中点四边形
中点四边形典型例题
经典题型1
例题1:如图,四边形ABCD中,点E、F、G、H是边AB、BC、CD、DA的中点.
(1)请问四边形EFGH是什么形状的四边形?并证明;
(2)若四边形ABCD是矩形,四边形EFGH是什么形状的四边形?并证明;
(3)若四边形ABCD是菱形,四边形EFGH是什么形状的四边形?并证明.
思路分析:准确画出图形,通过观察就可以得到(1)四边形EFGH是平行四边形;(2)四边形EFGH是菱形;(3)四边形EFGH是矩形。
证明思路可以有多种——条件中有四个中点,显然在考查中位线的知识,而中位线的结论中有“中位线与第三边”的位置关系与数量关系,所以可以从“边”的角度来判定四边形是平行四边形。
经典题型2
例题2:如图,四边形ABCD中,点E、F、G、H是边AB、BC、CD、DA的中点.
(1)请问四边形EFGH是什么形状的四边形?并证明;
(2)要使四边形EFGH是矩形,需要原四边形对角线满足怎样的条件?并证明;(3)要使四边形EFGH是矩形,需要原四边形对角线满足怎样的条件?并证明.
思路分析:由例题1,我们就知道四边形EFGH是平行四边形;
(2)四边形EFGH中,图形中就没有给出对角线,说明判定它是矩形,应该用“……的平行四边形中是矩形”,故只能用“一个角是直角的平行四边形是矩形”了,从而应该添加条件“AC⊥BD”即可。
(3)四边形EFGH中,图形中就没有给出对角线,说明判定它是菱形,应该用“……的平行四边形中是菱形”,故只能用“一组邻边相等的平行四边形是矩形”了,从而应该添加条件“AC=BD”即可。
中点四边形模型(4种题型)-2023年新九年级数学核心知识点与常见题型(北师大版)(解析版)
重难点专项突破:中点四边形模型(4种题型)【知识梳理】【考点剖析】题型一、利用中点求长度例1.如图,某花木场有一块四边形ABCD的空地,其各边的中点为E、F、G、H,测得对角线AC=11米,BD=9米,现想用篱笆围成四边形EFGH场地,则需篱笆总长度是()A.20米B.11米C.10米D.9米【答案】A【解析】∵E 、F 、G 、H 分别为四边形ABCD 各边的中点,∴EF 、FG 、GH 、HE 分别为△ABC 、△BCD 、△CDA 、△ABD 的中位线, ∴EF =12AC =112(米),FG =12BD =92(米),HG =12AC =112(米), HE =12BD =92(米),∴四边形EFGH 总长度=EF +FG +GH +HE =20(米), 故选:A .【变式1】在四边形ABCD 中,8AC BD ==,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则22EG FH +的值为( )A .18B .36C .48D .64【答案】D【解析】连接EF 、FG 、GH 、EH ,∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点, ∴11//,//,,22EF AC HG AC EF AC FG BD ==,∴//EF HG ,同理//EH FG , ∴四边形EFGH 为平行四边形,∵AC BD =,∴EF FG =,∴平行四边形 EFGH 为菱形, ∴EG FH ⊥,2EG OG =,2FH OH =,()2222222221(2)(2)4448642EG FH OE OH OE OH EH BD ⎛⎫+=+=+==⨯== ⎪⎝⎭故选:D .【变式2】如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结矩形各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )cm .A .20B .C .D .25【答案】A 【解析】连接BD ,∵H 、G 是AD 与CD 的中点,∴HG 是△ACD 的中位线, ∴HG=12AC=5cm ,同理EF=5cm , ∵四边形ABCD 是矩形,∴根据矩形的对角线相等,即BD=AC=10cm , ∵H 、E 是AD 与AB 的中点,∴EH 是△ABD 的中位线, ∴EH=12BD=5cm ,同理FG=5cm ,∴四边形EFGH 的周长为20cm . 故选A .【变式3】如图,点O 为四边形ABCD 内任意一点,E ,F ,G ,H 分别为OA ,OB ,OC ,OD 的中点,则四边形EFGH 的周长为( )A .9B .12C .18D .不能确定【答案】C【解析】∵E ,F 分别为OA ,OB 的中点,∴EF 是△AOB 的中位线,∴EF=12AB=3, 同理可得:FG=12BC=5,HG=12DC=6,EH=12AD=4,∴四边形EFGH 的周长为=3+5+6+4=18, 故选C .题型二、利用中点求面积例2.如图,四边形ABCD 中,点E 、F 、G 分别为边AB 、BC 、CD 的中点,若△EFG 的面积为4,则四边形ABCD 的面积为( )A .8B .12C .16D .18【答案】C【解析】记△BEF ,△DGH ,△CFG ,△AEH 的面积分别为1234,,,S S S S ,四边形ABCD 的面积为S .连接AC .∵BF =CF ,BE =AE ,CG =DG ,AH =DH ,∴EF ∥AC ,1,2EF AC =GH ∥AC ,12GH AC =,∴EF ∥GH ,EF =GH ,∴四边形EFGH 是平行四边形,∴S 平行四边形EFGH =2S △EFG =8,∵△BEF ∽△BAC ,∴11,4S S ABC =同理可得214S S ACD ,= ∴1211()44ABC ACD S S S S S +=+=, 同法可得3414S S S +=,∴123412S S S S S ,+++= ∴S 四边形EFGH =12S , ∴S =2S 四边形EFGH =16.故选C.【变式1】定义,我们把对角线互相垂直的四边形叫做和美四边形,对角线交点作为和美四边形的中心.(1)写出一种你学过的和美四边形______;(2)顺次连接和美四边形四边中点所得四边形是( ) A .矩形 B ,菱形 C .正方形 D .无法确定(3)如图1,点O 是和美四边形ABCD 的中心,E F G H 、、、分别是边AB BC CD DA 、、、的中点,连接OE OF OG 、、OH 、,记四边形AEOH BEOF CGOF DHOG 、、、的面积为1234S S S S 、、、,用等式表示1234S S S S 、、、的数量关系(无需说明理由)(4)如图2,四边形ABCD 是和美四边形,若4,2,5AB BC CD ===,求AD 的长.【答案】(1)正方形;(2)A ;(3)S 1+S 3=S 2+S 4;(4 【解析】(1)正方形是学过的和美四边形,故答案为:正方形; (2)顺次连接和美四边形四边中点所得四边形是矩形, 如图,四边形ACBD 中,对角线AB ⊥CD ,即为“和美四边形”, 点E 、F 、G 、H 分别是AC 、AD 、BD 、BC 的中点, ∴EF ∥CD ∥HG ,且EF=HG=12CD ,EH ∥FG ∥AB ,且EH=FG=12AB , ∴四边形EFGH 为平行四边形,∵AB ⊥CD ,∴EF ⊥EH ,∴平行四边形EFGH 是矩形;故选:A .