最新版概率统计简明教程期末复习题(答案)

合集下载

概率论期末试题及答案

概率论期末试题及答案

概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。

因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。

解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。

概率统计简明教程期末试卷

概率统计简明教程期末试卷

概率统计简明教程期末试卷本文为概率统计的期末试卷,试卷共计5道大题,分值总计100分。

每道大题后面有提示性文字,以帮助读者更好的理解和解答。

第一题(20分)一枚硬币被扔两次,可能出现4种情况“正正”、“正反”、“反正”、“反反”,而且每种情况出现的概率相等。

某人打算重复这个实验,直到他首先得到“正反”的这样一个序列为止。

他进行了6次实验,试求他得到这样一个序列的概率。

提示:这是一道“条件概率”的题目,需要理解“离散数学”中关于条件概率的概念。

在本题中,每次实验之后的状况都会对后一次实验的结果产生影响。

第二题(20分)某城市每天有10%的可能会下雨,某人带了一个没有防水的普通雨伞出门。

如果下雨了他会淋湿,如果不下雨他不会湿。

他决定在过街天桥下等一段时间,如果下雨继续等雨停,如果未下雨则等一段时间后再离开。

试问他淋湿的概率是多少?提示:这是一道“概率”的题目,需要理解“条件概率”和“贝叶斯定理”的概念。

在本题中,每种情况的概率是已知的,需要通过对概率的计算得出结果。

第三题(20分)已知随机变量X的分布密度函数为:$$ f(x)=\\begin{cases} (1+6x), & -\\frac13 \\leqslant x \\leqslant 0 \\\\ (1-4x), & 0 \\leqslant x \\leqslant \\frac14 \\\\ 0, & \\text{其它} \\end{cases} $$求该随机变量的分布函数,并求P($\\frac16<X<\\frac14$)的概率值。

提示:这是一道“分布函数”和“密度函数”计算的题目,需要理解两者之间的关系以及在特定区间内对密度函数的积分计算。

第四题(20分)某大学对于录取考生订定了语文和数学成绩的加权平均值达到某个标准才可录取。

现在假设该大学收到两个考生申请,已知第一个考生的语文和数学成绩的期望分别为84和90,方差分别为10和16;第二个考生的语文和数学成绩的期望分别为80和86,方差分别为9和25。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

《概率分析与数理统计》期末考试试题及解答(DOC)

《概率分析与数理统计》期末考试试题及解答(DOC)

《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。

从该批产品中随机抽查5个,计算至少有一个不合格品的概率。

解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。

不合格品的概率为 0.1,合格品的概率为 0.9。

则没有不合格品的概率为 (0.9)^5。

至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。

4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。

解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。

一个骰子点数大于3的概率为 3/6 = 1/2。

两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。

至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。

以上是《概率分析与数理统计》期末考试的部分试题及解答。

希望对你有帮助!。

概率统计复习题(含答案)

概率统计复习题(含答案)

概率论与数理统计复习题(一)一.填空1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

概率统计期末考试试题及答案

概率统计期末考试试题及答案

概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。

假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。

2. 至多有5件产品是不合格的。

试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。

2. X的方差Var(X)。

试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。

求:1. 该银行连续5天的总交易量超过500万元的概率。

2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。

试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。

2. 零件长度的95%置信区间。

试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。

品牌B:平均打印速度为每分钟55页,标准差为4页。

样本量均为30台打印机。

假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。

答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。

根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。

2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。

根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。

答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。

2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。

概率统计复习题答案

概率统计复习题答案

概率统计复习题答案1. 随机变量X服从标准正态分布,求P(X > 1.96)。

答案:根据标准正态分布表,P(X > 1.96) = 1 - P(X ≤ 1.96) = 1 - 0.975 = 0.025。

2. 设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,求X的期望E(X)和方差Var(X)。

答案:E(X) = np = 10 × 0.3 = 3,Var(X) = np(1-p) = 10 × 0.3 × 0.7 = 2.1。

3. 某工厂生产的零件寿命服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中λ > 0,求该零件寿命超过1000小时的概率。

答案:P(X > 1000) = ∫(1000, +∞) λe^(-λx) dx = e^(-λ×1000)。

4. 已知随机变量X和Y的联合概率密度函数为f(x, y),求X和Y的协方差Cov(X, Y)。

答案:Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = ∫∫(x -E(X))(y - E(Y))f(x, y) dxdy。

