开关电源的内部干扰与外部干扰
开关电源电磁干扰(EMI)抑制措施总结

摘要:开关电源的电磁干扰对电子设备的性能影响很大,因此,各种标准对抑制电源设备电磁干扰的要求已越来越高。
对开关电源中电磁干扰的产生机理做了简要的描述,着重总结了几种近年提出的新的抑制电磁干扰的方法,并对其原理、应用做了简单介绍。
1 引言随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。
开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰( ElectromagneticInterference , EMI )。
EMI 信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容( ElectromagneticCompatibility )性。
随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。
本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。
2 电磁干扰的产生和传播方式开关电源中的电磁干扰分为传导干扰和辐射干扰两种。
通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。
下面将对这两种干扰的机理作一简要的介绍。
2.1传导干扰的产生和传播传导干扰可分为共模( CommonMode CM )干扰和差模( DifferentialMode DM )干扰。
由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。
2.1.1 共模( CM )干扰变换器工作在高频情况时,由于 dv/dt 很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。
抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。
根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。
1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。
电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。
电源进线端通常采用如图1 所示的EMI 滤波器电路。
该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。
在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。
而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。
抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。
当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
因此,即使在大负载电流的情况下,磁芯也不会饱和。
而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。
2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。
采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。
可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。
开关电源产生干扰的四条主要原因

开关电源产生干扰的四条主要原因1.开关电源本身的电磁干扰:开关电源采用高频开关器件进行开关操作,这会引起较高频率的电流和电压波形,并产生大量的电磁噪声。
这些高频噪声会通过电源线、输入滤波器和输出滤波器等途径进入其他电路和设备,引起干扰。
2.输入电源的电磁干扰:不同的设备可能共享相同的输入电源线路,当一个设备使用开关电源时,其产生的高频电磁噪声会通过共享的电源线路传播给其他设备,从而对它们产生干扰。
3.输出线路干扰:开关电源输出端连接的电源线路和负载线路也可能成为干扰源。
由于开关电源的开关操作会引起电流和电压的突变,这可能会在输出线路中产生较大的尖峰电流和瞬时电压斜率,同时伴随着较高频率的电流波形,进而对连接的负载产生干扰。
4.开关电源引起的电磁互感干扰:由于开关电源中的高频开关操作,其导线和电感元件之间会产生一定强度的电磁场。
当这些元件和其他线路或元件之间存在电磁耦合时,会发生电磁互感干扰。
这种耦合可能发生在电源线、输出线路和周围环境中,通过干扰线路中的电感元件或导线,引起其上产生的感应电流或感应电压,从而产生干扰。
为了减少开关电源产生的干扰,可以采取以下措施:1.优化开关电源的设计:通过合理选择高频开关器件和合适的电源变压器,以减少开关操作时产生的电磁噪声。
2.加强输入滤波:在开关电源的输入端添加滤波电路,能够有效滤除输入电源中的高频噪声,减少其对其他设备的干扰。
3.加强输出滤波:在开关电源的输出端添加输出滤波器,可以滤除输出线路中的高频噪声和尖峰电流,减少对连接设备的干扰。
4.电磁屏蔽措施:对开关电源所在的外壳进行屏蔽处理,防止其产生的电磁辐射波传播到周围环境中。
总之,开关电源产生的干扰主要与其本身设计和工作原理有关,通过合理设计、滤波和屏蔽措施,可以有效减少这些干扰,并保证设备的正常运行。
开关电源中的干扰

开关电源中的干扰一.电源线噪声电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的,电源线的噪声分为两大类:共模干扰和差模干扰。
1.共模干扰(Common-mode Interference):两导线上的干扰电流振幅相等,而方向相同者称为共模干扰。
(任何载流体与地之间不希望有的电位)共模干扰的消除共模扼流圈工作原理如下:共模扼流圈当电路中的正常电流通过时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当共模电流流过线圈时,由于共模电流的同向性,会在线圈类产生同向的磁场而增大线圈的阻抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流达到滤波的目的。
共模电容的工作原理和差模电容的工作原理是一致的,都是利用电容的高频低阻性,使高频干扰电路短路,而低频时电路不受任何影响。
只是差模电容是两极之间短路,而共模电容是线对地短路。
消除共模干扰的方法包括:(1).采用双绞线并有效接地。
(2).强电场的地方还需要采用度锌管屏蔽。
(3).布线时远离高压线,更不能将高压电源线和信号线捆在一起走线。
(4).不要和电控所共用同一个电源。
(5).采用线形稳压电源或高品质的开关电源(纹波干扰小于50mV)(6).采用差分式电路2.差模干扰(Differential-mode Interference):两导线上的干扰电流,振幅相等,方向相反称为差模干扰。
(任何两个载流体之间不希望有的电位差)(电容C的容量范围大致是2200pF-0.1uF,为减小漏电流,电容量不宜超过0.1uF)差模干扰的消除当干扰信号频率越高时,Zc越小,效果越明显,而低频时电路不受任何影响。
(电容C的容量大致是0.01-0.47uF)任何电源线上传导干扰信号,均用差模和共模信号来表示,差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,一般指在两根信号线上产生的幅值相等,相位相同的噪声,属于非对对称性干扰。
开关电源的电磁干扰解决方法