(3)连接AC 和BD ,由和美四边形的定义可知,AC ⊥BD ,则∠AOB=∠BOC=∠COD=∠DOA=90°, 又E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,∴△AOE 的面积=△BOE 的面积,△BOF 的面积=△COF 的面积,△COG 的面积=△DOG 的面积,△DOH 的面积=△AOH 的面积,∴S 1+S 3=△AOE 的面积+△COF 的面积+△COG 的面积+△AOH 的面积=S 2+S 4;(4)如图,连接AC 、BD 交于点O ,则AC ⊥BD , ∵在Rt △AOB 中,AO 2=AB 2-BO 2,Rt △DOC 中,DO 2=DC 2-CO 2,AB=4,BC=2,CD=5,∴可得AD 2=AO 2+DO 2=AB 2-BO 2+DC 2-CO 2=AB 2+DC 2-BC 2=42+52-22=37,即可得AD =.【变式2】如图,在四边形ABCD 中,对角线AC BD ⊥,且8AC =,6BD =,E ,F ,G ,H 分别是四边的中点,则四边形EFGH 的面积为__________.【答案】12【解析】∵点E 、F 分别为边AB 、BC 的中点,∴EF ∥AC ,EF=12AC , ∵AC=8,∴EF=4,同理,HE ∥BD ,HE=1BD 32=, ∴四边形EFGH 是平行四边形, ∵EH ∥BD ,AC ⊥BD ,∴EH ⊥AC ,∵EF ∥AC ,∴EF ⊥HE ,∴四边形EFGH 是矩形, ∴矩形EFGH 的面积=HE ×EF=12. 故答案为:12.题型三、找规律问题例3.如图,四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD =,各边中点分别为1A 、1B 、1C 、1D ,顺次连接得到四边形1111D C B A ,再取各边中点2A 、2B 、2C 、2D ,顺次连接得到四边形2222A B C D ,……,依此类推,这样得到四边形n n n n A B C D ,则四边形n n n n A B C D 的面积为( )A .162n−B .182n − C .412n −−D .不确定【答案】B【解析】∵四边形A 1B 1C 1D 1的四个顶点A 1、B 1、C 1、D 1分别为AB 、BC 、CD 、DA 的中点,∴A 1B 1∥AC ,A 1B 112=AC ,∴△BA 1B 1∽△BAC .∴△BA 1B 1和△BAC 的面积比是相似比的平方,即14. 即1114BA B S=S △ABC ,同理可证:1114DD C S =S △ADC , 1114AD A S =S △ABD ,S △CB 1C 114=S △BDC ,∴111112A B C D S =四边形S 四边形ABCD ,同法可证2222111112A B C D A B C D S S =四边形四边形,又四边形ABCD 的对角线AC =8,BD =4,AC ⊥BD ,∴四边形ABCD 的面积是16.∴四边形A n B n ∁n D n 的面积116822n n −==.故选:B .【变式1】如图1,1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点,且AC BD ⊥,6AC =,10BD =.(1)试判断四边形1111D C B A 的形状,并证明你的结论;(2)如图2,依次取11A B ,11B C ,11C D ,11D A 的中点2A ,2B ,2C ,2D ,再依次取22A B ,22B C ,22C D ,22D A 的中点3A ,3B ,3C,3D ……以此类推,取11n n A B −−,11n n B C −−,11n n C D −−,11n n D A −−的中点n A ,n B ,n C ,n D ,根据信息填空:①四边形1111D C B A 的面积是__________; ②若四边形n n n n A B C D 的面积为1516,则n =________; ③试用n 表示四边形n n n n A B C D 的面积___________. 【答案】(1)矩形,见解析;(2)①15,②5,③1152n − 【解析】(1)四边形1111D C B A 是矩形,证明:∵1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点, ∴11A B AC ,11C D AC ,∴1111A B C D ,同理可得1111A D B C ∥,∴四边形1111D C B A 是平行四边形,又∵AC BD ⊥,易得1111A B B C ⊥,∴四边形1111D C B A 是矩形; (2)①由题意可知:A 1B 1=12AC=3,A 1D 1=12BD=5,四边形1111D C B A 的面积=3×5=15;②由构图过程可得:A 2D 2=B 2C 2=12B 1D 1=12C 2D 2=B 2A 2=12A 1C 1=12可知四边形2222A B C D 为菱形,∴2222A B C D S =222212A C B D ⨯=111112A B B C ⨯=152;同理可求:3333A B C D S =154,4444A B C D S =158,…,n n n n A B C D S =1152n −,故当四边形n n n n A B C D 的面积为1516时,1152n −=1516,解得:n=5;③由②可知:用n 表示四边形n n n n A B C D 的面积为1152n −.故答案为:(1)矩形,见解析;(2)①15,②5,③1152n −题型四、中点综合问题例4.通过解方程(组)使问题得到解决的思维方式就是方程思想,已学过的《勾股定理》及《一次函数》都与它有密切的联系,最近方程家族的《一元二次方程》我们也学习了它的求解方法和应用。
八年级数学下册 中点四边形模型(解析版)
专题01中点四边形模型中点四边形:依次连接四边形四边中点连线的四边形得到中点四边形O。
结论1:点M、N、P、Q是任意四边形的中点,则四边形MNPQ是平行四边形结论2:对角线垂直的四边形的中点四边形是矩形结论3:对角线相等的四边形的中点四边形是菱形结论4:对角线垂直且相等的四边形的中点四边形是正方形【典例1】(2023•铜川一模)如图,AC、BD是四边形ABCD的两条对角线,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AC⊥BD B.AB=CD C.AB∥CD D.AC=BD【解答】解:∵E、F、G、H分别为AB、BC、CD、AD的中点,∴EF=AC,EF∥AC,GH=AC,GH∥AC,EH∥BD,∴EF=GH,EF∥GH,∴四边形EFGH为平行四边形,当AC⊥BD时,EF⊥EH,则四边形EFGH为矩形,故选:A.【典例2】(2023春•和平区校级期末)已知在四边形ABCD中,对角线AC与BD相等,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH是()A.平行四边形B.矩形C.菱形D.正方形【答案】C【解答】解:如图,E、F、G、H分别是AB、BC、CD、DA的中点,AC=BD,∵E、F分别是AB、BC的中点,∴EF是△ABC的中位线,∴EF=AC,同理:FG=BD,GH=AC,EH=BD,∵AC=BD,∴EF=HG=EH=FG,∴四边形EFGH是菱形.故选:C.