九年级中考百校大联考在线数学试题

合集下载

江苏省百校大联考2025届高考仿真模拟数学试卷含解析

江苏省百校大联考2025届高考仿真模拟数学试卷含解析

江苏省百校大联考2025届高考仿真模拟数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( ) A .3πB .4πC .8πD .13π2.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅ 3.某几何体的三视图如图所示,则该几何体的最长棱的长为( )A .5B .4C .2D .224.在棱长为2的正方体ABCD −A 1B 1C 1D 1中,P 为A 1D 1的中点,若三棱锥P −ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .12πB .21π2C .41π4D .10π5.函数1()ln ||1xf x x+=-的图象大致为A .B .C .D .6.已知集合{}|0A x x =<,{}2|120B x x mx =+-=,若{}2AB =-,则m =( )A .4B .-4C .8D .-87.将函数()cos2f x x =图象上所有点向左平移4π个单位长度后得到函数()g x 的图象,如果()g x 在区间[]0,a 上单调递减,那么实数a 的最大值为( ) A .8π B .4π C .2π D .34π 8.设i 是虚数单位,若复数1z i =+,则22||z z z+=( )A .1i +B .1i -C .1i --D .1i -+9.过椭圆()2222:10x y C a b a b+=>>的左焦点F 的直线过C 的上顶点B ,且与椭圆C 相交于另一点A ,点A 在y 轴上的射影为A ',若34FO AA =',O 是坐标原点,则椭圆C 的离心率为( ) A .32 B .33C .12D .2210.已知三棱锥A BCD -的所有顶点都在球O 的球面上,AD ⊥平面,120ABC BAC ︒∠=,2AD =,若球O 的表面积为20π,则三棱锥A BCD -的体积的最大值为( ) A .33B .233C .3D .2311.双曲线的离心率为,则其渐近线方程为A .B .C .D .12. “8πϕ=-”是“函数()sin(3)f x x ϕ=+的图象关于直线8x π=-对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。

2019年山西省百校联考中考数学模拟试卷(一)(解析版)

2019年山西省百校联考中考数学模拟试卷(一)(解析版)

2019年山西省百校联考中考数学模拟试卷(一)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算1﹣|﹣4|的结果是()A.﹣5B.﹣3C.3D.52.已知a<b,下列四个不等式中,正确的是()A.﹣a<﹣b B.﹣2a<﹣2b C.a﹣2>b﹣2D.2﹣a>2﹣b3.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.92°B.98°C.102°D.122°4.张老师家1月至12月的用电量统计如图所示,这组数据的众数和中位数分别是()A.25和17.5B.30和20C.30和22.5D.30和255.据2018年10月山西统计局“改革开放40年山西经济社会发展成就系列报告”显示:1978年,我省地区生产总值88亿元,2017年达到15528.5亿元.数据15528.5亿元用科学记数法表示为()A.15528.5×108元B.1.55285×1012元C.1.55285×1011元D.0.155285×1013元6.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9B.3(x﹣2)=2x+9C.D.7.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有()A.12个B.10个C.8个D.6个8.如图,活动课小明利用一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE为9m,AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是()A.3m B.27m C.(3+)m D.(27+)m9.如图所示,把一张矩形的纸片按图示对折两次,然后剪下一部分,若得到一个钝角为120°的菱形,则剪口与第二次折痕所成角的度数应为()A.30°或50°B.40°或50°C.30°或60°D.40°或60°10.如图所示,已知点A坐标为(6,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.2B.3C.3D.6二、填空题(本大题共5个小题,每小题3分,共15分)11.分式方程﹣=0的根是.12.如图所示是轰炸机机群的一个飞行队形,如果其中两架轰炸机的平面坐标分别表示为A(﹣2,3)和B(2,1),那么轰炸机C的平面坐标是.13.如图是一次射击训练中某士兵甲的10次射击成绩(均是整数)的分布情况,则射击成绩的方差是.14.小明用火柴棒按如图所示的规律摆放下列图形,则摆放第n个图形共需要火柴棒根.15.如图,在△ABC中,AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A,B重合),连接CD,作∠CDE=40°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC的度数是.三、解答题(本大题共8个小题,共75分。

2024年辽宁省大连市部分学校九年级下学期中考联考数学试题(含答案)

2024年辽宁省大连市部分学校九年级下学期中考联考数学试题(含答案)