差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等级,并能承受可预料的电压冲击即可。为了避免放电电流引起的冲击危害,CX电容容量不宜过大,一般在0.01~0.1μF之间。电容类型为陶瓷电容或聚酯薄膜电容。
ID=2πfCYVcY
式中:ID为漏电流;
f为电网频率。
一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。
1.2 输入电流畸变造成的噪声
开关电源的输入普遍采用桥式整流、电容滤波型整流电源。,在没有 PFC功能的输入级,由于整流二极管的非线性和滤波电容的储能作用,使得二极管的导通角变小,输入电流i成为一个时间很短、峰值很高的周期性尖峰电流。这种畸变的电流实质上除了包含基波分量以外还含有丰富的高次谐波分量。这些高次谐波分量注入电网,引起严重的谐波污染,对电网上其他的电器造成干扰。为了控制开关电源对电网的污染以及实现高功率因数,PFC电路是不可或缺的部分。
开关电源初次级之间的干扰

开关电源初次级之间的干扰主要源于以下几个方面:1.开关管负载的感性特性:开关管负载是开关电源的核心部分,由开关管和高频变压器组成。
在开关管导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压。
在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。
这种涌流和浪涌尖峰电压具有较大的幅度和频谱较宽的特点,因此会产生较强的电磁干扰。
2.变压器的漏感和输出二极管的反向恢复电流:这些因素会导致潜在的电磁干扰。
开关电源中的干扰源主要集中在电压和电流变化较大的组件上,并且主要显示在开关管、二极管和高频变压器上。
随着电力电子技术的发展,开关电源模块由于其相对较小的尺寸、较高的效率和可靠的操作已开始取代传统的整流器电源,并已广泛应用于社会的各个领域。
3.快速变化的电压和电流:在开关电源中,由于变压器的漏感和输出二极管的反向恢复电流而产生的尖峰会形成潜在的电磁干扰。
此外,由于电力电子设备在开关操作过程中会产生快速变化的电压和电流,因此会产生强烈的谐波干扰和尖峰干扰。
这些干扰可能会通过传导、辐射和串扰等途径影响其自身电路和其他电子系统的正常运行。
为了解决这些干扰问题,可以采取以下措施:1.增加输入滤波器:输入滤波器可以有效地抑制开关电源产生的电磁干扰。
它由共模和差模滤波器组成,可以减小传导干扰并降低电磁辐射。
2.优化开关频率:通过优化开关频率,可以降低电磁干扰的强度和频率范围。
较高的开关频率会导致更强的电磁干扰,因此选择合适的开关频率非常重要。
3.使用软开关技术:软开关技术可以减小开关管和整流二极管的电压和电流变化率,从而减小电磁干扰。
它通过在开关管或整流二极管上增加额外的电路来控制电压和电流的变化过程。
4.屏蔽和接地:对开关电源进行良好的屏蔽和接地可以有效地减小电磁干扰对外界的传播。
开关电源的电磁干扰及其滤波措施