【典例3】(2023春•庐江县期末)若顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形一定是()A.矩形C.对角线相等的四边形D.对角线互相垂直的四边形【答案】D【解答】解:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.1.(2023春•宿豫区期中)顺次连接对角线相等且垂直的四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【答案】D【解答】解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,EF=AC,FG=BD,∴四边形EFGH是平行四边形,∵AC⊥BD,AC=BD,∴EF⊥FG,FE=FG,∴四边形EFGH是正方形,2.(2022秋•辽阳期末)顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形D.平行四边形【答案】C【解答】解:如图,连接AC、BD.在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.3.(2023•佛山模拟)如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、D A的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件是()A.AC⊥BD B.AC=BDC.AC⊥BD且AC=BD D.不确定【答案】B【解答】解:满足的条件应为:AC=BD.理由如下:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.故选:B.4.(2023春•涟水县期中)若顺次连接四边形各边中点所得的四边形是菱形,则原四边形()A.一定是矩形B.一定是菱形C.对角线一定互相垂直D.对角线一定相等【答案】D【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=CH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:D.5.(2023春•锡山区校级期中)顺次连接对角线长为6的矩形ABCD四边中点所得的四边形的周长为()A.12B.18C.9D.无法确定【答案】A【解答】解:因为矩形的对角线相等,所以AC=BD=10cm,∵E、F、G、H分别是AB、BC、CD、AD、的中点,∴EH=GF=BD=×6=3,EF=GH=AC=×6=3,故顺次连接矩形四边中点所得的四边形周长为EH+GF+EF+GH=12.故选:A.6.(2023春•南京期中)如图,在四边形ABCD中,E、F、G、H分别是线段AD、BD、BC、AC的中点,要使四边形EFGH是菱形,需添加的条件是()A.AC=BD B.AC⊥BD C.AB=CD D.AB⊥CD【答案】C【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:C.7.(2023春•东莞市校级期中)如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点,若AB=5,AD=8,则图中阴影部分四边形EFGH的面积为()A.40B.26C.20D.13【答案】C【解答】解:连接EG、FH,∵四边形ABCD为矩形,∴AB=CD,AD=BC,∠A=90°,∵E、F、G、H分别为边AB、BC、CD、DA的中点,∴EG=AD=8,HF=AB=5,EG⊥HF,=×5×8=20,∴S四边形EFGH故选:C.8.(2022•南召县模拟)如图,在四边形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点,则下列说法正确的是()A.在四边形ABCD中,若对角线AC=BD,则四边形EFGH为矩形B.在四边形ABCD中,若对角线AC⊥BD,则四边形EFGH为菱形C.在四边形EFGH中,若对角线EG⊥HF,则四边形EFGH为矩形D.在四边形EFGH中,若对角线EG=HF,且EG⊥HF,则四边形EFGH为正方形【答案】D【解答】解:连接AC、BD,∵E,F分别为边AB,BC的中点,∴EF为△ABC的中位线,∴EF=AC,EF∥AC,同理,HG=AC,HG∥AC,EH=BD,EH∥BD,∴EF=HG,EF∥HG,∴四边形EFGH为平行四边形,当AC=BD时,EF=EH,∴平行四边形EFGH为菱形,故选项A错误;当AC⊥BD时,EF⊥EH,∴平行四边形EFGH为矩形,故选项B错误;在平行四边形EFGH中,若对角线EG⊥HF,则四边形EFGH为菱形,故选项C错误;在平行四边形EFGH中,若对角线EG=HF,且EG⊥HF,则平行四边形EFGH为正方形,故选项D正确.故选:D.9.(2022春•凤凰县期末)顺次连结任意四边形各边中点所得的四边形必定是()A.任意四边形B.平行四边形C.菱形D.矩形【答案】B【解答】解:如图根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选:B.10.(2022春•青白江区校级月考)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EF GH的面积为()A.48B.24C.32D.12【答案】D【解答】解:∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=BD=3.同理求得EH∥AC∥GF,且EH=GF=AC=4,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=3×4=12,即四边形EFGH的面积是12.故选:D.11.(2022春•芜湖期中)如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1四边的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为()A.B.C.D.【答案】C【解答】解:顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是正方形ABCD的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即正方形ABCD的,则周长是正方形ABCD的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即正方形ABCD的,则周长是正方形ABCD的;顺次连接正方形A3B3C3D3中点得正方形A4B4C4D4,则正方形A4B4C4D4的面积为正方形A3B3C3D3面积的一半,即正方形ABCD的,则周长是正方形ABCD的;…故第n个正方形周长是原来的,以此类推:正方形A8B8C8D8周长是原来的,∵正方形ABCD的边长为1,周长为4,∴按此方法得到的四边形A8B8C8D8的周长为,故选:C.12.