2024年辽宁省中考适应性测试(一)数学试卷(本试卷共23小题满分120分考试时长120分钟)考生注意:所有试题必须在答题卡指定区域内作答,在本试卷上作答无效参考公式:抛物线顶点坐标为第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A. B. C. D.2.下列几何体中,俯视图是三角形的是( )A.B . C. D.3.在标准大气压下,液态氧、液态氮、酒精、水四中液体的沸点如下表:液体液态氧液态氮酒精水沸点78100其中沸点最低的液体为( )A.液态氧 B.液态氮C.酒精D.水4.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中是中心对称图形的是( )A. B. C.D.5.下列运算正确的是()A. B.C.D.6.下列命题是真命题的是( )A.相等的角是对顶角 B.若,则D.同旁内角互补,两直线平行()20y ax bx c a =++≠24,24b ac b aa ⎛⎫-- ⎪⎝⎭50.35810⨯335.810⨯53.5810⨯43.5810⨯/℃183-196-()235y y =222(2)4xy x y -=2222x x x ⋅=623x x x ÷=||||a b =a b =2=-7.在平面直角坐标系中,线段是由线段经过平移得到的,点的对应点为,点B 的坐标为,则点的坐标为( )A. B. C. D.8.为了丰富校园生活,培养学生特长,学校开展了特色课程.小明与小华从感兴趣的“花样跳绳”,“天文地理”,“艺术插花”,“象棋博弈”4门课程中随机选择一门学习.小明与小华恰好选中同一门课程的概率为( )A.B.C.D.9.如图,直线,直线依次交,,于点A ,B ,C ,直线依次交,,于点D ,E ,F ,若,,则的长为( )A.8B.6C.4D.310.已知等腰三角形的周长是8,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A. B. C. D.第二部分非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.因式分解:_____________.12.如图,菱形中,交于O ,于E ,连接,若,则的度数为_____________.A B ''AB (2,1)A -(3,4)A '(1,3)B --B '(4,3)-(4,3)-(4,0)(6,6)--116141312123////l l l AC 1l 2l 3l DF 1l 2l 3l 35AB AC =6DE =EF 29y -=ABCD AC BD CE AB ⊥OE 110DAB ∠=︒OEC ∠︒13.如果关于x 的方程有两个相等的实数根,则___________.14.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能,如“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得,.若“矩”的边,边,则树高为______.图1图215.如图,拋物线交x 轴正半轴于点A ,交y 轴于点B ,线段轴交拋物线于点C ,,则的面积是__________.三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)(5分)计算:(2)(5分)解方程:.17.(8分)某学校为打造书香校园,计划购进甲、乙两种课外书.购买1本甲种书和2本乙种书共需125元;购买2本甲种书和5本乙种书共需300元.(1)求甲、乙两种书的单价;(2)学校决定购买甲、乙两种书共50本,且两种书的总费用不超过2000元,那么该校最多可以购买多少本乙种书?18.(8分)为了解甲、乙两校九年级学生英语人机对话的学习情况,每个学校随机抽取20个学生进行测试,测试后对学生的成绩进行了整理和分析.信息一:220x x m ++=m =AFE 1.5m AB = 6.2m BD =30cm EF a ==60cm AF b ==CD m 233(0)y ax ax a =-+<BD y ⊥25DC BD =ACD △()()23433-⨯+-+2820x x -+=绘制成了如下两幅统计图.(数据分组为:A 组:,B 组:,C 组:,D 组:)甲校成绩的频数分布直方图乙校成绩的扇形统计图信息二:甲校学生的测试成绩在C 组的是:80,82.5,82.5,85,85.5,89,89.5,82.5,85.信息三:甲、乙两校成绩的平均数,中位数,众数如表:平均数中位数众数甲校83.2a 82.5乙校80.68180根据以上信息,回答下列问题:(1)扇形统计图中C 组所在的圆心角度数为_______,乙校学生的测试成绩位于D 组的人数为_______人,表格中_________,在此次测试中,甲校小明和乙校小华的成绩均为82分,则两位同学谁在各自学校测试成绩中的排名更靠前?并说明理由;(2)假设甲校学生共有400人参加此次测试,估计甲校成绩超过86分的人数.19.(8分)星海广场是亚洲最大的城市广场,某店专门销售某种品牌的星海广场纪念品,成本为30元/件,每天销售y 件与销售单价x 元(x 为整数)之间的一次函数关系如图所示,其中.(1)求y 与x 之间的函数表达式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?20.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图1是政府给贫困户新建的房屋,如图2是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,为了测量房屋的高度,在地面上C 点测得6070x ≤<7080x ≤<8090x ≤<90100x ≤≤︒a =3060x <≤AB屋顶A 的仰角为,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走到达点D 时,又测得屋檐E 点的仰角为,房屋的顶层横梁,,交于点G (点C ,D ,B 在同一水平线上).图1图2(1)求屋顶到横梁的距离(结果精确到);(2)求房屋的高(结果精确到).(参考数据,,)21.(8分)如图1,为的直径,C 为外一点.图1图2(1)尺规作图:作直线与相切,切点D 在弧上(保留作图痕迹,不写作法);(2)如图2,为的直径,直线与相切于点D,连接、、,若,,的长.22.(12分)如图,在中,,点D 在边上(不与点C 重合),将绕点D 旋转,得到,其中点C 的对应点为点E ,点A 的对应点为点F .图1图2图3(1)如图1,点D 与点B 重合,将绕点D 逆时针方向旋转,当点E 落在边上时,与的交点为G ,求证:;30︒8m 63.5︒12m EF =//EF CB AB EF AG 0.1m AB 1m sin 63.50.89︒≈cos 63.50.45︒≈tan 63.5 2.00︒≈ 1.73≈AB O e O e CD O e AmB AB O e CD O e AD BD AC 45C ∠=︒4sin 5ADC ∠=AC =BD ABC △AB AC =BC ADC △FDE △ADC △AC EF AB AG EG =(2)如图2,点D 是边上任一点(不与点A 、B 重合),将绕点D 逆时针方向旋转,当点E 落在边上时,连接,求证:;(3)若,D 为中点.①将绕点D 逆时针方向旋转,点E 落在边上,连接并延长与的延长线交于点P ,求的长;②将绕点D 顺时针方向旋转,当经过点C 时,连接并延长与的延长线交于点Q ,请直接写出的长.23.(13分)定义,在平面直角坐标系中,对于任意两点,,若点满足,,那么称点T 是点A ,B 的“伴A 融合点”,例如:,,当点满足,时,则点是点A ,B 的“伴A 融合点”.(1)已知点,,点T 是点A ,B 的“伴A 融合点”,则点T 的坐标为___________;(2)已知点,,,请说明其中一个点是另两个点的伴哪个点的“融合点”?(3)已知点是直线上在第一象限内的一动点,是抛物线上一动点,点是点Q ,P 的“伴Q 融合点”,试求出T 中y 关于x 的函数表达式(表达式中含a ),并判断所有点中是否存在最高点?若存在,求出最高点的坐标;若不存在,说明理由;(4),为(3)中y 关于x 的函数表达式所对应的图像上两点,若点M ,N 之间的图象(包括点M ,N )的最高点与最低点纵坐标的差为,求a 的值.AB ADC △AC BF //BF AC AB =2BC =BC ADC △AC AF CB PF ADC △EF AF BC QF (,)A a b (,)B m n (,)T x y a mx a+=b ny b +=(1,2)A -(3,4)B (,)T x y 1321x -+==--2432y +==(2,3)T -(2,4)A -(2,8)B -(2,6)C -(1,2)D --(1,2)E -(,)Q a b y x =(,)P m n 22y x =-(,)T x y (,)T x y ()11,M y -()21,N a y -26a2024年辽宁省中考适应性测试数学(一)答案及评分标准一、选择题:1.D ;2.B ;3.B ;4.A ;5.B ;6.D ;7.C ;8.B ;9.C ;10.D.二、填空题:11.;12.35;13.1;14. 4.6;15. 3.15.解析:在中,当时,,.轴交抛物线于点C ,,令,,.,,,,,.三、解答题:16.解:(1)原式4分;5分(2),,,,6分8分,.10分17.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意得,,2分解得,,3分答:甲种书的单价是25元,乙种书的单价是50元;4分(2)设该校购买m 本乙种书,则购买本甲种书,根据题意得,,6分解得,,7分答:该校最多可以购买30本乙种书.8分18.