开关电源的电磁干扰及其滤波措施1引言开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等特点,广泛用于计算机及外围设备、通信、自动控制、家用电器等领域。
但开关电源的突出缺点是产生较强的电磁干扰(EMI)。
EMI信号既占有很宽的频率范围,又有一定的幅度,经传导和辐射会污染电磁环境,对通信设备和电子仪器造成干扰。
如果处理不当,开关电源本身就会变成一个干扰源。
随着电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关EMC标准或规范,已成为电子产品设计者越来越关注的问题。
2开关电源产生EMI的原理开关电源产生EMI的因素较多,其中由基本整流器产生的电流高次谐波干扰和变压器型功率转换电路产生的尖峰电压干扰是主要因素。
它们所以产生于电源装置的内部,是由于开关电源中的二级管和晶体管在工作过程中产生的跃变电压和电流,通过高频变压器、储能电感线圈和导线以及系统结构、元件布局等而造成的。
基本整流器的整流过程是产生EMI最常见的原因。
这是因为正弦波通过整流器后不再是单一频率的电流,而是变成单向脉动电源,此电流波形分解为一直流分量和一系列频率不同的交流分量之和。
实验结果表明,较高的谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰,使接收机等产生噪声。
变压器型功率转换电路是实现变压、变频以及完成输出电压调整的部件,是开关稳压电源的核心,主要由开关管和高频变压器组成。
它产生的尖峰电压是一种有较大辐度的窄脉冲,其频带较宽且谐波比较丰富。
产生这种脉冲干扰的主要原因是:(1) 开关功率晶体管感性负载是高频变压器或储能电感。
在开关管导通的瞬间,变压器初级出现很大的电流,它在开关管过激励较大时,将造成尖峰噪声。
这个尖峰噪声实际上是尖脉冲,轻者造成干扰,重者有可能击穿开关管。
(2) 由高频变压器产生的干扰。
解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。
2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。
3. 地线布局:合理布置地线,减少电磁干扰。
不同元器件的地线要分开布局,避免共
用一个接地点。
4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。
5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。
6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。
7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。
8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。
以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。
开关电源共模干扰测试方法__概述说明

开关电源共模干扰测试方法概述说明1. 引言1.1 概述在现代电子设备中,开关电源广泛应用于各类电子产品的电源供给。
然而,开关电源具有高效、小体积等诸多优点的同时,也会带来一些问题,其中之一就是共模干扰。
共模干扰是指由开关电源内部产生的噪声信号通过其输出端口进入其他部分电路或系统中,对正常信号造成干扰。
共模干扰的传导路径主要有三种:功率线传导、地线传导和空气传导。
它会引起其他设备的故障、通讯信号质量下降等问题,严重影响了系统性能和稳定性。
因此,在设计和使用开关电源时,需要测试和评估其共模干扰水平。
本文将介绍一种有效的开关电源共模干扰测试方法,并详细说明测试方法的原理和步骤,以便工程师们在实际工作中能够准确评估开关电源的共模干扰水平,并采取相应措施进行干扰抑制与改善。
1.2 文章结构本文总计分为五个章节。
除了引言外,还包括“2. 开关电源共模干扰测试方法”、“3. 实验设计与操作注意事项”、“4. 结果分析与讨论”和“5. 总结与展望”五个部分。
在第二章中,将定义和背景介绍开关电源共模干扰,并对其理论基础进行详细解释。
同时,我们还将提供一套完整的测试步骤,帮助读者了解如何准确地进行开关电源共模干扰测试。
第三章将重点介绍实验设计的重要性,并给出一些建议的实验方案。
此外,会列举所需实验设备和工具,并提示操作时需要注意的事项,以保证实验结果的准确性和可靠性。
第四章将对测试所得数据进行收集、整理,并进行结果解读与分析。
进一步讨论开关电源共模干扰测试方法的优缺点,为后续改进提供参考依据。
最后,在第五章中,我们将对全文内容进行总结,并展望未来研究方向。
同时也指出本文存在的局限性及需要进一步探索的问题,以拓展开关电源共模干扰研究领域。
1.3 目的本文旨在提供一种全面而有效的开关电源共模干扰测试方法。
通过概述、定义和背景介绍、理论基础、测试步骤等方面的内容,帮助读者了解开关电源共模干扰的相关知识,掌握相应的测试方法,并能够在实际工作中评估开关电源的共模干扰水平。
开关电源中的电子干扰分析及解决办法