5. 某地区连续三天的降雨量分别为X1, X2, X3,若X1, X2, X3相互独立且都服从正态分布N(μ, σ^2),求三天总降雨量X = X1 + X2 + X3的分布。

答案:X = X1 + X2 + X3,由于X1, X2, X3相互独立且都服从正态分布,根据正态分布的性质,X也服从正态分布,即X ~ N(3μ,3σ^2)。

6. 设随机变量X服从泊松分布,其参数为λ,求X的期望E(X)和方差Var(X)。

答案:对于泊松分布,其期望和方差都等于参数λ,即E(X) = λ,V ar(X) = λ。

7. 某工厂生产的零件合格率为0.95,求在100个零件中至少有90个合格的概率。

答案:设Y为100个零件中合格的零件数,则Y服从二项分布B(100, 0.95)。

最新《概率论与数理统计》期末考试试题及答案

最新《概率论与数理统计》期末考试试题及答案
解:因为 ,所以
(1)根据边缘概率与联合概率之间的关系得出
-1 1
0
1
0
0
0
………….4分
(2)因为
所以 与 不相互独立
…………8分
(一)对“漂亮女生”饰品店的分析
创业首先要有“风险意识”,要能承受住风险和失败。还要有责任感,要对公司、员工、投资者负责。务实精神也必不可少,必须踏实做事;
自制饰品一反传统的饰品消费模式,引导的是一种全新的饰品文化,所以非常容易被我们年轻的女生接受。七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
十几年的学校教育让我们大学生掌握了足够的科学文化知识,深韵的文化底子为我们创业奠定了一定的基础。特别是在大学期间,我们学到的不单单是书本知识,假期的打工经验也帮了大忙。解:(1) …………..2分
除了“漂亮女生”形成的价格,优惠等条件的威胁外,还有“碧芝”的物品的新颖性,创意的独特性等,我们必须充分预见到。 =
解:用 表示第 户居民的用电量,则
………2分
则1000户居民的用电量为 ,由独立同分布中心极限定理
………3分
= ………4分
……….6分
= ………7分
十一、(7分)设 是取自总体 的一组样本值, 的密度函数为
其中 未知,求 的最大似然估计。
解:最大似然函数为
……….2分
= ……… .3分

………..4分
1. 2. , 3. 4.
(1)如果 ,则 .
(2)设随机变量 的分布函数为
则 的密度函数 , .
(3)
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的
样本, 是来自总体 的样本,则统计量

概率论期末考试题及答案

概率论期末考试题及答案

概率论期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个事件是必然事件?A. 抛硬币正面朝上B. 抛硬币反面朝上C. 抛硬币出现正面或反面D. 抛硬币出现正面和反面2. 假设随机变量X服从正态分布N(μ, σ²),以下哪个选项是正确的?A. μ是X的期望值B. σ²是X的方差C. μ是X的中位数D. σ²是X的期望值3. 假设随机变量X和Y相互独立,以下哪个选项是正确的?A. P(X∩Y) = P(X)P(Y)B. P(X∪Y) = P(X) + P(Y)C. P(X∩Y) = P(X) + P(Y)D. P(X∪Y) = P(X)P(Y)4. 假设随机变量X服从二项分布B(n, p),以下哪个选项是正确的?A. X的期望值是npB. X的方差是np(1-p)C. X的期望值是nD. X的方差是p(1-p)二、填空题(每题5分,共20分)1. 如果随机变量X服从泊松分布,其概率质量函数为P(X=k) =________,其中λ > 0,k = 0, 1, 2, ...2. 假设随机变量X服从均匀分布U(a, b),其概率密度函数为f(x) = ________,其中a < x < b。

3. 假设随机变量X和Y相互独立,且X服从正态分布N(μ, σ²),Y 服从正态分布N(ν, τ²),则Z = X + Y服从正态分布N(μ+ν,________)。

4. 假设随机变量X服从二项分布B(n, p),其期望值E(X) = np,方差Var(X) = ________。

三、解答题(每题30分,共40分)1. 假设随机变量X服从正态分布N(0, 1),求P(-1 < X < 2)。

2. 假设随机变量X服从二项分布B(10, 0.3),求P(X ≥ 5)。

答案:一、选择题1. C2. A3. A4. A二、填空题1. λ^k * e^(-λ) / k!2. 1/(b-a)3. σ² + τ²4. np(1-p)三、解答题1. 根据标准正态分布表,P(-1 < X < 2) = Φ(2) - Φ(-1) =0.9772 - 0.1587 = 0.8185。