解:(1)144,4,,3分小明的成绩为82分,在甲校中位数85.25分以下,而小华的成绩82分,在乙校中位数81分以上,因此小华的成绩排名在前.5分()()33y y +-233y ax ax =-+0x =3y =(0,3)B ∴BD y ⊥ 3C B y y ∴==2333ax ax -+=10x ∴=23x =(3,3)C ∴3BC ∴=25DC BD = 2(3)5DC DC ∴=+2DC ∴=12332ACDS ∴=⨯⨯=△1293=-++-+=1a = 8b =-2c =224(8)412560b ac ∴-=--⨯⨯=>4x ∴==14x ∴=+24x =-212525300x y x y +=⎧⎨+=⎩2550x y =⎧⎨=⎩(50)m -()2550502000m m -+≤30m ≤85.25a =(2)(人),7分答:估计甲校400学生中成绩超过86分的大约有180人.8分19.解:(1)设y 与x 的函数表达式为,直线经过点,,,2分解得:.3分y 与x 之间的函数表达式为;4分(2)设每天利润为w 元,则,,6分,抛物线开口向下,,当时,7分.8分答:当销售单价为50元时,每天获取的利润最大,最大利润是4000元.20.解:(1)房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,,,,,在中,,,,,2分.3分答:屋顶到横梁的距离约为3.5米;(2)如图,过E 作于H ,设米,在中,,,,,4分2740018020+⨯=y kx b =+ y kx b =+(40,300)(55,150)4030055150k b k b +=⎧∴⎨+=⎩10700k b =-⎧⎨=⎩∴10700y x =-+(30)(30)(10700)w x y x x =-⋅=--+221010002100010(50)4000x x x -+-=--+100-< ∴3060x <≤ ∴50x =4000w =最大 AB //EF BC AG EF ∴⊥11126m 22EG FG EF ===⨯=30AEG ACB ∠=∠=︒Rt AGE △90AGE ∠=︒30AEG ∠=︒6EG =tan AG AEG EG ∠=tan 6tan 306AG EG AEG ∴=∠==︒⨯2 1.73 3.46 3.5m ≈⨯=≈AG EH CB ⊥EH x =Rt EDH △90EHD ∠=︒63.5EDH ∠=︒tan EH EDH DH ∠=tan tan 63.52EH x xDH EDH ∴==≈︒∠在中,,,,,5分,,解得:(米),7分四边形为矩形,(米),(米).8分答:房屋的高约为10米.21.解:(1)如图1,直线即为所求作;2分说明:连接,分别以点C ,点O 为圆心,大于为半径作弧,两弧分别交于点M ,N ,作直线交于点E ,以E 为圆心,长为半径作弧,交弧与点D ,作直线.图1图2(2)如图2,过点A 作于点E ,则,连接,为的切线,是的半径,,,3分为的直径,,4分,即,,,,5分,,,6分,,,,,,,7分在中,根据勾股定理,.8分22.解:(1)证明:,,,.1分旋转得到,,,.,,,Rt ECH △90EHC ∠=︒30ECH ∠=︒tan EH ECH CH ∠=tan tan 30EH xCH ECH ∴===∠︒8CH DH CD -== 82x-=1.730.58x x -= 6.5x ≈ EHBG 6.5EH BG ∴==3.46 6.59.9610AB AG BG ∴=+=+=≈AB CD CO 12CO MN CO EO AmB CD AE CD ⊥90AEC AED ∠=∠=︒OD CD O e OD O e CD OD ∴⊥90ODC ∴∠=︒AB O e 90ADB ∴∠=︒ADO ODB ADO ADC ∴∠+∠=∠+∠ODB ADC ∠=∠OD OB = ODB B ∴∠=∠B ADC ∴∠=∠45C ∠=︒ sin sin 45AE C AC ∴==︒=AC =4AE ∴=4sin 5ADC ∠=45AE AD ∴=5AD ∴=B ADC ∠=∠ 90ADB ∠=︒4sin 5AD B AB ∴==254AB ∴=Rt ABD △154BD ===AB AC = ABC C ∴∠=∠180A ABC C ∠+∠+∠=︒2180A C ∴∠+∠=︒ABC △FBE △C BEF ∴∠=∠BC BE =BEC C ∴∠=∠BEC BEF C ∴∠=∠=∠180BEC BEF AEF ∠+∠+∠=︒ 2180AEF C ∴∠+∠=︒,;2分(2)同理(1)得,.,旋转得到,,.3分,即..4分,,.,;5分(3)①,,D 为中点,,,,在中,根据勾股定理得.6分如图1,连接,.旋转得到,,.,,..,,,.7分,,,根据勾股定理得8分旋转得到,,,又,,,.,,即.9分由(2)得,,四边形为矩形,,,,,10分A AEF ∴∠=∠AG EG ∴=GAE GEA ∠=∠AG EG =AB AC = ADC △FDE △AC FE ∴=AB FE ∴=AB AG FE EG ∴-=-BG FG =GFB GBF ∴∠=∠2180AGE GAE ∠+∠=︒ 2180BGF GBF ∠+∠=︒AGE BGF ∠=∠GAE GBF ∴∠=∠//BF AC ∴AB AC ==2BC =BC AD BC ∴⊥90ADC ∴∠=︒112BD CD BC ===Rt ADC △2AD ===BE BF ADC △FDE △DC DE ∴=DA DF =BD DE ∴=C DEC ∴∠=∠DBE DEB ∠=∠180DBE DEB DEC C ∠+∠+∠+∠=︒ 22180DEB DEC ∴∠+∠=︒90DEB DEC ∴∠+∠=︒90BEC ∴∠=︒BE AC ∴⊥1122ABC S BC AD AC BE =⋅=⋅ △22∴⨯=BE ∴=AE ===ADC △FDE △90FDE ADC ∴∠=∠=︒ADF EDC ∴∠=∠DF DA = 1802ADFDAF DFA ︒-∠∴∠=∠=1802EDCC ︒-∠∠= C DAF ∴∠=∠90C DAC ∠+∠=︒ 90DAF DAC ∴∠+∠=︒90PAC ∠=︒//BF AC 90AFB ∴∠=︒∴AFBE BF AE ∴==AF BE ==//BF AC PFB PAC ∴△∽△PF BFPA AC∴==PF ∴=图1图212分解析:绕点D 顺时针旋转得到,,,,,,.又,..,,,即,又,,,即.,.,,,.即.四边形为矩形,同理①:.,.,,,.ADC △FDE △DE DC ∴=DEC DCE ∠=∠DA DF=DAF DFA ∴∠=∠ACD DEC ∠=∠DEC DCE ACD ∴∠=∠=∠90ADC FDE∠=∠=︒ ADF CDE ∴∠=∠AFD DCE ACD ∴∠=∠=∠DAC DFE ∠=∠ 90ACD DAC ∠+∠=︒ 90AFD DFE ∴∠+∠=︒90AFE ∠=︒BAD DAC ∠=∠ DAF DFA ∠=∠90BAD DAF ∴∠+∠=︒90BAF ∠=︒BD ED = DBE DEB ∴∠=∠1802BDE BED ︒-∠∴∠=1802EDC DEC -∠︒∠=180BDE EDC ∠+∠=︒18018022BDE EDC BED DEC ︒-∠-∠︒∴∠+∠=+360()3601809022BDE EDC -︒︒︒∠+∠-===︒90BEF ∠=︒∴ABEF 1122ABC S BC A AD B BE ⨯=⨯=△4∴=BE ∴=EC ===EF AB ==FC ∴=-=AF BE ==//FC AB QFC QAB ∴△∽△..23.解:(1),,;1分(2),,,,3分又,点D 是点C ,E 的“伴E 融合点”;4分(3)是直线上在第一象限内的一动点,,,,点是抛物线上一动点,,.点是点Q ,P 的“伴Q 融合点”,,,5分,,,6分,,,抛物线开口向下,有最大值1.的最高点的坐标为;7分(4),,.抛物线的开口向下,对称轴为直线,最高点为.①当时,,即时,点M 、N 在抛物线对称轴左侧,y 随x 的增大而增大,,点M 、N 之间的图象的最高点为N ,最低点为M .,FC FQ AB AQ ∴==FQ ∴=2(2)02x +-==4814y -+==--(0,1)T ∴-(1,2)E - (2,6)C -1211-+=-- 2(6)22+-=-(1,2)D -- ∴(,)Q a b y x =b a ∴=0a >(,)Q a a ∴(,)P m n 22y x =-22n m ∴=-()2,2P m m ∴- (,)T x y a m x a +∴=22a m y a -=ax a m ∴=+m ax a ∴=-2222()11m ax a y a a-=-=-22222(4111)ax ax x a a =-=+-+--()()222212221112y a x x a a x x a ∴=--+-=--+-+-222(1)2122(1)1a x a a a x =--++-=--+0a > 20a ∴-<∴(,)T x y ∴(1,1)22(1)1y a x =--+ 0a >20a -<1x =(1,1)11a -≤2a ≤02a <≤11a ->- ∴2222(11)12(11)16a a a a ⎡⎤∴---+----+=⎣⎦,,,,(舍),,;9分②若,即时,若,则,.当时,最高点为,最低点为..,.都不符合题意,舍去;11分③若,则最高点为,最低点为.,.,..13分综上,a 的值为1.222(2)1816a a a a --++-=222(2)86a a a a --+=0a > 22(2)86a a ∴--+=10a ∴=21a =1a ∴=11a ->2a >12y y =111(1)a --=--4a ∴=24a <≤(1,1)()11,M y -2212(11)16a a ⎡⎤∴----+=⎣⎦10a =243a =4a >(1,1)()21,N a y -2212(11)16a a a ⎡⎤∴----+=⎣⎦2740a a -+=1a =2a =a ∴=。