开关电源中的电子干扰分析及解决办法开关电源因体积小、功率因数较大等优点,在通信、控制、计算机等领域应用广泛。
但由于会产生电磁干扰,其进一步的应用受到一定程度上的限制。
本文将分析开关电源电磁干扰的各种产生机理,并在其基础之上,提出开关电源的电磁兼容设计方法。
开关电源的电磁干扰分析开关电源的结构如图1所示。
首先将工频交流整流为直流,再逆变为高频,最后再经整流滤波电路输出,得到稳定的直流电压。
电路设计及布局不合理、机械振动、接地不良等都会形成内部电磁干扰。
同时,变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也是潜在的强干扰源。
图1 AC/DC开关电源基本框图1 内部干扰源● 开关电路开关电路主要由开关管和高频变压器组成。
开关管及其散热片与外壳和电源内部的引线间存在分布电容,它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。
开关管负载为高频变压器初级线圈,是感性负载。
当原来导通的开关管关断时,高频变压器的漏感产生了反电势E=-Ldi/dt,其值与集电极的电流变化率成正比,与漏感成正比,迭加在关断电压上,形成关断电压尖峰,从而形成传导干扰。
● 整流电路的整流二极管输出整流二极管截止时有一个反向电流,其恢复到零点的时间与结电容等因素有关。
它会在变压器漏感和其他分布参数的影响下产生很大的电流变化di/dt,产生较强的高频干扰,频率可达几十兆赫兹。
● 杂散参数由于工作在较高频率,开关电源中的低频元器件特性会发生变化,由此产生噪声。
在高频时,杂散参数对耦合通道的特性影响很大,而分布电容成为电磁干扰的通道。
2 外部干扰源外部干扰源可以分为电源干扰和雷电干扰,而电源干扰以“共模”和“差模”方式存在。
同时,由于交流电网直接连到整流桥和滤波电路上,在半个周期内,只有输入电压的峰值时间才有输入电流,导致电源的输入功率因数很低(大约为0.6)。
而且,该电流含有大量电流谐波分量,会对电网产生谐波“污染”。
开关电源的EMC设计产生电磁干扰有3个必要条件:干扰源、传输介质、敏感设备,EMC设计的目的就是破坏这3个条件中的一个。
干扰对显示器的影响

干扰对显示器的影响其实,在我们生活的环境中,干扰时时刻刻存在,只是我们平时感觉不到罢了。
但对于电子电路来说,在设计时就必须考虑干扰对机器稳定性和可靠性的影响。
像液晶显示器,如果抗干扰能力差,轻则屏幕图像出现条纹干扰,重则OSD 数据损坏图像偏色或开机黑屏,甚至开不了机;也有可能出现自动开关机等莫名其妙的故障,让我们无从下手,也查不到故障原因。
一、干扰的产生对液晶显示器正常工作能够产生的干扰来自两个方面,一方面来自显示器内部,另一方面来自显示器的使用环境。
1、内部干扰1)、显示器内部的干扰源有开关电源工作时产生的多次谐波,背光灯管正常工作时产生的多次谐波。
2)、再一个是带电拔插。
带电拔插分两种,一种是VGA信号线,另一种是220V市电插头。
(1)、虽然VGA接口是即插即用,但并没有规定是带电拔插。
由于主机使用的是开关电源,液晶显示器使用的也是开关电源,当两个开关电源正常工作且不共地时,这两个开关电源的电源负级(也就是地)之间就会有几十伏,甚至上百伏的电压差。
当我们带电拔插VGA信号线时,插接的瞬间,就有可能通过VGA 信号线插头座放电。
这个瞬间的放电电压如果是通过VGA信号线的插针购成回路放电,就会立即损坏RGB或者HV信号通路。
当然瞬间的放电信号也有可能破坏驱动板上的24CXX系列FLASH存储芯片,导致显示器不能正常工作。
(2)、220V市电的带电拔插一般家用电器都设置一个电源开关,这样做的好处是防止接插电过程中意外损坏电器元件。
当我们把电器的220V电源插头接入插座时,并不是一次就接触良好,供电稳定,而是要经过一个多次接触过程,该过程因为接触不好,电压会有高低变化和放电打火现象。
由于供电不稳,电压变化,带有MCU控制元件的家用电器可能不能稳定工作,甚至出现故障,所以就设置了电源开关。
不过,由于液晶显示器的功耗较小,同时液晶显示器的开关机都是MCU控制的,现在液晶显示器基本都取消了电源硬开关,都是MCU控制开关机的,也就是说只要插上220V电源插头,液晶显示器内部的MCU已经处于工作状态。
开关电源干扰(差模噪声与共模噪声)问题