(2022•旌阳区模拟)如图,在四边形ABCD中,AC=BD=5,点E,F,G,H分别为边AB,BC,CD,DA的中点,连接EG,HF,相交于点O,则EG2+FH2的值为()A.25B.30C.35D.40【答案】A【解答】解:连接EF、FG、GH、HE,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴EF=AC=,FG=BD=,GH=AC=,HE=BD=,∴EF=FG=GH=HE,∴四边形EFGH为菱形,∴EG⊥FH,OE=OG,OF=OH,∴OE2+OH2=EH2=,∴EG2+FH2=4OE2+4OH2=25,故选:A.13.(2023春•浦东新区校级期末)顺次连接等腰梯形各边中点所得的四边形的两条对角线为a、b,则等腰梯形的面积为ab.【答案】ab.【解答】解:连接AC、BD,∵E、F分别为AB、BC的中点,∴EF是△ABC的中位线,∴EF=AC,同理可得:GH=AC,EH=BD,GF=BD,∵四边形ABCD为等腰梯形,∴AC=BD,∴EF=FG=GH=EH,∴四边形EFGH为菱形,∵菱形EFGH为对角线分别为a、b,∴等腰梯形ABCD的中位线和高分别为a、b,=ab,∴S等腰梯形故答案为:ab.14.(2023春•南川区期中)如图,已知矩形ABCD的对角线AC的长为18cm,顺次连结各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为36cm.【答案】36.【解答】解:∵E、F分别是AB、BC的中点,∴EF是△ABC的中位线,∴EF=AC=×18=9cm,同理FG=BD,HG=AC,EH=BD,∵四边形ABCD是矩形,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴四边形EFGH的周长为9×4=36(cm).故答案为:36.15.(2022春•临海市期末)如图,E,F,G,H分别是四边形ABCD边AB,BC,CD,DA 的中点,若AC=6,BD=4.则四边形EFGH的周长为10.【答案】10.【解答】解:∵E,F,G,H分别是四边形ABCD边AB,BC,CD,DA的中点,AC=6,BD=4,∴EF是△ABC的中位线,EH是△ABD的中位线,GF是△BDC的中位线,GH是△AD C的中位线,∴EF=AC=×6=3,GH=AC=×6=3,EH=BD=×4=2,FG=BD=×4=2,∴四边形EFGH的周长=EF+FG+GH+EH=3+2+3+2=10,故答案为:10.16.(2022春•克东县期中)如图,E、F、G、H分别是AB、BC、CD、DA的中点,BD=A C.要使四边形EFGH是正方形,BD、AC应满足的条件是AC=BD且AC⊥BD.【答案】AC=BD且AC⊥BD.【解答】解:满足的条件应为:AC=BD且AC⊥BD.理由:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,∴HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又∵AC=BD,∴EF=EH,∴四边形EFGH为菱形,∵AC⊥BD,EF∥AC,∴EF⊥BD,∵EH∥BD,∴EF⊥EH,∴∠FEH=90°,∴菱形EFGH是正方形.故答案为:AC=BD且AC⊥BD.17.(2023春•盐城期中)阅读理解,我们把依次连接任意一个四边形各边中点得到的四边形叫中点四边形,如图1,在四边形ABCD中,E,F,G,H分别是边AB,BC,CD,D A的中点,依次连接各边中点得到中点四边形EFGH.(1)这个中点四边形EFGH的形状是平行四边形;(2)如图2,在四边形ABCD中,点M在AB上且△AMD和△MCB为等边三角形,E、F、G、H分别为AB、BC、CD、AD的中点,试判断四边形EFGH的形状并证明.【答案】见试题解答内容【解答】解:(1)中点四边形EFGH是平行四边形;理由如下:连接AC,如图1所示:∵E,F,G,H分别是边AB,BC,CD,DA的中点,∴EF是△ABC的中位线,GH是△ACD的中位线,∴EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形;故答案为:平行四边形;(2)四边形EFGH为菱形.理由如下:连接AC与BD,如图2所示:∵△AMD和△MCB为等边三角形,∴AM=DM,∠AMD=∠CMB=60°,CM=BM,∴∠AMC=∠DMB,在△AMC和△DMB中,,∴△AMC≌△DMB(SAS),∴AC=DB,∵E,F,G,H分别是边AB,BC,CD,DA的中点,∴EF是△ABC的中位线,GH是△ACD的中位线,HE是△ABD的中位线,∴EF∥AC,EF=AC,GH∥AC,GH=AC,HE=DB,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形;∵AC=DB,∴EF=HE,∴四边形EFGH为菱形.18.(2023春•姜堰区期中)如图,在四边形ABCD中,点E、F、G、H分别是AB、BC、C D、AD的中点,连接AC、BD.(1)求证:四边形EFGH是平行四边形;(2)当对角线AC与BD满足什么关系时,四边形EFGH是菱形,并说明理由.【答案】(1)证明见解答过程;(2)当AC=BD时,四边形EFGH是菱形,理由见解答.【解答】(1)证明:∵点E、F、G、H分别是AB、BC、CD、AD的中点,∴EF∥AC,EF=AC,HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH为平行四边形;(2)当AC=BD时,四边形EFGH是菱形,理由如下:由(1)知:四边形EFGH是平行四边形.∵E、H分别是AB、AD的中点,∴EH=BD.又∵EF=AC,∴当AC=BD时,EF=EH,∴平行四边形EFGH是菱形.19.(2022秋•薛城区校级月考)如图,四边形ABCD中,E、F、G、H分别是AB、BC、C D、DA的中点.(1)判断四边形EFGH的形状.并说明理由.(2)当四边形ABCD的对角线添加条件AC⊥BD时,四边形EFGH是矩形.(3)在(2)的条件下,说明四边形EFGH是矩形.【答案】(1)四边形EFGH为平行四边形,理由见解析;(2)AC⊥BD;(3)证明见解答过程.【解答】(1)解:四边形EFGH为平行四边形,理由如下:连接AC、BD,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=AC,EF∥AC,GH=AC,GH∥AC,∴EF=GH,EF∥GH,∴四边形EFGH为平行四边形;(2)解:当AC⊥BD时,四边形EFGH是矩形,故答案为:AC⊥BD;(3)证明:∵E、H分别是AB、DA的中点,∴EH∥BD,∴EF∥AC,EH∥BD,AC⊥BD,∴EF⊥EH,∴平行四边形EFGH为矩形.20.(2022春•工业园区校级期末)如图,四边形ABCD中,点E、F、G、H分别为AB、B C、CD、DA的中点,(1)求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E、F、G、H分别为AB、BC、CD、DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想.【答案】(1)见解析过程;(2)四边形EFGH是菱形,理由见解析过程.【解答】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形;(2)解:四边形EFGH是菱形,理由如下:如图2,连接AC、BD,∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD(SAS),∴AC=BD,∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.21.