山西省百校联考中考数学模拟试卷(二)(含解析)-人教版初中九年级全册数学试题

山西省百校联考中考数学模拟试卷(二)(含解析)-人教版初中九年级全册数学试题

2016年某某省百校联考中考数学模拟试卷(二)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑.1.某某省某地某天的最低温度为﹣7℃,且昼夜温差为12℃,则最高温度为()A.5℃B.7℃C.﹣12℃D.﹣5℃2.如图为一个正方体的表面展开图,则该正方体的六个表面中,与“善”字相对的面上的字是()A.敬B.业C.诚D.信3.下列运算正确的是()A.x3+x2=x5B.x3﹣x3=x0C.x3÷x2=x D.(x3)2=x54.某某剪纸是一门古老的民间艺术,下面四幅剪纸艺术作品中,是中心对称图形的是()A.B.C.D.5.如图,一个直角三角尺的直角顶点和一个锐角顶点分别落在直线l1和l2上,且l1∥l2,∠1=30°,当∠2=10°时,∠3的度数是()A.45° B.40° C.35° D.30°6.我国古代典籍《庄子•天下篇》中曾说过一句话:“一尺之棰,日取其半,万世不竭”,现有一根长为1尺的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复,则第99次截取后,此木杆剩下的长度为()A.尺B.尺C.尺D.尺7.现有五X完全相同的卡片,某同学在其中四X的正面分别写上了春节、清明节、端午节、重阳节这四个中国传统节日,在第五X的正面写上了国庆节,然后把卡片背面朝上洗匀,从中随机抽取一X卡片,则所抽取卡片正面所写节日是中国传统节日的概率是()A.B.C.D.8.不等式组的整数解的个数是()A.无数个B.6 C.5 D.49.某银行规定:客户定期存款到期后,客户如不前往银行办理转存手续,银行会自动将到期的存款本息按相同存期一并转存,不受次数限制,续存期利率按前期到期日的利率计算.某人在2014年10月24日在此银行存入一年定期存款若干元.存款年利率为3%.2015年10月24日.该客户没有前往该银行办理转存手续,且该银行一年定期存款年利率于当日调整为1.5%.若该客户在2016年10月24日到银行取出该笔存款,可得到利息909元,则该客户在2014年10月24日存入的本金为()A.16000元B.18000元C.20000元D.22000元10.如图,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y=(x>0)的图象上,连接OA交⊙A于点C,且点C为OA中点,则图中阴影部分的面积为()A.4﹣B.4 C.2D.2二、填空题:本大题共5小题,每小题3分,共15分.11.计算()﹣1×|﹣3|﹣(﹣4)的结果是.12.计算: +=.13.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A、B,请在此点阵图中找一个阵点C,使得以点A、B、C为顶点的三角形是等腰三角形,则符合条件的点C有个.14.如图,正方形ABCD内有一点O使得△OBC是等边三角形,连接OA并延长,交以O为圆心OB长为半径的⊙O于点E,连接BD并延长交⊙O于点F,连接EF,则∠EFB的度数为度.15.如图,在△ABC中,D、E分别是AB、AC的中点,连接DE,若S△ADE=1,则四边形DBCE的面积S=.△DBCE三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(1)计算:;(2)因式分解:(a+2)(a﹣2)+4(a+1)+4.17.实践与操作:我们在学习四边形的相关知识时,认识了平行四边形、矩形、菱形、正方形等一些特殊的四边形,下面我们用尺规作图的方法来体会它们之间的联系.如图,在▱ABCD中,AB=4,BC=6,∠ABC=60°,请完成下列任务:(1)在图1中作一个菱形,使得点A、B为所作菱形的2个顶点,另外2个顶点在▱ABCD的边上;在图2中作一个菱形,使点B、D为所作菱形的2个顶点,另外2个顶点在▱ABCD的边上;(尺规作图,保留作图痕迹,不写作法)(2)请在图形下方横线处直接写出你按(1)中要求作出的菱形的面积.18.某校积极倡导学生展示自我,发展综合素质,在新学期举办的校园文化艺术节中,学生可以在舞蹈、器乐、声乐、小品、播音主持五个类别中挑选一项报名参加比赛,八年级学生小明从本年级学生各个类别的报名登记表中随机抽取了一部分学生的报名情况进行整理,并制作了如下不完整的条形统计图和扇形统计图,请解答下列问题:(1)小明随机抽取了名学生的报名情况进行整理,扇形统计图中,表示E类别部分的扇形的圆心角度数为度;(2)将条形统计图补充完整;(3)小华认为如果知道八年级报名参加比赛的总人数,则根据小明制作的统计图就可以估算出八年级报名参加声乐比赛的人数.小明认为如果知道初中三个年级报名参加比赛的总人数,则根据自己制作的统计图也可以估算出整个初中年级报名参见声乐比赛的人数.你认为他俩的看法对吗?并说明你的理由.19.发现与探究:如图,△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=45°,点B、C、E三点共线,且BC:CE=2:1,连接AE、BD.(1)在不添加辅助线和字母的情况下,请在图中找出一对全等三角形(用“≌”表示),并加以证明;(2)求tan∠BDC的值.20.如图,在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=的图象交于点A(﹣3,2)和点B(1,m),连接BO并延长与反比例函数y=的图象交于点C.(1)求一次函数y=k1x+b和反比例函数y=的表达式;(2)是否在双曲线y=上存在一点D,使得以点A、B、D、C为顶点的四边形成为平行四边形?若存在,请直接写出点D的坐标,并求出该平行四边形的面积;若不存在,请说明理由.21.农业现代化是我国“十三五”的重要规划之一,某地农民积极响应政府号召,自发成立现代新型农业合作社,适度扩大玉米种业规模,今年,合作社600亩玉米喜获丰收.合作社打算雇佣玉米收割机收割玉米,现有A、B两种型号收割机可供选择,且每台B种型号收割机每天的收个亩数是A 种型号的1.5倍,如果单独使用一台收割机将600亩玉米全部收割完,A种型号收割机比B种型号收割机多用10天.(1)求A、B两种型号收割机每台每天收个玉米的亩数;(2)已知A种型号收割机收费是45元/亩,B种型号收割机收费是50元/亩,经过研究,合作社计划同时雇佣A、B两种型号收割机各一台合作完成600亩玉米的收割任务,则合作社需要支付的玉米收割总费用为多少元?数学活动:拼图中的数学22.问题背景:数学活动课上老师出示问题,如图1,有边长为a的正方形纸片一X,三边长分别为a、b、c的全等直角三角形纸片两X,且b.请你用这三X纸片拼出一个图案,并将这个图案的某部分进行旋转或平移变换之后,提出一个问题(可以添加其他条件,例如可以给出a、b的值等等).解决问题:下面是两个学习小组拼出图案后提出的问题,请你解决他们提出的问题.(1)“爱心”小组提出的问题是:如图2,将△DFC绕点F逆时针旋转,使点D恰好落在AD边上的点D′处,猜想此时四边形AEFD′是什么特殊四边形,并加以证明;(2)“希望”小组提出的问题是:如图3,点M为BE中点,将△DCF向左平移至DF恰好过点M时停止,且补充条件a=6,b=2,求△DCF平移的距离.自主创新:(3)请你仿照上述小组的同学,在下面图4的空白处用实线画出你拼出的图案,用虚线画出变换图,并在横线处写出你提出的问题.(不必解答)你提出的问题:.23.综合探究:如图1,在平面直角坐标系xOy中,抛物线y=﹣与x轴交于点A(﹣6,0)和点B(点A在点B左侧),与y轴交于点C,点P为线段AO上的一个动点,过点P作x轴的垂线l与抛物线交于点E,连接AE、EC.(1)求抛物线的表达式及点C的坐标;(2)连接AC交直线l于点D,则在点P运动过程中,当点D为EP中点时,S△ADP:S△CDE=;(3)如图2,当EC∥x轴时,点P停止运动,此时,在抛物线上是否存在点G,使得以点A、E、G 为顶点的三角形是直角三角形?若存在,请求出点G的坐标,若不存在,说明理由.2016年某某省百校联考中考数学模拟试卷(二)参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑.1.某某省某地某天的最低温度为﹣7℃,且昼夜温差为12℃,则最高温度为()A.5℃B.7℃C.﹣12℃D.﹣5℃【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:∵最高温度﹣最低温度=温差,∴最高温度为:温差+最低气温=12+(﹣7)=5(℃),故选:A.