概率统计简明教程习题答案

概率统计简明教程习题答案

概率统计简明教程习题答案概率统计简明教程习题答案概率统计是一门研究随机事件发生规律的学科,它在各个领域中都有广泛的应用。

为了帮助读者更好地掌握概率统计的知识,我们为你准备了一些习题,并提供了详细的答案解析。

通过解答这些习题,相信你会对概率统计有更深入的理解。

1. 掷骰子问题问题:一个六面骰子,每个面的数字为1、2、3、4、5、6。

如果我们连续掷两次骰子,求以下事件的概率:(1)两次掷得的点数之和为7;(2)第一次掷得的点数比第二次掷得的点数大。

解答:(1)两次掷得的点数之和为7的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1)共6种,而每次掷骰子的可能结果有6种,所以该事件的概率为6/36=1/6。

(2)第一次掷得的点数比第二次掷得的点数大的情况有(2,1)、(3,1)、(3,2)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)、(5,4)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)共15种,而每次掷骰子的可能结果有6种,所以该事件的概率为15/36=5/12。

2. 抽样问题问题:有一箱中有10个球,其中3个红球,7个蓝球。

现从箱中随机抽取两个球,求以下事件的概率:(1)两个球都是红球;(2)两个球都是蓝球;(3)一个球是红球,一个球是蓝球。

解答:(1)两个球都是红球的情况只有一种,即从3个红球中选取2个红球,所以该事件的概率为C(3,2)/C(10,2)=3/45=1/15。

(2)两个球都是蓝球的情况只有一种,即从7个蓝球中选取2个蓝球,所以该事件的概率为C(7,2)/C(10,2)=21/45=7/15。

(3)一个球是红球,一个球是蓝球的情况有C(3,1) * C(7,1) = 3 * 7 = 21种,所以该事件的概率为21/45=7/15。

3. 正态分布问题问题:某商品的重量服从正态分布,平均重量为500g,标准差为10g。

概率统计复习题答案

概率统计复习题答案

概率统计复习题答案一、选择题1. 某随机事件A的概率为0.3,那么它的补事件的概率为:A. 0.7B. 0.6C. 0.9D. 0.5答案:A2. 随机变量X服从正态分布N(μ, σ²),其中μ=0,σ=1,那么P(-1 < X < 1)的值最接近:A. 0.6827B. 0.9545C. 0.9772D. 0.9997答案:B3. 一组数据的平均数是50,标准差是10,那么这组数据的方差是:A. 5B. 10C. 100D. 1000答案:C二、填空题1. 假设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么P(X=3)等于______。

(答案:0.2668)2. 假设随机变量Y服从泊松分布P(λ),其中λ=2,那么P(Y=1)等于______。

(答案:0.2707)三、简答题1. 请简述什么是大数定律。

答案:大数定律是概率论中的一个概念,它描述了随着试验次数的增加,样本均值会趋近于总体均值的性质。

具体来说,如果进行足够多次的独立同分布的随机试验,那么这些试验的平均结果会越来越接近总体的真实均值。

2. 请解释什么是中心极限定理。

答案:中心极限定理是概率论中的一个重要定理,它指出了在一定条件下,大量相互独立的随机变量之和经过标准化后,其分布趋近于正态分布,无论这些随机变量本身是否服从正态分布。

四、计算题1. 某工厂生产的零件,其长度服从正态分布N(100, 25)。

求长度超过105mm的零件所占的比例。

答案:首先计算Z值,Z = (105 - 100) / √25 = 2。

然后查标准正态分布表,得到P(Z > 2) ≈ 0.0228。

因此,长度超过105mm的零件所占的比例约为2.28%。

2. 某次考试的分数服从正态分布N(70, 16),求分数在65到85之间的学生所占的比例。

答案:首先计算两个Z值,Z1 = (65 - 70) / √16 = -0.5,Z2 = (85 - 70) / √16 = 1.5。

概率统计简明教程期末试卷 (2)

概率统计简明教程期末试卷 (2)