开关电源干扰(差模噪声与共模噪声)问题1、干扰是如何产生的差模噪声:主要由开关变换器的脉动电流引起。
共模噪声:主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起;共模电流包括连线到接地面的位移电流,开关器件的d/d通过外壳和散热片之间的分布电容对地形成的噪声电流。
整流电路:整流电路一般采用不控整流方式,后接大容量滤波电容,电容的接入往往导致整流二极管导通角变小,而引起输入侧的交流电流波形产生畸变。
开关管及整流管:高频率的开关,在微妙量级时间内产品射频能量,是噪声主要来源,通过辐射或传导方式释放。
分布电容:电路、PCB、散热器等之间在高频开关的突然充放电影响之下,分布电容被激活,这也是噪声的重要来源。
变压器:变压器的分布电容,也会产生噪声。
2、干扰造成的影响噪声会通过传导、辐射、耦合等方式对外传播高频噪声会对设备本身电子器件造成影响,导致电路工作异常,降低器件使用寿命;噪声会对与之临近的设备产生影响,导致临近设备工作紊乱;噪声会通过传导进入电网,影响挂接在电网上的其他设备。
3、干扰如何去除[1]1)电网到设备之间,加装线性滤波器L1、L2、C1组成差模滤波电路,C1为X电容(安规电容);L3、C2、C3组成共模滤波电路,L3为共模电感,C2、C3为Y电容(安规电容)。
2)为开关器件添加RC吸收电路3)接地,接地线尽量短粗,减小接地电阻,辐射可以加屏蔽罩a适合低要求场合;b适合有公共线路阻抗引起噪声的低频场合;c适合于存在共模噪声的高频场合4)电阻电阻选择金属膜电阻(RJ),不用碳膜电阻(RT),RT发热量会随着工作频率升高而急剧增加,会造成器件过热甚至导致器件烧毁。
5)滤波电容选择电容要看他的阻抗-频率特性,一般铝电解电容工作在10K以上时,其阻抗特性会呈现出感性,这是我们不希望发生的。
所以,高频电路要选择特定的滤波电容:回端电容;多芯电容;叠片电容;复合电容:将一个大电容和一个小的瓷片电容并联使用,可获得较好的高频特性,但最高一般可用到1MHZ,再高就无法抑制了。
浅谈开关电源电磁干扰及其抑制技术

浅谈开关电源电磁干扰及其抑制技术摘要:开关电源以其重量轻、体积小、效率高、可靠性高等优点得到了广泛的应用。
然而,开关电源的电磁干扰不容忽视。
近年来,随着科学技术的发展,电磁干扰问题涉及到的领域不断扩大。
特别是消费类电子电源的体积越来越小,功率越来越大,开关电源的功率密度越来越大,电磁干扰越来越严重,将极大地影响人们的生活和设备的运行。
因此,开关电源的电磁干扰抑制技术一直是国内相关技术人员的研究重点。
关键词:开关电源;电磁干扰;抑制技术引言随着电子信息技术的飞速发展,开关电源以其转换效率高、稳定性好等优点被广泛应用于各个领域。
开关电源在实际应用中经常发生电磁干扰,影响开关电源的使用体验。
解决开关电源的电磁干扰问题,促进开关电源的可靠稳定应用。
1.开关电源工作机理开关电源的主要作用是将电网交流电,转换为设备所需要的直流电,保证用电设备的正常运转。
开关电源电路主要由以下的部分组成:一、输入整流滤波电路;二、反馈控制电路;三、初级功率回路;四、次级整流滤波电路。
其中输入滤波电路主要包括过滤电网杂波的输入滤波器,其能阻止开关电源本身产生的干扰影响到电网,同时也能滤除电网的干扰,保证开关电源正常运行。
整流电路,将电网交流电转化为脉冲直流电。
给控制回路提供能量基础;反馈控制电路是是利用现代电力电子技术,通过对输出电压电流的采样比较,反馈控制开关管开通和关断的时间比率,以实现稳定输出,来满足电气设备的要求,保证整个电气部分的正常运行。
初级功率回路主要由高频变压器、初级开关管、功率检测电阻等组成。
接受反馈控制回路的调节,将整流电路的脉冲直流电,通过高频变压器传递到次级;次级整流滤波电路主要由次级二极管,储能及滤波电容和恒流恒压控制电路组成。
和反馈控制电路相关联,将变压器从初级传递的能量整流后进行一系列的处理,以提供设备所需的直流电压和电流。
1.电磁干扰的危害开关电源内部出现的电磁干扰可分为两种,一种是干扰信号通过导线或公共电源线进行传输,互相产生干扰称为传导干扰;另外一种是开关电源产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备,称为辐射干扰。
开关电源的电磁干扰和射频干扰及电气安全标准