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法.2.如图为一个正方体的表面展开图,则该正方体的六个表面中,与“善”字相对的面上的字是()A.敬B.业C.诚D.信【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“敬”与“信”是相对面,“业”与“友”是相对面,“诚”与“善”是相对面.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.下列运算正确的是()A.x3+x2=x5B.x3﹣x3=x0C.x3÷x2=x D.(x3)2=x5【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】依据同底数幂的除法法则,合并同类项法则,积的乘方法则进行判断即可.【解答】解;A、x3与x2不是同类项不能合并,故A错误;B、x3﹣x3=0,故B错误;C、x3÷x2=x,正确.D、(x3)2=x6,故D错误.故选:C.【点评】本题主要考查的是同底数幂的除法、合并同类项、积的乘方法则的应用,熟练掌握相关法则是解题的关键.4.某某剪纸是一门古老的民间艺术,下面四幅剪纸艺术作品中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形的定义,关键是掌握中心对称图形要寻找对称中心,旋转180度后两部分重合.5.如图,一个直角三角尺的直角顶点和一个锐角顶点分别落在直线l1和l2上,且l1∥l2,∠1=30°,当∠2=10°时,∠3的度数是()A.45° B.40° C.35° D.30°【考点】平行线的性质;三角形的外角性质.【分析】根据三角形外角性质求出∠4,根据平行线的性质得出∠3=∠4,即可得出答案.【解答】解:∵∠1=30°,∠2=10°,∴∠4=∠1+∠2=40°,∵l1∥l2,∴∠3=∠4=40°,故选B.【点评】本题考查了平行线的性质,三角形外角性质的应用,能根据平行线的性质得出∠3=∠4是解此题的关键.6.我国古代典籍《庄子•天下篇》中曾说过一句话:“一尺之棰,日取其半,万世不竭”,现有一根长为1尺的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复,则第99次截取后,此木杆剩下的长度为()A.尺B.尺C.尺D.尺【考点】有理数的乘方.【专题】计算题;实数.【分析】根据题意,利用乘方的意义确定出剩下的长度即可.【解答】解:第1次截取其长度的一半,剩下长度为×1=尺,第2次截取其第1次剩下长度的一半,剩下的长度为×1=尺,第3次截取其第2次剩下长度的一半,剩下的长度为×1=尺,如此反复,第99次截取后,木杆剩下的长度为×1=(尺),则此木杆剩下的长度为尺.故选B【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.7.现有五X完全相同的卡片,某同学在其中四X的正面分别写上了春节、清明节、端午节、重阳节这四个中国传统节日,在第五X的正面写上了国庆节,然后把卡片背面朝上洗匀,从中随机抽取一X卡片,则所抽取卡片正面所写节日是中国传统节日的概率是()A.B.C.D.【考点】概率公式.【分析】由现有五X完全相同的卡片,某同学在其中四X的正面分别写上了春节、清明节、端午节、重阳节这四个中国传统节日,在第五X的正面写上了国庆节,直接利用概率公式求解即可求得答案.【解答】解:∵现有五X完全相同的卡片,某同学在其中四X的正面分别写上了春节、清明节、端午节、重阳节这四个中国传统节日,在第五X的正面写上了国庆节,∴从中随机抽取一X卡片,则所抽取卡片正面所写节日是中国传统节日的概率是:.故选A.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.不等式组的整数解的个数是()A.无数个B.6 C.5 D.4【考点】一元一次不等式组的整数解.【分析】先对一元一次不等式组进行求解,再根据x取整数解将x的取值列举出来,从而可得整数解的个数.【解答】解:解不等式组得:﹣3<x<2,又由于x是整数,则x可取﹣2,﹣1,0,1.所以不等式组整数解的个数是4.故选D.【点评】本题考查了一元一次不等式组的整数解,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.某银行规定:客户定期存款到期后,客户如不前往银行办理转存手续,银行会自动将到期的存款本息按相同存期一并转存,不受次数限制,续存期利率按前期到期日的利率计算.某人在2014年10月24日在此银行存入一年定期存款若干元.存款年利率为3%.2015年10月24日.该客户没有前往该银行办理转存手续,且该银行一年定期存款年利率于当日调整为1.5%.若该客户在2016年10月24日到银行取出该笔存款,可得到利息909元,则该客户在2014年10月24日存入的本金为()A.16000元B.18000元C.20000元D.22000元【考点】一元一次方程的应用.【分析】该客户在2014年10月24日存入的本金为x元,根据利息=本金×利率×时间求出2015年10月24日获得的利息为3%x元,那么本息和为(x+3%x)元,再根据该客户在2016年10月24日到银行取出该笔存款,可得到利息909元列出方程,求解即可.【解答】解:该客户在2014年10月24日存入的本金为x元,则2015年10月24日获得的利息为3%x元,本息和为(x+3%x)元,根据题意得,3%x+(x+3%x)×1.5%=909,+×0.015=909,0.04545x=909,解得x=20000.答:该客户在2014年10月24日存入的本金为20000元.故选C.【点评】本题考查了一元一次方程的应用,掌握利息=本金×利率×时间的公式以及理解计算2015到2016年的利息时本金为2015年10月24日的本息和是解题的关键.10.如图,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y=(x>0)的图象上,连接OA交⊙A于点C,且点C为OA中点,则图中阴影部分的面积为()A.4﹣B.4 C.2D.2【考点】反比例函数系数k的几何意义;扇形面积的计算.【分析】连接AB,根据反比例函数系数k的几何意义得出S△AOB=2,根据点C为OA中点,得出AB=OA,即可求得∠OAB=60°,根据面积求得AB的长,然后求得扇形的面积,即可求得阴影的面积.【解答】解:连接AB,BC,∵点A在反比例函数y=(x>0)的图象上,∴S△AOB=×4=2,∴OB•AB=2,∵点C为OA中点,∴BC=OA=AC,∴△ABC是等边三角形,∴∠OAB=60°,∴=tan60°=,∴OB=AB,∴•AB•AB=2,∴AB=2,∴S扇形===,∴S阴影=S△AOB﹣S扇形=2﹣,故选D.【点评】本题考查了反比例函数系数k的几何意义,直角三角形斜边中线的性质,等边三角形的判定和性质以及扇形的面积等,作出辅助线构建等边三角形是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.计算()﹣1×|﹣3|﹣(﹣4)的结果是10 .【考点】负整数指数幂.【专题】计算题;实数.【分析】原式利用负整数指数幂法则,绝对值的代数意义,以及乘法法则计算即可得到结果.【解答】解:原式=2×3+4=6+4=10,故答案为:10【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.12.计算: += x+1 .【考点】分式的加减法.【专题】计算题.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==x+1.故答案为:x+1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A、B,请在此点阵图中找一个阵点C,使得以点A、B、C为顶点的三角形是等腰三角形,则符合条件的点C有 5 个.【考点】等腰三角形的判定.【分析】由已知条件,分别AB为腰找等腰三角形和AB为底找等腰三角形.【解答】解:画出图形得:故答案为:5【点评】本题考查等腰三角形的判定;分类讨论的应用是正确解答本题的关键,要注意仔细找不要遗漏.14.如图,正方形ABCD内有一点O使得△OBC是等边三角形,连接OA并延长,交以O为圆心OB长为半径的⊙O于点E,连接BD并延长交⊙O于点F,连接EF,则∠EFB的度数为37.5 度.【考点】圆周角定理;等边三角形的判定;正方形的性质.