概率统计简明教程期末试卷第一部分:单选题1.关于概率的定义,以下哪个说法是正确的?A)特定事件发生的可能性B)事件发生的次数C)随机事件发生的趋势D)随机事件发生的原因答案:A2.某校男女生分别有800名和600名,如果从这些人中随机抽取一个人,那么他/她是女生的概率是多少?A)25%B)40%C)60%D)75%答案:B3.某公司的产品有5%的次品率,如果从该公司产品中随机抽取3件,其中至少有一件是次品的概率是多少?A)0.25%B)0.75%C)4.88%D)95.12%答案:C第二部分:多选题4.关于样本空间,以下哪个说法是正确的?A)样本空间中包含所有的可能结果B)样本空间中的每个元素都是事件C)样本空间中的元素可以是数字或字符串D)样本空间可以用树状图表示答案:A、B、D5.关于均值,以下哪个说法是正确的?A)是各数据项之和除以数据项的个数B)是数据项中的最大值C)是数据项中的最小值D)是数据项之间的方差答案:A6.在正态分布中,标准差越大,以下哪个说法是正确的?A)曲线越陡峭B)曲线越扁平C)均值越小D)均值没有变化答案:B第三部分:问题解答1.请解释什么是条件概率?答:条件概率是指在已知另一随机事件发生的条件下,特定事件发生的概率。

条件概率的公式为P(A|B) = P(A∩B) / P(B),即特定事件 A 在已知其它事件 B 发生的情况下发生的概率。

其中A∩B 表示事件 A 和事件 B 同时发生的概率。

2.什么是二项分布?请给出一个例子并计算其概率。

答:二项分布是指在 n 次试验中,成功概率为 p,失败概率为q=1-p,每次试验结果都是独立的情况下,成功次数的概率分布。

一个典型的例子是一枚硬币在 n 次扔掷中,正面朝上的次数。

设有一枚硬币,成功概率为0.6,试验10次,每次结果独立,问在这10次试验中出现6次正面的概率是多少?根据二项分布的公式可得,P(X=6)=C(10,6)(0.6)^6(1-0.6)^4≈0.25。

《概率论与数理统计》期末考试试题及答案

《概率论与数理统计》期末考试试题及答案

《概率论与数理统计》期末考试试题及答案一、选择题(每题5分,共25分)1. 设随机变量X的分布函数为F(x),以下哪个选项是正确的?A. F(x)是单调递增的函数B. F(x)是单调递减的函数C. F(x)是连续的函数D. F(x)是可导的函数答案:A2. 设随机变量X和Y相互独立,以下哪个选项是正确的?A. X和Y的协方差为0B. X和Y的相关系数为0C. X和Y的联合分布等于X和Y的边缘分布的乘积D. X和Y的方差相等答案:C3. 设随机变量X服从参数为λ的泊松分布,以下哪个选项是正确的?A. E(X) = λB. D(X) = λC. E(X) = λ²D. D(X) = λ²答案:A4. 在假设检验中,以下哪个选项是正确的?A. 显著性水平α越大,拒绝原假设的证据越充分B. 显著性水平α越小,接受原假设的证据越充分C. 显著性水平α越大,接受原假设的证据越充分D. 显著性水平α越小,拒绝原假设的证据越充分答案:D5. 以下哪个选项不是统计量的定义?A. 不含未知参数的随机变量B. 含未知参数的随机变量C. 不含样本数据的随机变量D. 含样本数据的随机变量答案:B二、填空题(每题5分,共25分)6. 设随机变量X和Y的方差分别为DX和DY,协方差为Cov(X,Y),则X和Y的相关系数ρ的公式为______。

答案:ρ = Cov(X,Y) / √(DX × DY)7. 设随机变量X服从标准正态分布,则X的数学期望E(X) = ______,方差D(X) = ______。

答案:E(X) = 0,D(X) = 18. 设总体X的方差为σ²,样本容量为n,样本方差为s²,则样本方差的期望E(s²) = ______。

答案:E(s²) = σ²9. 在假设检验中,原假设和备择假设分别为H₀: μ = μ₀和H₁: μ ≠ μ₀,其中μ为总体均值,μ₀为某一常数。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。

答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。

答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。

答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。

答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。

概率统计简明教程课后习题答案(非常详细版)

概率统计简明教程课后习题答案(非常详细版)

概率统计简明教程课后习题答案(非常详细版)习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件A : (1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次}; (3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。