(2022春•咸安区期末)如图,点D,E分别是△ABC的边AB,AC的中点,点O是△A BC内一点,连接OA,OB,OC,点F,G分别是OB,OC的中点,顺次连接点D,F,G,E.(1)求证:四边形DFGE是平行四边形;(2)当OA⊥DE时,求证:四边形DFGE是矩形;(3)若四边形DFGE是正方形,OA与BC之间满足的条件是:OA⊥BC且OA=BC .【答案】(1)证明见解析;(2)证明见解析;(3)若四边形DFGE是正方形,OA与BC之间满足的条件是:OA⊥BC且OA=BC,证明见解析.【解答】(1)证明:∵D、E是AB、AC的中点,∴DE∥BC且DE=BC,∵F、G是OB、OC的中点,∴GF∥BC且GF=BC,∴DE∥GF且DE=GF,∴四边形DFGE是平行四边形;(2)证明:由(1)知,四边形DFGE是平行四边形,如图,连接OA,∵D、G分别是AB、OB的中点,∴DG∥OA,∵OA⊥DE,∴DG⊥DE,∴∠GDE=90°,∴平行四边形DFGE是矩形,所以当OA⊥DE时,四边形DFGE是矩形;(3)解:若四边形DFGE是正方形,OA与BC之间满足的条件是:OA⊥BC且OA=B C,由(2)可知,当OA⊥BC时,四边形DFGE是矩形,∵D、G、F分别是AB、OB、OC的中点,∴DG=AO,GF=BC,∵AO=BC,∴DG=GF,∴矩形DGFE是正方形.故答案为:OA⊥BC且OA=BC.22.(2022春•龙口市月考)已知四边形ABCD是矩形.(1)如图1,E,F,G,H分别是AB,BC,CD,AD的中点,求证:四边形EFGH是菱形;(2)如图2,若菱形EFGH的三个顶点E,F,H分别在边AB,BC,AD上,连接CG.已知BE=2AE=8,CG=2,CF﹣BF=1,求AD的长.【答案】(1)证明见解答过程;(2)14.【解答】(1)证明:如图1,连接AC,BD,∵E,F分别是AB,BC的中点,∴EF∥AC,EF=AC,同理:GH∥AC,GH=AC,EH=BD,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形,∵四边形ABCD是矩形,∴AC=BD,∴EF=EH.∴四边形EFGH是菱形;(2)解:如图2,连接FH,过点G作GM⊥BC交BC的延长线于M,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC.∴∠A=∠M,∠AHF=∠MFH,∵四边形EFGH是菱形,∴FG∥EH,FG=EH,∴∠EHF=∠GFH.∴∠AHE=∠MFG,在△AEH和△MFG中,∴△AEH≌△MFG(AAS),∴GM=AE=4.∵CG=2,根据勾股定理,得CM=2,设BF=x,则CF=x+1,在Rt△GFM中,FG2=(x+1+2)2+16=(x+3)2+16,同理EF2=x2+64,∴(x+3)2+16=x2+64.∴x=,∴BC=2x+1=14,∴AD=BC=14.23.(2022春•崇川区校级月考)如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足什么条件时,有EF⊥GH?请说明你的理由.【答案】见试题解答内容【解答】解:当AB=CD时,有EF⊥GH,连接GE、GF、HF、EH.∵E、G分别是AD、BD的中点,∴EG=AB,同理HF=CD,FG=CD,EH=CD,又∵AB=CD∴EG=GF=FH=EH∴四边形EFGH是菱形.∴EF⊥GH.。
中点四边形的规律探索
中 点 四 边 形 的 规 律 探 索
罗 国 强
( 疆 兵 团 农 二 师 2 3 中学 , 新 2团 新疆 和 静 8 10 ) 4 3 8
何 谓 中 点 四边 形 ?依 次 连 接 四边 形 各 边 中点 所 得 的 四边
形 称 为 中 点 四边 形 。 例 题 解 析
一
、
例 1在 北 师 大 版 教 材 《 学 》 年 级 上 册 第 三 章 中有 这 样 : 数 九 道题 目 : 意 作一 个 四边 形 , 将 其 四边 的 中点 依 次 连 接 起 任 并 来 , 到 一 个 新 的 四边 形 , 个 新 四边 形 的 形 状 有 什 么 特 征 ? 得 这 请 证 明你 的结 论 , 与 同伴 进 行 交 流 。 并 在 做 这 道 题 时 , 请 学 生 画一 画 、 一 推 、 一 量 、 一 猜 我 推 量 猜
中点 四边 形 是 什 么 四 边形 ? 思 路 点 拨 :正 方 形 的对 角 线 既 相 等 又 六 、 学 要 关 注 学科 , 要 关 注 学 生 教 更
C
评注 : 该题 也可连 接B 通 过证E / G F / H, D, F/ H,G/ E 或证
E= F GH, G= H,均 可获 得 结 论 。 这 是 对 平 行 四边 形 的 定 义 F E
1
图1
图2
B
解 : 图 1 图2 四边 形E G 是 平 行 四边 形 。证 明如 下 : 如 、 , F H 连 接 AC. 点E F , 分别 是 边 A B 的 中点 , B, C
‘ ‘ . ‘ . .
◇
。:
E /A ,F  ̄ A F/ C E = C。
2
顺次连接任意一个四边形各边的中点所得的四边形有什么特征
顺次连接任意一个四边形各边的中点所得的四边形有什么特征?
关于这个问题在各种平台上讲解的很多,但是不够具体全面,这实际上是数学课本课后的一个问题,下面杜老师详细的解答这个问题。
首先定义中点四边形:任意一个四边形中点顺次连接起来构成的四边形叫中点四边形
证明:如图,连接BD,
∵H,E分别是AD,AB的中点
∴HE是△ABD的中位线
∴HE平行且等于BD的一半(HE∥BD,HE=1/2BD)
同理GF平行且等于BD的一半(GF∥BD,GF=1/2BD)
∴HE∥GF,HE=GF
∴四边形EFGH是平行四边形
特殊图形的中点四边形
①若原四边形是平行四边形,则中点四边形是平行四边形
②若原四边形是矩形,则中点四边形是菱形
③若原四边形是菱形,则中点四边形是矩形
④若四边形是正方形,则中点四边形是正方形
写到最后:
①任意四边形,中点四边形是平行四边形
②对角线相等的四边形,中点四边形是菱形
③对角线垂直的四边形,中点四边形是矩形
④对角线垂直且相等的四边形,中点四边形是正方形。
中考专题复习:中点四边形
3、连接对角线互相垂直的四边形四条边中点 得到的四边形是矩形
试一试
1、如图,四边形ABCD中,E,F,G,H分别是AB,
BC,CD,DA边上的中点,请你添加一个条件使四边
形EFGH是菱形,应添加的条件是
。
使四边形EFGH是矩形,应添加的条件是
四边形EFGH,四边形MNPQ的形状是( A )
A)矩形,菱形
B)菱形,矩形
C)矩形,矩形
D)矩形,正方形
4、如图,四边形ABCD中,AC=12,BD=8,面积 为40,点E、F、G、H分别是边AB、BC、CD、DA 中点,求:四边形 EFGH的周长是多少
D H A E
B
解:∵E、F分别是AB、BC中点
腰梯形中的哪一种,并写出证明过程。
A
DA
DA
D AQ D
F
B
E CB E
F CE B
M P
CE B N F
C F
小结:
本节课你学到了哪些知识?还有需要老师帮 你解决的难题吗?