【分析】根据正方形的性质得到∠ABC=90°,由△OBC是等边三角形,得到∠OBC=60°,根据等腰三角形的性质得到∠AOB=(180°﹣30°)=75°,由圆周角定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ABO=30°,∵AB=BO,∴∠AOB=(180°﹣30°)=75°,∴AOB=37.5°,故答案为:37.5.【点评】本题考查了圆周角定理,正方形的性质等边三角形的性质,正确的识别图形是解题的关键.15.如图,在△ABC中,D、E分别是AB、AC的中点,连接DE,若S△ADE=1,则四边形DBCE的面积S= 3 .△DBCE【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据三角形中位线定理可得DE∥BC,且BE=BC;从而判定△ADE∽△ABC,因为相似三角形的面积比是相似比的平方,则可得出S△ADE:S△ABC的比,则△ADE的面积:四边形DBCE的面积可求,已知△ADE的面积,即可得解.【解答】解:∵在△ABC中,D、E分别是AB、AC的中点,∴DE∥BC,且BE=BC,∴△ADE∽△ABC,且相似比为1:2,∵相似三角形的面积比是相似比的平方,∴S△ADE:S△ABC的比=1:4,则△ADE的面积:四边形DBCE的面积=1:3,∵S△ADE=1,∴四边形DBCE的面积=3.故填3.【点评】本题主要考查中位线定理及相似三角形判定及及性质,要牢记并熟练掌握.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(1)计算:;(2)因式分解:(a+2)(a﹣2)+4(a+1)+4.【考点】实数的运算;因式分解-运用公式法;特殊角的三角函数值.【专题】因式分解;实数.【分析】(1)原式利用算术平方根,立方根定义,以及特殊角的三角函数值计算即可得到结果;(2)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=﹣×﹣2=﹣﹣2=﹣2;(2)原式=a2﹣4+4a+4+4=a2+4a+4=(a+2)2.【点评】此题考查了实数的运算,以及因式分解﹣运用公式法,熟练掌握运算法则是解本题的关键.17.实践与操作:我们在学习四边形的相关知识时,认识了平行四边形、矩形、菱形、正方形等一些特殊的四边形,下面我们用尺规作图的方法来体会它们之间的联系.如图,在▱ABCD中,AB=4,BC=6,∠ABC=60°,请完成下列任务:(1)在图1中作一个菱形,使得点A、B为所作菱形的2个顶点,另外2个顶点在▱ABCD的边上;在图2中作一个菱形,使点B、D为所作菱形的2个顶点,另外2个顶点在▱ABCD的边上;(尺规作图,保留作图痕迹,不写作法)(2)请在图形下方横线处直接写出你按(1)中要求作出的菱形的面积.【考点】菱形的性质;平行四边形的性质;作图—复杂作图.【分析】(1)如图1,在AD、BC上分别截取AF=BE=4,连结EF,则四边形ABEF是菱形;如图2,连结BD,作BD的垂直平分线,交AD于E,BC于F,则四边形BEDF是菱形;(2)如图1,作▱ABCD的高AH,根据菱形的面积=底×高列式计算即可;如图2,设BD与EF交于点O,作DM⊥BC于M,则CM=BH=2,DM=AH=2.分别求出BD与EF,根据菱形的面积=两对角线乘积的一半列式计算即可.【解答】解:(1)如图所示:(2)如图1,作▱ABCD的高AH.在直角△ABH中,∵AB=4,∠ABC=60°,∴AH=AB•sin60°=4×=2,BH=AB•cos60°=4×=2,∴S菱形ABEF=BE•AH=4×2=8;如图2,设BD与EF交于点O,作DM⊥BC于M,则CM=BH=2,DM=AH=2.在直角△BDM中,∵∠M=90°,∴BD===2.设BF=x,CF=y,则DF=x,由题意得,解得,∴OF===,∴S菱形ABEF=BD•EF=×2×=.【点评】本题考查了菱形的判定与性质,平行四边形的性质,作图﹣复杂作图,熟练掌握定理是解题的关键.18.某校积极倡导学生展示自我,发展综合素质,在新学期举办的校园文化艺术节中,学生可以在舞蹈、器乐、声乐、小品、播音主持五个类别中挑选一项报名参加比赛,八年级学生小明从本年级学生各个类别的报名登记表中随机抽取了一部分学生的报名情况进行整理,并制作了如下不完整的条形统计图和扇形统计图,请解答下列问题:(1)小明随机抽取了50 名学生的报名情况进行整理,扇形统计图中,表示E类别部分的扇形的圆心角度数为14.4 度;(2)将条形统计图补充完整;(3)小华认为如果知道八年级报名参加比赛的总人数,则根据小明制作的统计图就可以估算出八年级报名参加声乐比赛的人数.小明认为如果知道初中三个年级报名参加比赛的总人数,则根据自己制作的统计图也可以估算出整个初中年级报名参见声乐比赛的人数.你认为他俩的看法对吗?并说明你的理由.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A类的人数和所占的百分比求出总人数,再用360乘以E类别部分所占的百分比即可求出E类别部分的扇形的圆心角的度数;(2)用总人数乘以C类别部分所占的百分比求出C类的人数,从而补全统计图;(3)根据50名同学报名类别的样本是从八年级的报名中随机抽出来的,对于八年级来说,具有代表性,而对于全校三个年级来说,不具有代表性,所以只能由此估算出八年级报名参加声乐比赛的人数,而不能估算出整个初中年级报名参加声乐比赛的人数,从而得出小明与小华说的是否正确.【解答】解:(1)小明随机抽取的学生数是: =50(名),表示E类别部分的扇形的圆心角度数为360×=14.4°;故答案为:50,14.4;(2)C类的人数是:50×40%=20(人),补图如下:(3)小华的看法正确,小明的看法不正确,理由如下:因为50名同学报名类别的样本是从八年级的报名中随机抽出来的,所以对于八年级来说,具有代表性,而对于全校三个年级来说,不具有代表性,所以只能由此估算出八年级报名参加声乐比赛的人数,而不能估算出整个初中年级报名参加声乐比赛的人数.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.发现与探究:如图,△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=45°,点B、C、E三点共线,且BC:CE=2:1,连接AE、BD.(1)在不添加辅助线和字母的情况下,请在图中找出一对全等三角形(用“≌”表示),并加以证明;(2)求tan∠BDC的值.【考点】全等三角形的判定与性质.【分析】(1)根据SAS证明△BCD与△ACE全等即可;(2)作AF⊥BE,利用三角函数进行解答即可.【解答】解:(1)△BCD≌△ACE,∵∠ACB=∠DCE,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD与△ACE中,∴△BCD≌△ACE(SAS);(2)作AF⊥BE,如图:∵BC:CE=2:1,∴设BC=2k,CE=k,在Rt△AFC中,AC=BC=2k,∠ACF=45°,∴FC=AC•cos45°=2k×,EF=FC+CE=k+k=(+1)k,∵∠FAC=45°,∴AF=k,由(1)得△BCD≌△ACE,∴∠BDC=∠AEC,∴在Rt△AFE中,tan∠BDC=tan∠AEC=.【点评】本题考查了全等三角形的性质和判定,三角函数等知识点的综合运用,题目综合性比较强,有一定的难度,关键是根据SAS证明△BCD与△ACE全等.20.如图,在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=的图象交于点A(﹣3,2)和点B(1,m),连接BO并延长与反比例函数y=的图象交于点C.(1)求一次函数y=k1x+b和反比例函数y=的表达式;(2)是否在双曲线y=上存在一点D,使得以点A、B、D、C为顶点的四边形成为平行四边形?若存在,请直接写出点D的坐标,并求出该平行四边形的面积;若不存在,请说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A坐标代入反比例解析式求出k2的值,确定出反比例解析式,将B坐标代入反比例解析式求m的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k1与b的值,即可确定出一次函数解析式;(2)根据中心对称求得C的坐标,然后根据平移的性质和A、C、B的坐标即可求得D的坐标,作AM⊥y轴于M,BN⊥y轴于N,设直线AB交y轴于E,则E(0,﹣4),根据S△AOB=S△AOE+S△BOE求得△AOB的面积,进而即可求得平行四边形的面积.【解答】解:(1)将A(﹣3,2)代入反比例解析式得:k2=﹣6,则反比例解析式为y=﹣;将B(1,m)代入反比例解析式得:m=﹣6,即B(1,﹣6),将A与B坐标代入y=k1x+b中,得:,。