解 (1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 记X 为一分钟内接到的呼叫次数,则},2,1,0|{ ===Ωk k X , }3,2,1,0|{===k k X A .(3) 记X 为抽到的灯泡的寿命(单位:小时),则)},0({∞+∈=ΩX , )}2500,2000({∈=X A .2. 袋中有10个球,分别编有号码1至10,从中任取1球,设=A {取得球的号码是偶数},=B {取得球的号码是奇数},=C {取得球的号码小于5},问下列运算表示什么事件:(1)B A ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)C B ;(7)C A -. 解 (1) Ω=B A 是必然事件; (2) φ=AB 是不可能事件; (3) =AC {取得球的号码是2,4};(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9};(6) ==C B C B {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}; (7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}3. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A ;(2)B A ;(3)B A ;(4)B A .解 (1) ⎭⎬⎫⎩⎨⎧≤≤=2341x x B A ;(2) =⎭⎬⎫⎩⎨⎧≤<≤≤=B x x x B A 21210或⎭⎬⎫⎩⎨⎧≤<⎭⎬⎫⎩⎨⎧≤≤2312141x x x x ; (3) 因为B A ⊂,所以φ=B A ;(4)=⎭⎬⎫⎩⎨⎧≤<<≤=223410x x x A B A 或 ⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 4. 用事件C B A ,,的运算关系式表示下列事件: (1) A 出现,C B ,都不出现(记为1E ); (2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E ); (4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E );(7) 不多于两个事件出现(记为7E ); (8) 三个事件中至少有两个出现(记为8E )。

概率论和数理统计期末考试题及答案

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

最新版概率统计简明教程期末复习题(含答案)

最新版概率统计简明教程期末复习题(含答案)

考试的重点内容与要求考试的范围是现用教材:工程数学—《概率统计简明教程》(同济大学应用数学系主编)第一、二、三、四、六、七、八、九、十章。

以下按章次明确考试的重点与要求。

第一章随机事件1.了解随机现象与随机试验,了解样本空间的概念。

2.理解随机事件的概念,掌握事件之间的关系与运算。

第二章事件的概率1.了解事件频率的概念,了解概率的统计定义。

2.熟悉关于排列与组合的基本知识,掌握求排列数与组合数的公式。

3.了解概率的古典定义,会计算简单的古典概率。

4.了解概率的公理化定义,掌握概率的基本性质,并会解决比较简单的问题。

第三章条件概率与事件的独立性1.了解条件概率的概念、概率的乘法定理与全概率公式,并会解决比较简单的应用问题。

2.理解事件的独立性概念,了解伯努利(Bernoulli)概型和二项概率的计算方法。

第四章随机变量及其分布1.理解随机变量的概念,了解分布函数的概念和性质,会计算与随机变量相联系的事件的概率。

2.理解离散型随机变量及分布律的概念,掌握0-1分布、二项分布,了解泊松(Poisson)分布。

3.理解连续型随机变量及其概率密度的概念。

掌握正态分布,均匀分布,了解指数分布。

第六章随机变量的函数及其分布掌握求简单随机变量函数的概率分布(重点是一维随机变量的函数及其分布)。

第七章随机变量的数字特征1.理解数学期望与方差的概念,掌握它们的性质与计算。

2.掌握二项分布、正态分布、泊松分布等的数学期望与方差。

第八、九、十章1、了解统计量定义,掌握常用统计量的计算;理解参数点估计的概念,掌握用矩估计法构造参数的估计量。

2、掌握用最大似然估计法构造参数的估计量,了解估计量的优良性评判准则。

上述列出的各章内容与要求是本次统考的重点内容和应当达到的合格要求。

当中对所列内容按教学要求的不同,分为两个层次。

属较高要求,应使考生深入领会和掌握,并能熟练应用。

其中,概念、理论用“理解”一词表述,方法、运算用“掌握”一词表述。

概率统计期末试题及答案

概率统计期末试题及答案

概率统计期末试题及答案[注意:根据题目要求,本文按照试题及答案的格式进行编写。

]试题一:概率基本概念1. 假设事件A的概率为0.3,事件B的概率为0.5,事件A与事件B相互独立,则事件A与事件B同时发生的概率是多少?答案:根据独立事件的概率计算公式,事件A与事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.5 = 0.15。

试题二:概率分布2. 随机变量X的概率密度函数为f(x) = 3x,其中0 ≤ x ≤ 1,求该随机变量的期望值E(X)。

答案:随机变量的期望值计算公式为E(X) = ∫xf(x)dx,代入概率密度函数得:E(X) = ∫x(3x)dx = 3∫x^2dx = 3 × (x^3/3) = x^3。