开关电源的电磁干扰和射频干扰及电气安全标准一、电磁干扰和射频干扰(EMI-RFI)美国及国际标准化组织已对电磁干扰和射频干扰制定了若干标准,要求电子设备的生产厂商将其产品的辐射和传导干扰降低到可接受的程度。
在美国,权威的指导性文件是FCC Dock-et20780,在国际上,德国的Verband Deutscher Elek-tronotechniker(VDE)安全标准则得到了广泛的采用。
FCC和VDE两个标准,主要是针对最终产品提出的,而不是组装产品的部件,但使用开关电源的整机产品,必须符合EMI-RFI的有关条款,了解这一点是非常重要的。
正是因为如此,既便开关电源已经使用了一个输入滤波器,这个滤波器对无源负载电路是匹配的,但对有源动态电子电路供电时,其抑制干扰的能力会发生剧烈的变化。
本文试图引导大家了解一些RFI的难题,并给出减小这些干扰的措施,这无论对电源设计或最终产品的设计均是需要遵循的。
1.FCC和VDE标准关于噪声抑制的条款FCC和VDE两项标准对由交流供电且由高频数字电路构成的设备的RFI抑制均提出了相应要求。
VDE标准把它的条款分成二类:第一类是工作在0~10kHz 的设备产生的无意性高频干扰。
它们的标准号分别是VDE-0875和VDE-0879;第二类是用于要求那些使用10kHz以上频率的设备所产生的有意性高频干扰,它们的标准号是VDE-0871和VDE-0872。
与此不同的是,FCC则针对产生或使用定时脉冲信号大于10kHz的所有设备提出RFI限制的有关条款。
图1所示给出了FCC和VDE对RFI的各项要求。
注:IEC为国际电子技术委员会的英文缩写;CISPR为国际无线电干扰特别委员会的英文缩写;EEC为电子设备的英文缩写。
FCC对EMI-RFI的有关条款与VDE的有关条款十分接近,其CLASS A部分要求商业、贸易和工业环境的设备,其电磁干扰辐射应在几分贝/微伏,所有能达到VDE 0875/N或VDE-0871/A,C标准规定的设备,几乎都能达到FCC的这一要求。
开关电源产生电磁干扰(EMI)的原因

功率开关器件的高额开关动作是导致开关电源产生电磁干扰(EMI)的主要原因。
开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的EMI问题。
开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。
现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。
由电流波形可知,电流中含有高次谐波。
大量电流谐波分量流入电网,造成对电网的谐波污染。
另外,由于电流是脉冲波,使电源输入功率因数降低。
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。
这种通过电磁辐射产生的干扰称为辐射干扰。
开关电源的电磁干扰及噪声抑制方法

开关电源的电磁干扰及噪声抑制方法开关电源是现代电子应用中常见的一种电源形式,其工作原理是通过开关管开关控制输入电压的大小和频率以实现电压转换。
但是,开关电源在工作过程中会产生电磁干扰和噪声,对其他电子设备的正常工作产生影响。
因此,为了抑制开关电源的电磁干扰和噪声,在设计和使用开关电源时需要采取一些措施。
首先,开关电源产生的电磁干扰主要包括导向式干扰和辐射式干扰。
导向式干扰是指开关电源通过引线或线路对周围设备产生的电磁干扰,辐射式干扰是指开关电源通过电磁波辐射对周围设备产生的干扰。
对于导向式干扰,可以采取以下措施进行抑制:1.滤波器:在开关电源的输入和输出端加装滤波器,用于滤除高频噪声和电磁干扰。
常用的滤波器有LC滤波器、RC滤波器和Pi型滤波器等。
2.输入电源线路的处理:尽量缩短输入电源线路的长度,采用屏蔽线材,减小电磁干扰的传播路径。
同时,在输入电源线上添加额外的滤波电容和电感,抑制高频噪声。
3.地线处理:通过合理布置地线,减小接地电阻,提高地线的抗干扰能力。
将开关电源的地线与其他设备的接地点连接,共用同一个地线。
对于辐射式干扰,可以采取以下措施进行抑制:1.屏蔽:在开关电源的外壳上添加金属屏蔽罩,减少电磁辐射。
金属屏蔽罩应与开关电源的地线连接,以形成完整的屏蔽。
2.PCB设计:在开关电源的PCB板设计中,合理布局信号和电源线路,减小线路的长度。
同时,采用地平面和电源平面屏蔽,减少信号线和电源线的交叉和干扰。
3.使用低频率开关管:低频率工作的开关管辐射干扰较小,可以有效降低开关电源的电磁辐射干扰。
此外1.选择合适的元器件:选用带有防干扰措施的元器件,如具有抗干扰特性的电解电容和电感器件,减小干扰的产生和传播。
2.电源输出滤波:在开关电源的输出端添加滤波电容和电感,减小输出电压的纹波和噪声。
3.接地处理:通过合理的接地设计和连接方式,减小接地电阻,提高接地抗干扰能力。
4.EMI滤波器:在开关电源的输入端和输出端加装EMI滤波器,进一步滤除高频噪声和电磁干扰。
开关电源EM必须掌握的概念