2020年福建省百校联考中考数学模拟试卷(5月份) (解析版)

2020年福建省百校联考中考数学模拟试卷(5月份) (解析版)

2020年福建省百校联考中考数学模拟试卷(5月份)一、选择题1.下列各数中,其相反数最大的数是()A.1B.0C.2D.π2.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图3.下列式子中,可以表示为2﹣3的是()A.22÷25B.25÷22C.22×25D.(﹣2)×(﹣2)×(﹣2)4.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.5.若两个无理数的乘积是有理数,则称这两个数互为共轭数.下列各数中,与2﹣是共轭数的是()A.2﹣B.2+C.4+D.4﹣6.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为()A.90°B.45°C.22.5°D.不确定7.如图,▱ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取值范围是()A.1<m<11B.2<m<22C.10<m<12D.5<m<68.如图,某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到扇形统计图,则下面结论中不正确的是()A.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,种植收入减少9.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是()A.B.C.D.10.如图,O为坐标原点,△ABO的两个顶点A(6,0),B(6,6),点D在边AB上,AD=5BD,点C为OA的中点,点P为边OB上的动点,则使四边形PCAD周长最小的点P的坐标为()A.(3,3)B.(,)C.(,)D.(5,5)二、填空题:本题共6小题,每小题4分,共24分11.计算:2﹣1+sin30°=.12.若点A(1,0)在一次函数y=﹣2x+3b﹣4的图象上,则常数b=.13.说明命题“若x<2,则>”是假命题的一个反例,则实数x的取值可以是.14.如图,是根据某市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数是.15.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=,则点F的坐标是.16.如图所示,反比例函数y=(>0)与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,若△ABO的面积为,则直线l的解析式为.三、解答题:本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤. 17.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.18.如图,矩形ABCD的对角线AC与BD交于点O,PC∥BD,PD∥AC.求证:四边形ODPC是菱形.19.解方程:+=1.20.如图,在正方形网格中,每个小正方形的边长为1,点A、B、C都在格点上.(1)用尺规作出△ABC外接圆的圆心O;(2)用无刻度的直尺作▱ACDO,并证明CD为⊙O的切线.21.如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,a米/分的速度骑车向北匀速直行;与此同时,乙从点A出发沿北京路以b米/分的速度步行向东匀速直行.设出发x分钟时,甲、乙两人与点A的距离分别为y1、y2米.已知y1、y2,则y1、y2与x之间的函数关系如图②所示.(1)分别写出y1、y2关于x的函数表达式(用含有a、b的式子表示);(2)求a、b的值.22.某家庭记录了未使用节水龙头50天的日用水量(单位:m3)和使用了节水龙头50天的日用水量,得到频数分布表如下:表1:未使用节水龙头50天的日用水量频数分布表日用水量x0≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.50.5≤x<0.60.6≤x≤0.7频数13249265表2:使用了节水龙头50天的日用水量频数分布表日用水量x0≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.50.5≤x<0.6频数151310165(1)估计该家庭使用节水龙头后,日用水量小于0.3m3的概率;(2)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在范围的组中值作代表.)23.如图,在平面直角坐标系中,已知点A(5,0),以原点O为圆心、3为半径作圆.P 从点O出发,以每秒1个单位的速度沿y轴正半轴运动,运动时间为t(s).连结AP,将△OAP沿AP翻折,得到△APQ.求△APQ有一边所在直线与⊙O相切时t的值.24.在正方形ABCD中,AB=4,O为对角线AC、BD的交点.(1)如图1,延长OC,使CE=OC,作正方形OEFG,使点G落在OD的延长线上,连接DE、AG.求证:DE=AG;(2)如图2,将问题(1)中的正方形OEFG绕点O逆时针旋转α(0<α<180),得到正方形OE′F′G′,连接AE′、E′G′.①当α=30时,求点A到E′G′的距离;②在旋转过程中,求△AE′G′面积的最小值,并求此时的旋转角α.25.如图,已知:P(﹣1,0),Q(0,﹣2).(1)求直线PQ的函数解析式;(2)如果M(0,m)是线段OQ上一动点,抛物线y=ax2+bx+c(a≠0)经过点M和点P.①求抛物线y=ax2+bx+c与x轴另一交点N的坐标(用含a,m的代数式表示);②若PN=时,抛物线y=ax2+bx+c有最大值m+1,求此时a的值;③若抛物线y=ax2+bx+c与直线PQ始终都有两个公共点,求a的取值范围.参考答案一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,其相反数最大的数是()A.1B.0C.2D.π【分析】先求出每个数的相反数,再根据实数的大小比较法则比较即可.解:∵1的相反数是﹣1,0的相反数是0,2的相反数是﹣2,π的相反数是﹣π,又∵﹣π<﹣2<﹣1<0,∴相反数最大的数是0,故选:B.2.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.解:从上边看是一个田字,“田”字是中心对称图形,故选:C.3.下列式子中,可以表示为2﹣3的是()A.22÷25B.25÷22C.22×25D.(﹣2)×(﹣2)×(﹣2)【分析】根据整数指数幂的运算法则即可求出答案.解:(A)原式=22﹣5=2﹣3;(B)原式=25﹣2=23;(C)原式=22+5=27;(D)原式=(﹣2)3=﹣23;故选:A.4.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.解:由题意得x+2≥0,解得x≥﹣2.故选:D.5.若两个无理数的乘积是有理数,则称这两个数互为共轭数.下列各数中,与2﹣是共轭数的是()A.2﹣B.2+C.4+D.4﹣【分析】根据平方差公式计算可得答案.解:∵(2﹣)(2+)=22﹣()2=4﹣3=1,∴与2﹣是共轭数的是2+,故选:B.6.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为()A.90°B.45°C.22.5°D.不确定【分析】先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.解:如图,过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故选:B.7.如图,▱ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取值范围是()A.1<m<11B.2<m<22C.10<m<12D.5<m<6【分析】在平行四边形中,对角线互相平分,在三角形中,两边之和大于第三边,两边之差小于第三边,进而即可求解.解:在平行四边形ABCD中,则可得OA=AC,OB=BD,在△AOB中,由三角形三边关系可得OA﹣OB<AB<OA+OB,即6﹣5<m<6+5,1<m<11.故选:A.8.如图,某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到扇形统计图,则下面结论中不正确的是()A.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,种植收入减少【分析】设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.解:设建设前经济收入为a,建设后经济收入为2a.A、建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故A项正确.B、建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C、建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D、种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故D项错误.故选:D.9.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是()A.B.C.D.【分析】利用勾股定理求出正方形的对角线为10≈14,由此即可判定A不正确.解:选项A不正确.理由正方形的边长为10,所以对角线=10≈14,因为15>14,所以这个图形不可能存在.故选:A.10.