由于0 ≤ x ≤ 1,所以 X 的期望值为 E(X) = 1^3 = 1。

试题三:概率分布3. 一批产品中有10% 的次品率。

从该批产品中随机抽取8个,计算恰好有2个次品的概率。

答案:根据二项分布的计算公式,恰好有2个次品的概率可以计算为:P(X=2) = C(8, 2) × (0.1)^2 × (0.9)^(8-2) = 28 × 0.01 × 0.6561 ≈ 0.1837。

试题四:统计推断4. 根据一份样本调查,甲市的某产品的平均寿命为58天,标准差为5天。

现在又进行了新的样本调查,从中随机抽取36个样本,计算新样本的平均寿命的95%的置信区间。

答案:根据中心极限定理和样本调查的标准误差公式,新样本的平均寿命的95%的置信区间可以计算为:样本平均数 ± 1.96 × (标准差/√样本容量)= 58 ± 1.96 × (5/√36)= 58 ± 1.96 × (5/6)≈ 58 ± 1.96 × 0.833≈ 58 ± 1.63因此,新样本的平均寿命的95%的置信区间为 (56.37, 59.63)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程数学考试题
第一题:第五页 第五题
5.用事件A,B,C 的运算关系表示下列事件。

(1)A 出现,B ,C 都不出现; (2)A ,B 都出现,C 不出现; (3)所有三个事件都出现;
(4)三个事件中至少有一个出现; (5)三个事件都不出现; (6)不多于一个事件出现;(7)不多于两个事件出现; (8)三个事件中至少有两个出现。

第二题:第六页 第七题
7.接连进行三次射击,设i A ={第i 次射击命中}(i=1,2,3),试用1A ,2A ,3A 表述下列事件。

(1)A={前两次至少有一次击中目标} (2)B={三次射击恰好命中两次} (3)C={三次射击至少命中两次} (4)D={三次射击都未命中} 第三题:第二十九页 例14
例 14 从次品率为p=0.2的一批产品中,有放回抽取5次,每次取一件,分别求抽到的5件恰好有3件次品以及至多有3件次品这两个事件的概率。

第四题:第二十九页 例 15
例 15 某公司生产一批同型号的医疗仪器,产品的80%无需调试即为合格品,而其余20%需进一步调试。

经调试后,其中70%为合格品,30%为次品。

假设每台仪器的生产是相互独立的。

(1)求该批仪器的合格率;
(2)又若从该批仪器中随机地抽取3台,求恰有一台为次品的概率。

第五题:第三十一页 第一题
1.已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B|A )=0.8,试求P (AB )及)B A P(。

第六题:第三十三页 第十二题
12.设事件A ,B 相互独立。

证明:A ,B 相互独立,B ,A 相互独立。

第七题:第三十三页 第十五题
15.三个人独立破译一密码,他们能独立破译出的概率分别为0.25,.035,0.4,求此密码被破译出的概率。

第八题:第五十一页 例 19
例 19 某地抽样调查结果表明,考生的外语成绩(百分制)X 服从正态分布),(2
72σN ,且96分以上的考生占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率。

第九题:第五十四页 第十六题
16.设随机变量X 的密度函数为()⎩⎨
⎧<<=其他,
,
0,
40,
2x x x f 试求:
(1)常数A ; (2)P(0<x<0.5).
第十题:第五十四页 第十七题
17.设随机变量X 的密度函数为+∞<<-∞=-x Ae x f x ,)(||,求: (1)系数A ; (2)P (0<x<0.5).
第十一题:第五十四页 第十八题
18.证明:函数⎪⎩⎪⎨⎧<≥=-0,
0,0,)(22
x x e c x x f c x
(c 为正的常数)可作为某个随机变量X 的密度函数。

第十二题:第五十五页 第二十五题
25.设随机变量X 的分布函数为∞<<-∞+=x x B A x F ,arctan )(,求: (1)常数A,B ;
(2)P (|x|<1);
(3)随机变量X 的密度函数。