D
D1
C3
C2
C1
B3 B2
C
A D2 O
D3
A1
A3
A2
B1
B
3、如图,在正方形ABCD中,点E,F分别是BC,CD的中点,AF,DE
相交于点G,则可得结论:
①AF=DE ②AF⊥DE(不须证明)
⑴如图②,若点E,F不是正方形ABCD的边BC,CD的中点,但满足
CE=DF则上面的结论①②是否仍然成立?(请直接回答“成立”
。
D
H A
G C
F E
B
中点四边形的证明方法
中点四边形的证明方法
1. 连接四边形各边中点所得的四边形,那可真的太有意思啦!比如说,就像把一个大拼图拆成几个小部分再重新组合,这就是中点四边形呀!你想想,要是给你一个普通四边形,然后你找到各边中点连起来,会得到什么呢?
2. 咱可以用三角形中位线定理来证明呢!哎呀,就好像找到了一把神奇的钥匙,能打开中点四边形秘密的大门。
比如有个四边形 ABCD,那它的中点四边形会是什么样呢?
3. 还有啊,通过对比原来的四边形和中点四边形的性质,这不就跟找不同一样嘛!就像你有两个相似但又不一样的玩具,去发现它们的区别,多好玩呀!例如那个四边形 EFGH 是某个四边形的中点四边形,有趣吧!
4. 观察也是个好办法呀!瞪大眼睛好好看看,中点四边形到底有啥特点。
好比你观察一只小动物的行为,充满了惊喜呢!像在这个四边形 IJKL 中去仔
细观察呀!
5. 可以用反证法试试呀,哇,听着就很刺激呢!感觉就像走迷宫,从另一个方向去寻找出口。
假设不是那样,然后推出矛盾,是不是很厉害!看,在那个四边形 MNOP 中就试试呗!
6. 从特殊到一般呀,先研究特殊的四边形,再推广到一般的,多机智呀!就像先学会走,再去跑一样。
比如特殊的正方形的中点四边形会是啥样呢?
7. 计算也是个途径呀!通过一些边长角度什么的去算,就像做数学题一样有趣。
在这个四边形 QRST 中算算看呢!
8. 还可以和小伙伴一起探讨呢,人多力量大嘛!一起研究中点四边形,多热闹呀!哎呀,快和小伙伴试试研究那个四边形 UVWX 吧!
总之,中点四边形的证明方法可多啦,每种都好有趣,等着我们去发现和探索呢!。
中点四边形课件
1.理解中点四边形的概念; 2.掌握中点四边形的判定、证明及 应用; 学习重难点: 中点四边形的判定、证明及应用;
复习旧知:
三角形中位线:
如图,在△ABC中,D、E分别是AB、AC的
中点. DE就是△ABC的中位线.
几何语言: ∵ D、E分别是AB、AC的中点 D ∴DE为△ABC的中位线, ∴DE∥BC,DE=
G
∵ E、F是AB、BC边中点
∴EF是△ABC中位线 1 ∴EF∥AC且EF= 2 AC ∴EF ∥ HG且EF = HG ∴四边形EFGH为平行四边形。
B
F
C
1 同理:HG ∥ AC且HG = AC 2
结论:任意四边形的中点四边形都为平行 四边形。 (对角线既不相等又不垂直)
平行四边形的中点四边形是什么形 状?
探究三:
已知:如图,点E、F、G、H分别是四边形ABCD各 边的中点,且AC⊥BD,则四边形EFGH是什么形 状呢?为什么?
D
H
A
G
O E
Bቤተ መጻሕፍቲ ባይዱ
C
F
结论:对角线互相垂直 的四边形的中点四边形 为矩形。
想一想:
菱形的中点四边形是什么形状?
