近来?近来距离为多少海里?丈量高度问题一般是利用地面上的观察点,经过丈量仰角、俯角等数据计算物体的高度,这种问题一般用到立体几何知识,先把立体几何问题转变为平面几何问题,再经过解三角形加以解决.例题 3,如图,丈量河对岸的塔形建筑 AB,A 为塔的顶端, B 为塔的底端,河两岸的地面上随意一点与塔底端 B 处在同一海拔水平面上,现给你一架测角仪 (能够丈量仰角、俯角和视角 ),再给你一把尺子 (能够丈量地面上两点间距离 ),图中给出的是在一侧河岸地面 C 点测得仰角∠ ACB=,请设计一种丈量塔建筑高度 AB 的方法 (此中测角仪支架高度忽视不计,计算结果可用丈量数据所设字母表示 ).【变式训练】3. A、B 是海平面上的两个点,相距800 m,在A 点测得山顶C 的仰角为 45°,∠ BAD=120°,又在 B 点测得∠ ABD=45°,此中 D 是点 C 到水平面的垂足,求山高 CD.丈量角度问题也就是经过解三角形求角问题,求角问题能够转变为求该角的函数值.假如是用余弦定理求得该角的余弦,该角简单确立,假如用正弦定理求得该角的正弦,就需要议论解的状况了.例题 4,在海岸A处,发现北偏东45°方向,距离A处(3-1) n mile的 B 处有一艘走私船,在 A 处北偏西 75°的方向,距离 A 处 2 n mile 的 C 处的缉私船受命以 10 3 n mile/h 的速度追截走私船.此时,走私船正以 10 nmile/h 的速度从 B 处向北偏东 30°方向逃跑,问缉私船沿什么方向能最快追上走私船?【变式训练】 4.如下图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西 105°方向的 B1处,此时两船相距20海里.当甲船航行20分钟抵达 2 处时,A乙船航行到甲船的北偏西120°方向的 B2处,此时两船相距 10 2海里,问乙船每小时航行多少海里?1.解三角形的一般步骤(1)剖析题意,正确理解题意分清已知与所求,特别要理解应用题中的相关名词、术语,如坡度、仰角、俯角、方向角等.(2)依据题意画出表示图.(3)将需求解的问题归纳到一个或几个三角形中,经过合理运用正弦定理、余弦定理等相关知识正确求解.演算过程中,要算法精练,计算正确,并作答.(4)查验解出的答案能否拥有实质意义,对解进行弃取.2.解斜三角形实质应用举例(1)常有几种题型丈量距离问题、丈量高度问题、丈量角度问题、计算面积问题、航海问题、物理问题等.(2)解题时需注意的几个问题①要注意仰角、俯角、方向角等名词,并能正确地找出这些角;②要注意将平面几何中的性质、定理与正、余弦定理联合起来,发现题目中的隐含条件,才能顺利解决.从近两年的高考试题来看,利用正弦定理、余弦定理解决与丈量、几何计算相关的实质问题是高考的热门,一般以解答题的形式考察,主要考察计算能力和剖析问题、解决实质问题的能力,常与解三角形的知识及三角恒等变换综合考察.1.(2012 ·江西卷 )E,F 是等腰直角△ ABC 斜边 AB 上的三平分点,则tan∠ECF= ()16233A.27B.3C. 3D.42.(2012 ·陕西卷 )如图, A,B 是海面上位于东西方向相距5(3+ 3 )海里的两个观察点,现位于 A 点北偏东 45°, B 点北偏西 60°的 D 点有一艘轮船发出求救信号,位于 B 点南偏西 60°且与 B 点相距 20 3 海里的C点的营救船立刻前去营救,其航行速度为 30 海里 / 时,该营救船抵达 D 点需要多长时间?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[知识点]
• 1、解有关斜三角形应用题的一般步骤:
– (1)准确理解题意,弄清已知和所求; – (2)根据题意,画出示意图; – (3)分析与研究一个或几个三角形; – (4)正确运用正、余弦定理有序的求解。 – (5)回答实际问题 – 关键:将实际问题转化为数学问题。
2、解斜三角形中的有关名词、术语:
– (1)坡度:斜面与地平面所成的角度。 – (2)仰角和俯角:在视线和水平线所成的角
中,视线在水平线上方的角叫仰角,视线在水 平线下方的角叫仰角。 – (3)方位角:从正北方向顺时针转到目标方 向的夹角。
• 方位角的其它表示:东南方向等。
– (4)视角:由物体两端射出的两条光线在眼 球内交叉而成的角。
(cos 38 13' 0.7857)
*例5:如图,地平面上由一个旗杆 OP,为了测得它的高度h在地面上取
一条基线AB,AB=20m,在处测得P点 的仰角 OAP 30,在B处测得P点的 仰角 OBP 45 ,又测得 AOB 60 ,
P
求旗杆的高h。
30
A
45
60
O
B
同时,测得 ,
(AA,CBB,3C,,7D5在同B一CD个,45
平面)A,DC求两30目标ADAB, B45之间的距离。
A B
C
D
例4:某渔轮在A处测得北偏东 45 的 C处有南偏东 75 的方向以
每小时10海里的速度游去。渔轮立 即以每小时14海里的速度沿着直线 方向追捕。问渔轮应沿什么方向, 需几小时才能追上鱼群?
例1:某人向正东方向走了xkm,他
向右转1500,然后朝新方向走了3km,
结果他离出发点恰好 km,那么x的值
是多少?
3
例2:某人骑车以每小时a km的速度 向东行驶,感到风从正北方向吹来, 而当速度为2akm时,感到风从东北 方向吹来,试求实际风速和风向。
例3:隔河看两目标A和B,但不能到
达,在岸边选取相距km的C和D两点,