1.电磁干扰的产生与传输电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。
传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。
辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。
常见的辐射耦合有三种:1)一个天线发射的电磁波被另一个天线意外地接收,称为天线对天线的耦合;2)空间电磁场经导线感应而耦合,称为场对线的耦合。
3)两根平等导线之间的高频信号相互感应而形成的耦合,称为线对线的感应耦合。
2.电磁干扰的产生机理从被干扰的敏感设备角度来说,干扰耦合又可分为传导耦合和辐射耦合两类。
•传导耦合模型传导耦合按其原理可分为电阻性耦合、电容性耦合和电感性耦合三种基本耦合方式。
•辐射耦合模型辐射耦合是干扰耦合的另一种方式,除了从干扰源发出的有意辐射外,还有大量的无意辐射。
同时,PCB板上的走线无论是电源线、信号线、时钟线、数据线或者控制线等,都能起到天线的效果,即可辐射出干扰波,又可起到接收作用。
3.电磁干扰控制技术①传输通道抑制•滤波:在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。
滤波器的安装正确与否对其插入损耗特性影响很大,只有安装位置恰当,安装方法正确,才能对干扰起到预期的滤波作用。
在安装滤波器时应考虑安装位置,输入输出侧的配线必须屏蔽隔离,以及高频接地和搭接方法。
・屏蔽:电磁屏蔽按原理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。
电场屏蔽包含静电屏蔽和交变电场屏蔽;磁场屏蔽包含低频磁场屏蔽和高频磁场屏蔽。
不同类型的电磁屏蔽对屏蔽体的要求不同。
在实际的屏蔽中,电磁屏蔽效能更大程度上依赖于屏蔽体的结构,即导电的连续性。
实际的屏蔽体由于制造、装配、维修、散热、观察及接口连接要求,其上面一般都开有形状各异、尺寸不同的孔缝,这些孔缝对于屏蔽体的屏蔽效能起着重要的影响作用,因此必须采取措施来抑制孔缝的电磁泄漏。
开关电源的噪音及解决方法

开关电源具有线性电源无可比拟的许多优点:体积小,重量轻,效率高等等,但开关电源会产生电磁干扰,尤其是中大功率等级的开关电源干扰更为严重。
这是由于开关电源存在着整流谐波、开关频率和它的谐波以及在开关转换中所固有的高速电流和电压瞬变。
产生电磁干扰是开关电源本身的特点所决定的,是难以避免的,关键是如何采取有效的措施来减小其干扰程度。
通过对开关电源进行电磁兼容性测试得知,一般有以下四项指标不合格。
CE01100Hz~15KHz电源线传导发射。
CE0315KHz~50MHz电源线传导发射。
RE0125Hz~50KHz磁场辐射发射。
RE0214KHz~10GHz电场辐射发射。
2开关电源电磁干扰产生原因分析开关电源按主电路型式可分为全桥式,半桥式,推挽式等几种,但无论何种类型的开关电源在工作时都会产生很强的噪声。
它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射。
开关电源对由电网侵入的外部噪声也很敏感,并经它传递到其他电子设备中产生干扰。
图1是一种最简单的开关电源主电路型式,直流变换式它激单边型开关电源,以此为例分析开关电源的噪声来源。
交流电输入开关电源后,由桥式整流器V1~V4整理成直流电压Vi加在高频变压器的初级L1和开关管V5上。
开关管V5的基极输入一个几十到几百千赫的高频矩形波,其重复频率和占空比由输出直流电压VO的要求来确定。
被开关管放大了的脉冲电流由高频变压器耦合到次级回路。
高频变压器初次级匝数之比也是由输出直流电压VO的要求来确定的。
高频脉冲电流经二极管V6整流并经C2滤波后变成直流输出电压VO。
因此开关电源在以下几个环节都将产生噪声,形成电磁干扰。
(1)高频变压器初级L1、开关管V5和滤波电容C1构成的高频开关电流环路,可能会产生较大的空间辐射。
如果电容器滤波不足,则高频电流还会以差模方式传导到输入交流电源中去。
如图1中的I1 。
(2)高频变压器次级L2、整流二极管V6、滤波电容C2也构成高频开关电流环路会产生空间辐射。
开关电源过冲产生的原因