A E B F C G H
D
结论:菱形的中点四边形是矩形。
探究四:
“任中平”
“平中平” • 矩形的中点四边形是________________; 菱形 “矩中菱” ________________; • 菱形的中点四边形是 矩形
• 正方形的中点四边形是 ______________; “菱中矩”
正方形
“正中正”
“我”的命运由 对角线 主宰
原四边形的对角线
中点四边形对角线中点定理
中点四边形对角线中点定理中点四边形是一种特殊的四边形,其两个相邻边都被平分,这种四边形的对角线中点有一个重要的性质,被称为中点四边形对角线中点定理。
定义中点四边形是一种四边形,其两条对立边的中点彼此连接。
即ABCD 四边形中,AB和CD的中点E和AD和BC的中点F之间连接一条线段EF。
其中,EF被称为中点四边形的对角线。
中点四边形的对角线中点定理指出,中点四边形的对角线中点之间连接的线段EF等于对角线长度的一半。
即EF = 1/2AC = 1/2BD。
证明证明该定理并不难,可以利用向量、尺规作图等方法。
这里给出一种简单的证明方法:假设ABCD是一种中点四边形,E和F是ABCD的对角线AC和BD 的中点。
连接AE、CE、BE和DE,以及AF、CF、BF和DF。
因为AE和CE平分了BC,所以AE = EC,同理,BE = ED。
所以三角形AED和CBE是全等的。
同样的,AF和CF平分了BD,所以AF =CF,同理,BF = DF。
所以三角形ABF和CDF是全等的。
因为AE和EC相等,BE和ED相等,所以四边形AEBD是平行四边形。
因为AF和CF相等,BF和DF相等,所以四边形ABFC是平行四边形。
因此,EF是交于对角线中点的两个平行四边形的对角线,所以EF = 1/2AC = 1/2BD。
应用中点四边形对角线中点定理在解决四边形、向量、三角形等问题上都有着广泛的应用。
在四边形中,我们可以通过该定理计算四边形的对角线长度。
在向量中,可以通过该定理来确定向量的大小和方向。
在三角形中,可以通过该定理来确定三角形的垂直平分线。
总结中点四边形对角线中点定理是数学中的一个基本概念,它是在解决四边形、向量和三角形等问题上的基础性理论。
只有了解了中点四边形的性质和特点,才能更好地应用定理来解决实际的问题。
同时,学生们也需要掌握常见的证明方法,以便更好地理解和掌握该定理。
中点四边形与原四边形的关系
中点四边形与原四边形的关系中点四边形与原四边形的关系,听起来挺复杂的,其实一说起来就有趣多了。
想象一下,一个普通的四边形,就像是一块普通的蛋糕,边边角角都有点甜。
然后你把每条边的中点连起来,哇!就变成了一个新的四边形,简直就像是给蛋糕加了层奶油,显得更加诱人。
这种新的四边形叫做中点四边形,别看名字复杂,其实它可神奇了。
它的顶点就是原四边形每条边的中点,画起来可真是简单得很。
说到这里,很多人可能会问,这个中点四边形有什么用呢?嘿,别小看它!它的面积总是原四边形面积的一半,这就像你切蛋糕时,总能分到一块比较大的那一部分,真是太划算了。
而且呢,不管你原来的四边形是怎样的,长方形、正方形、还是梯形,中点四边形的面积都稳稳地保持在原来的那一半,绝对不变,这就是它的“绝活”了。
是不是感觉中点四边形简直就是个好帮手?再说了,除了面积,中点四边形的形状也是个看点。
你会发现,如果原四边形是个凸四边形,中点四边形也是凸的;要是原四边形是凹的,那么中点四边形就可能会变得更凹。
简直就像是两个性格不同的人一起聚会,最后会有不同的互动,碰撞出新火花。
哎呀,数学的世界就是这样奇妙,真是让人忍不住想多探讨几句。
这个中点四边形和原四边形之间的关系,就像是家族关系一样。
你可以想象,原四边形是个大家长,而中点四边形就是它的孩子,继承了爸爸妈妈的基因,却又在某些方面有了自己的特点。
说不定,中点四边形在未来还会发展出自己的新特征,谁知道呢!这就像我们生活中的每个人,虽然都来自于某个家庭,但长大后却都有自己独特的个性。
如果你有兴趣的话,自己动手画一下,感受一下这两者之间的奇妙关系。
用一根铅笔,随便画个四边形,然后把每条边的中点连起来。
你会发现,这个过程像极了做手工,既简单又能得到很不错的成果。
完成后,瞧一瞧,这个中点四边形真像个新朋友,跟原来的四边形一起分享欢乐。
数学其实就是这样,动手做一下,才能更好地理解。
这中点四边形还有个特别有趣的地方,那就是它的对角线。
《中点四边形》教学设计
《中点四边形》教学设计教学目标:1.理解中点四边形的定义和性质;2.掌握中点四边形的判定方法和性质证明;3.能够应用中点四边形的性质解决相关的几何问题。
教学重点:1.中点四边形的定义;2.中点四边形的性质;3.中点四边形的判定方法和证明。
教学难点:1.中点四边形的性质的证明;2.能够应用中点四边形的性质解决相关的几何问题。
教学准备:1.教材《高中数学选修五》;2.教学PPT;3.教学实例和习题。
教学过程:一、导入(5分钟)1.引入新课:提问学生是否了解中点四边形,是否熟悉中点四边形的定义和性质。
2.引发思考:给出一个四边形的图形,让学生观察并猜测其是否是中点四边形。
二、新知讲解(15分钟)1.定义中点四边形:任意四边形中,连接两组对边中点的线段相等的四边形称为中点四边形。
2.中点四边形的性质:a.两组对边中点连线互相平分;b.两条对角线互相平分;c.对角线相等。
三、示例分析(15分钟)1.示例1:用已知条件证明中点四边形。
a.给出一个示例四边形,例如ABCD,已知AB=CD,连接AC和BD;b.证明得到AC=BD;c.根据定义可得知ABCD是中点四边形。
2.示例2:用中点四边形的性质解决问题。
a. 给出一个问题,例如ABCD是中点四边形,AC=10cm,BC=8cm,求AD和BD的长度;b.根据中点四边形的性质可以得到AC=BD,BC=AD,进而求解出AD和BD的长度。
四、拓展延伸(10分钟)1.提出一些延伸问题,让学生自行思考和解决,如:如何判断一个四边形是否是中点四边形?中点四边形的对角线的交点叫什么?等等。
2.让学生围绕中点四边形的性质进行讨论和交流,引导他们思考和探索相关的几何问题。
五、练习巩固(20分钟)1.分发练习题,让学生独立完成,包括应用性和拓展性的题目;2.对学生完成的答案进行讲解和讨论,解决学生的疑惑和困惑。
六、归纳总结(10分钟)1.教师总结中点四边形的定义和性质;2.强调中点四边形的判定方法和证明;3.总结学生在此次教学中的收获和困惑。
中点四边形
3.2.3特殊的平行四边形
创设情境 将一块不规则的四边形铁皮 剪成平行四边形,让你剪, 你打算怎样剪呢?
想一想
为什么四边形EFGH是平行四边形?如何证明?
G ● D
●
C
证明:
F
∵E、H分别是AB、AD的中点 ∴EH是△ABD的中位线
H● A
●
E G ● D
1 ∴EH∥BD EH = BD B 2 1 同理可得: FG∥BD FG = 2 BD C
的图形呢?先猜一猜,动手画一画,再证明。
D H● A E
●
G
●
C
●
F B
请大家动手画图,猜想, 测量, 分组讨论并证明!