第十三题:第五十六页 例 1
例 1 设二维随机变量(X,Y)的联合分布函数为),arctan )(arctan (),(y C x B A y x F ++=求函数
).,x (,,+∞<<-∞+∞<<-∞y C B A
第十四题:第六十一页 例 5
例 5 试从例1中联合分布函数F(x,y)求关于Y 的边缘分布函数).(),(y F x F y x 第十五题:第六十六页 例10
例 10 试证明例1中的两个随机变量X 与Y 独立。

第十六题:第七十三页 第十二题
12.设二维随机变量(X,Y)的联合密度函数为⎩

⎧>>=+-,
其他,
,0,
0,0,
),()43(y x ke y x f y x 求: (1)求常数k ;
(2)分别求关于X 及关于Y 的边缘密度函数; (3)X 与Y 是否独立,为什么? 第十七题:第七十五页 例 1 例 1 设随机变量X 的分布律为
X -1 0 1 2 5/2 概率
1/5
1/10
1/10
3/10
3/10
求以下随机变量的分布律: (1)X-1; (2)-2X ;
(3)2
X
第十八题:第九十六页 例12,13 例 12 设随机变量,2
21b 1),,(~5.05.0b
a u dx a
b a R X u a +==-⎰解得由
因此均匀分布变量的中位数与数学期望重合。

事实上,具有对称分布的连续型变量都具有此特点,读者可以对正态分布加以验证。

例 13 设随机变量X 服从参数为λ的指数分布。

由定义中位数5.0u 是方程 2
1e 1=
--x
λ 的解,即
λ
2
ln 5.0=u
我们知道λ
1
)(=
x E ,因此,在指数分布情形,中位数并不等于数学期望。

中位数在社会资料统计中用得很多,例如,
居民收入统计,中位数较数学期望更具有代表性。

当X 为离散型随机变量时也可以定义其中位数,但往往已经不具备“中间位置”这样的含义。

第十九题:第一百零六页 例 25,26
例 25 设一个车间里有400台同类型的及其,每台机器需要用电为Q 瓦。

由于工艺关系,每台机器并不连续开动,开动的时间只占工作总时间的
4
3
,问应该供应多少瓦电力才能以99%的概率保证该车间的机器正常工作?这里,假定各台机器的停,开是相互独立的。

例 26 为了测定一台机床的质量,把它分解成75个部件来称量。

假定每个部件的称量误差(单位:Kg )服从区间(-1,1)上的均匀分布,且每个部件的称量误差相互独立,试求机床质量的总误差的绝对值不超过10的概率。

第二十题:第一百零九页 第一题 1.设随机变量X 的分布律为
X -1 0 1/2 1 2 概率
1/3
1/6
1/6
1/12
1/4
求:
)
()4();()3();1()2();(12X D X E X E X E +-)(
第二十一题:第一百一十一页 第十四题 14.设随机变量(X ,Y )的联合分布律为
X Y
0 1 0 0.3 0.2 1
0.4
0.1
求:
.),,cov(),(),(),3(),2(),(),(,y x y x Y D X D XY E Y X E Y E X E ρ-
第二十二题:第一百一十一页 第26,27题
26.设随机变量X ,Y 相互独立,且).2(),2(),1,2(~),1,1(~Y X D Y X E N Y N X ++-求 27.设随机变量X 的方差为2.5,利用切比雪夫不等式估计)5.7|)((|≥-X E X P 的值。

第二十三题:第一百二十八页 第二题
2.(2)指出下列样本函数中哪些是统计量,哪些不是?为什么?
)
,...,(max )(6
(614163626)
11X X T X E X T X T X X T =-=-=++=
θ
第二十四题:第一百三十二页 例6,7,10
例 6 设有一批同型号灯管,其寿命(单位:h )服从参数为λ的指数分布,今随机抽取其中的11只,测得其寿命数据如下:
110,184,145,122,165,143,78,129,62,130,168, 用矩估计法估计λ值。

例 7 设总体有均值u 及方差2
σ,今有6个随机样本的观测数据为 -1.20,0.82,0.12,0.45,-0.85,-0.30, 求u ,2
σ的矩估计。

例 10 设的最大似然估计。

未知,求的样本,其中是来自221,,),(*,*,*σσσu u u N X X n 第二十五题:第一百四十页 第一题
1.设n X X *,*,*1是取自总体X 的一个样本,在下列情形下,试求总体参数的矩估计量与最大似然估计量: (1);10),,1(~<<p p p B X 未知,其中 (2).0),(~>λλλ未知,其中E X。

相关文档
最新文档