开关电源过冲产生的原因开关电源过冲是指在电源开关打开或关闭时,由于电流或电压突然变化而产生的过电压现象。
它可能会对电子设备造成严重的损坏,甚至引发火灾等安全事故。
那么,究竟是什么原因导致了开关电源过冲呢?我们需要了解开关电源的工作原理。
开关电源主要由输入电源、整流电路、滤波电路、功率转换电路和输出电路等部分组成。
在正常工作状态下,输入电源通过整流电路将交流电转换为直流电,然后经过滤波电路平稳输出。
当电源开关打开或关闭时,电流和电压会发生突变,从而引发过冲现象。
开关电源过冲可能由于电源开关的质量不过关或老化引起。
电源开关是控制电流通断的关键元件,质量差的开关容易出现断路或者接触不良的情况,从而导致电流或电压突变,引发过冲现象。
过电容器的存在也是导致开关电源过冲的原因之一。
开关电源中通常会设置过电容器,用于抑制电源电压的瞬时变化。
然而,当电源开关打开或关闭时,过电容器会在短时间内释放或吸收电荷,从而引发电压的剧烈变化,导致过冲现象的发生。
开关电源的设计和调试不当也可能导致过冲现象的发生。
在设计过程中,如果没有充分考虑到电源开关的特性和工作环境的变化,就容易出现过冲问题。
同时,如果调试时没有合理设置电源开关的参数,也会引发过冲现象。
外部干扰也是开关电源过冲的一个重要原因。
当开关电源与其他电子设备或电源系统共用一个电源线路时,其他设备的开关操作或突发故障可能会产生干扰信号,导致开关电源产生过冲。
为了解决开关电源过冲问题,可以采取以下措施:选用质量可靠的电源开关。
通过选择具有良好质量的电源开关,可以减少开关故障和接触不良的概率,降低过冲的风险。
合理设计开关电源电路。
在电源电路设计中,应合理选择过电容器的参数,并采取适当的措施来减小电压突变,从而降低过冲的可能性。
对于外部干扰引起的过冲问题,可以采取屏蔽措施,如使用滤波器或隔离器等,以减少干扰信号对开关电源的影响。
进行严格的调试和测试。
在开关电源的调试过程中,应根据具体的工作环境和要求,合理设置电源开关的参数,进行充分的测试和验证,确保开关电源在各种工作状态下均能正常工作,避免过冲问题的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源的内外部干扰
开关电源的干扰一般分为两大类:一是开关电源内部元器件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰。
两者都涉及到人为因素和自然因素。
开关电源内部干扰:开关电源产生的EMI主要是由基本整流器产生的高次谐波电流干扰和功率变换电路产生的尖峰电压干扰。
基本整流器:基本整流器的整流过程是产生EMI最常见的原因。
这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰。
功率变换电路:功率变换电路是开关稳压电源的核心,它产带较宽且谐波比较丰富。
产生这种脉冲干扰的主要元器件为:
1)开关管开关管及其散热器与外壳和电源内部的引线间存在分布电容,当开关管流过大的脉冲电流(大体上是矩形波)时,该波形含有许多高频成份;同时,关电源使用的器件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流,另外,开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声。
2)高频变压器开关电源中的变压器,用作隔离和变压,但由于漏感的原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,而变压器对外壳的分布电容形成另一条高频通路,使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声。
3)整流二极管二次侧整流二极管用作高频整流时,由于反向恢复时间的因素,往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。
一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十MHz。
4)电容、电感器和导线开关电源由于工作在较高频率,会使低频元件特性发生变化,由此产生噪声。
开关电源外部干扰:开关电源外部干扰可以以“共模”或“差模”方式存在。
干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化。
其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等。
能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响。