结论:
任意四边形的中点四边形都是 平行四边形 ; 平行四边形的中点四边形是 平行四边形 ; 矩形 菱形的中点四边形是_____________;
菱形 矩形的中点四边形是______________;
∴ EH∥FG
●
EH=FG
H● A
●
F
B
∴四边形EFGH是平行四边形
中点四边形的定义: 顺次连接一个四边形四边中点所得到的 四边形称为这个四边形的中点四边形。
G ● D
●
C
D
C
H● A
●
F B
E
A
B
试一试
依次连接正方形各边的中点,能得到一个怎样
的图形呢?先猜一猜,动手画一画,再证明。
D
●
G
C
H●
一展
身手
在下图中,ABCDXA表示一条环行高速公路,X表示 一座水库,B,C表示两个大市镇.已知ABCD是一个正方 形,XAD表示是一个等边三角形.假如政府要铺设两条 输水管XB和XC,从水库向B,C两个市镇供水,那么这条 水管的夹角(即∠BXC)是多少度?
中点四边形规律总结
中点四边形规律总结
中点四边形是许多图形中的一个,它是由2对对称的对称角组成的一种平行四边形。
两对对称角并列并相等,即边a=边c,边b=边d。
因此,中点四边形也可
以被称为等对角线四边形。
这种形状在生活中经常出现,如板条箱,手机键盘以及一些实用的棋子,如棋盘和四子棋。
它们可以用来装载一些工具或物品,看起来很实用又很美观。
此外,中点四边形也是计算机绘图的常用基本图形。
在计算机绘图中,它有着极为重要的作用,因为它是视觉游戏的一个重要部分。
在几何学中,中点四边形也有一定的规律性。
例如,它的面积可以通过其两个对称角(α,α),(β,β)和对角线(a,b)求得,面积就是锐角α、β中所写的定理应用表达式:
S=1/2(a^2+b^2)sinα
还有,中点四边形的其他要素也有一定的表达式:
内接圆半径:r=1/2√[(a^2+b^2)sinα]
外接圆半径:R=1/2[a/sinα+b/sinβ]
中点四边形的边和有表达式:a+b+c+d=2(α+β)
总之,中点四边形的规律总结是:拥有等对角的平行四边形,其面积的表达式是S=1/2(a2+b2)si nα,还可以从其内接圆半径、外接圆半径和边和的表达式中总结
出中点四边形的其他规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《中点四边形》教学设计说明
新疆乌鲁木齐市第十三中学于菲
一、教材分析
1.教材的地位和作用
本节课是在学生学习了平行四边形、矩形、菱形、正方形、梯形、直角梯形及等腰梯形的性质和判定,以及三角形中位线的性质后安排的一节探究活动课。
一方面中点四边形问题本身是四边形中一个有趣的探索问题。
通过本节课的探究,既可复习四边形,以及三角形中位线,又可作为探究中点四边形性质的新授课。
学生经历观察、探究中点四边形的形状与原四边形的关系,进一步体会三角形中位线、及特殊四边形的相关知识在实际中的应用。
同时,探索和证明中点四边形的特殊性质又可以让学生体会证明的必要性,并进一步丰富对图形的认识和感知。
2教学重点和难点
重点:中点四边形性质的探索。
难点:对确定中点四边形形状的主要因素的探究。
二、教学目标分析
1.知识与技能:
利用三角形中位线定理判断中点四边形的形状;感受中点四边形的形状取决于原四边形的两条对角线的位置与数量关系;通过图形变换使学生掌握简单的添加辅助线的方法。
2过程与方法:
培养学生观察、发现、分析、探索知识的能力及创造性思维和归纳总结能力;
通过图形间既相互变化,又相互联系的内在规律的探究,进一步加深对“一般与特殊”关系的认识。
3情感态度与价值观
(1)在探究过程中培养学生的参与、合作意识,激发学生探索数学的兴趣,体验数学知识获得的过程。
(2)体会中点四边形的图形美,感受数学变化规律的奇妙。
三、教法和学法分析
1.教法分析
这节课教学时注重学生的探索过程,让学生动手操作、观察、猜测、验证,进而获得知识,培养主动探究的能力。
教学方法针对本节课的特点,我采用“创设情境——观察探索——总结归纳——知识运用”为主线的教学模式,自主观察、分析讨论相结合的方法。
在教学过程中引导学生经过观察、思考、探索、交流获得知识,形成技能,感受从一般到特殊再回到一般的数学思想。
在教学过程中注意创设思维情境,坚持学生主体,教师主导,在合作、交流的气氛下进行师生互动,培养学生的自学能力和创新意识,让学生在老师的引导下自始至终处于一种积极思维、主动探究的学习状态。
同时借助多媒体和几何画板的演示,来增强课堂教学的直观性,更好的帮学生理解中点四边形的形状与原四边形的对角线密切相关,从而突破教学重难点。
使本节课在师生互动、生生互动的合作交流中完成教学任务。
2.学法分析
“授人以鱼,不如授人以渔”,本节课的教学中,让学生主动观察、分析、比较、进而归纳、概括出自己的发现,使传授知识变成学生的自主发现行为;通过教师的启发、引导,让学生动手操作、合作交流,展示成果,来体验数学活动中的乐趣。
四、教学过程分析详见本课教学设计
五、评价分析
1.注意评价内容的多元化
通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。
2.注重对学生学习过程的评价
在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生出现的独特的想法或结论给予鼓励评价。
六、教学反思
(一)本节课的成功之处:
从教学设计上看:设计的观察探究活动,小组合作交流活动、开放性问题的探索都是可行的,达到了预期的效果。
从引导方式上来看:启发式教学让学生在老师的引导下自始至终处于一种积极思维、主动探究的学习状态,降低了学习难度,更好的完成了教学目标,突破了重难点。
同时几何画板演示环节的设置激发了学生学习的积极性,达到了良好的效果。
从学习方式上看:在自主观察和合作交流两种不同的学习方式中,学生发现、验证、归纳出了中点四边形与原四边形对角线间的联系,符合学生的认知规律,是有效的学习方式。
(二)本节课的不足之处:
教师的评价语言有时不够丰富。
教学环节中的学生活动探索时间受限于课堂教学的制约,设置稍有不足,若能提供更充足的时间,并提供更广阔的平台让学生充分交流和讨论,那将更完美。
(三)本节课留下的思考:
课堂教学如何能最大时效的进行知识的探究,如何让学生更多更好的感受不同的数学思想,如何帮助学生深刻理解数学与生活之间的密切联系,这些都值得我在今后的教学过程中不断地思考与总结。
以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!。