如图,O为坐标原点,△ABO的两个顶点A(6,0),B(6,6),点D在边AB上,AD=5BD,点C为OA的中点,点P为边OB上的动点,则使四边形PCAD周长最小的点P的坐标为()A.(3,3)B.(,)C.(,)D.(5,5)【分析】根据已知条件得到AB=OA=6,∠AOB=45°,求得AD=5,OC=AC=3,得到C(3,0),D(6,5),作C关于直线OB的对称点E,连接ED交OB于P′,连接CP′,则此时四边形P′DAC周长最小,E(0,2),求得直线ED的解析式为y =x+2,解方程组即可得到结论.解:∵A(6,0),B(6,6),∴AB=OA=6,∠OAB=90°,∴∠AOB=45°,∵AD=5BD,点C为OA的中点,∴AD=5,OC=AC=3,∴C(3,0),D(6,5),作C关于直线OB的对称点E,连接ED交OB于P′,连接CP′,则此时,四边形P′DAC周长最小,E(0,3),∵直线OB的解析式为y=x,设直线ED的解析式为y=kx+b,∴,解得:,∴直线ED的解析式为y=x+3,解得,,∴C(,),故选:C.二、填空题:本题共6小题,每小题4分,共24分11.计算:2﹣1+sin30°=1.【分析】直接利用特殊角的三角函数值和负整数指数幂的性质分别化简得出答案.解:原式=+=1.故答案为:1.12.若点A(1,0)在一次函数y=﹣2x+3b﹣4的图象上,则常数b=2.【分析】直接把点P(1,0)代入一次函数y=﹣2x+3b﹣4,求出k的值即可.解:∵点P(1,0)在一次函数y=﹣2x+3b﹣4的图象上,∴﹣2+3b﹣4=0,解得:b=2,故答案为:2.13.说明命题“若x<2,则>”是假命题的一个反例,则实数x的取值可以是x=﹣1,(答案不唯一).【分析】当x=﹣1时,满足x<2,但不能得到>,于是x=﹣1可作为说明命题“若x<2,则>”是假命题的一个反例.解:当x=﹣1时,满足x<2,,但不能得到>,故答案为:x=﹣1,(答案不唯一).14.如图,是根据某市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数是26.【分析】把数据从小到大排列,再根据中位数定义可得答案.解:把数据从小到大排列:22,22,23,26,28,30,31,中位数是26,故答案为:26.15.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=,则点F的坐标是(8,12).【分析】过点F作直线FA∥OG,交y轴于点A,过点G作GH⊥FA于点H,先由平行线的性质及互余关系证明∠FEA=∠HFG=∠FGO;再解Rt△AEF,求得AE及AF,然后判定四边形OGHA为矩形,则可求得FH;解Rt△FGH,求得FG及HG,则点F 的坐标可得.解:过点F作直线FA∥OG,交y轴于点A,过点G作GH⊥FA于点H,则∠FAE=90°,∵FA∥OG,∴∠FGO=∠HFG.∵∠EFG=90°,∴∠FEA+∠AFE=90°,∠HFG+∠AFE=90°,∴∠FEA=∠HFG=∠FGO,∵cos∠FGO=,∴cos∠FEA=,在Rt△AEF中,EF=10,∴AE=EF cos∠FEA=10×=6,∴根据勾股定理得,AF=8,∵∠FAE=90°,∠AOG=90°,∠GHA=90°∴四边形OGHA为矩形,∴AH=OG,∵OG=17,∴AH=17,∴FH=17﹣8=9,∵在Rt△FGH中,=cos∠HFG=cos∠FGO=,∴FG=9÷=15,∴由勾股定理得:HG==12,∴F(8,12).故答案为:(8,12).16.如图所示,反比例函数y=(>0)与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,若△ABO的面积为,则直线l的解析式为y=x+.【分析】解方程组,即可得出B(﹣3,﹣k),A(1,3k),再根据△ABO的面积为,即可得到k=,进而得出直线l的解析式为y=x+.解:把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴•2•3k+•2•k=,解得k=,∴直线l的解析式为y=x+.故答案为:y=x+.三、解答题:本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤. 17.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【分析】本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.18.如图,矩形ABCD的对角线AC与BD交于点O,PC∥BD,PD∥AC.求证:四边形ODPC是菱形.【分析】根据DP∥AC,CP∥BD,即可证出四边形ODPC是平行四边形,又知四边形ODPC是平行四边形,故可得OD=BD=AC=OC,即可证出四边形ODPC是菱形.【解答】证明:∵DP∥AC,CP∥BD∴四边形ODPC是平行四边形,∴OD=BD=AC=OC,∴四边形ODPC是菱形.19.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:1+x2﹣x=x2﹣1,解得:x=2,经检验x=2是分式方程的解.20.如图,在正方形网格中,每个小正方形的边长为1,点A、B、C都在格点上.(1)用尺规作出△ABC外接圆的圆心O;(2)用无刻度的直尺作▱ACDO,并证明CD为⊙O的切线.【分析】(1)分别作出线段AB,BC的垂直平分线交于点O,点O即为所求.(2)取格点D,连接CD,OD即可.证明OC⊥CD即可解决问题.解:(1)如图1中,点O即为所求.(2)如图2中,平行四边形ACDO即为所求.连接OC.∵△OCD是等腰直角三角形,∴OC⊥CD,∴CD是⊙O的切线.21.如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,a米/分的速度骑车向北匀速直行;与此同时,乙从点A出发沿北京路以b米/分的速度步行向东匀速直行.设出发x分钟时,甲、乙两人与点A的距离分别为y1、y2米.已知y1、y2,则y1、y2与x之间的函数关系如图②所示.(1)分别写出y1、y2关于x的函数表达式(用含有a、b的式子表示);(2)求a、b的值.【分析】(1)根据题意可以写出y1、y2关于x的函数表达式;(2)根据题意可以得到关于a、b的方程组,从而可以求得a、b的值.解:(1)由题意可得,y1=1200﹣ax,y2=bx;(2)由图②可知,当x=3.75或x=7.5时,两人与点A的距离相等,,得,即a的值为240,b的值为80.22.某家庭记录了未使用节水龙头50天的日用水量(单位:m3)和使用了节水龙头50天的日用水量,得到频数分布表如下:表1:未使用节水龙头50天的日用水量频数分布表日用水量x0≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.50.5≤x<0.60.6≤x≤0.7频数13249265表2:使用了节水龙头50天的日用水量频数分布表日用水量x0≤x<0.10.1≤x<0.20.2≤x<0.30.3≤x<0.40.4≤x<0.50.5≤x<0.6频数151310165(1)估计该家庭使用节水龙头后,日用水量小于0.3m3的概率;(2)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在范围的组中值作代表.)【分析】(1)求得日用水量少于0.3的频数,然后算得频率,利用频率估计概率即可;(2)由题意得未使用水龙头50天的日均水量为0.48,使用节水龙头50天的日均用水量为0.35,能此能估计该家庭使用节水龙头后,一年能节省多少水.解:(1)由表2可知,使用后,50天日用水量少于0.3的频数=1+5+13=19,50天日用水量少于0.3的频概率=,从而以此频率估计该家庭情况.(2)该家庭未使用节水龙头50天日用水量平均数:×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48该家庭使用节水龙头50天日用水量平均数:×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35∴估计使用节水龙头后,一年可节水:(0.48﹣0.35)×365=47.45 (m3)23.如图,在平面直角坐标系中,已知点A(5,0),以原点O为圆心、3为半径作圆.P 从点O出发,以每秒1个单位的速度沿y轴正半轴运动,运动时间为t(s).连结AP,将△OAP沿AP翻折,得到△APQ.求△APQ有一边所在直线与⊙O相切时t的值.【分析】分三种情况,先求得OQ,进而根据三角形面积公式求得AP,然后根据勾股定理列出方程,解方程即可.解:当AQ与⊙O相切时,如图1,设AQ切⊙O于点D,连接OQ,交AP于M,连接OD,∵AD切⊙O于点D,∴OD⊥AQ,OD=3,∵OA=5,∴AD=4,∵A(5,0),OA=AQ=5,∴QD=1,∴OQ==,∵将△OAP沿AP翻折,得到△APQ.∴OQ⊥AP,OM=MQ=,∵OP=t,OA=5,∴AP•OM=OA•OP,即AP•=•5•t,∴AP=t,在Rt△AOP中,AP2=OP2+OA2,解10t2=t2+25,解得t=;当AP与⊙O相切时,如图2,设AP切⊙O于点E,连接OQ,∵将△OAP沿AP翻折,得到△APQ.∴OQ⊥AP,∴OQ经过点E,∴OE⊥AP,∵AP•OE=OA•OP,即3AP=5t,∴AP=t,在Rt△AOP中,AP2=OP2+OA2,解(t)2=t2+25,解得t=,当PQ与⊙O相切时,如图3,设PQ切⊙O于点E,连接OE,∴OE⊥PQ,∵AQ⊥PQ,∴OE∥AQ,∴△ODE∽△ADQ,∴=,即=,∴OD=,∴AD=,∴DQ==,∴PD=DQ﹣PQ=﹣t,∵OD•OP=PD•OE,∴t=(﹣t)×3,解得t=,当QA的反向延长线与⊙O相切时,如图4,设PQ切⊙O于点D,连接OD,QA交y轴于E,∴OD⊥AQ,∴OA2=OD2+AD2,∴AD=4,∵OA2=AD•AE,∴AE=,∵AE•OD=OA•OE,∴OE==,∴PE=t+,∵PQ⊥AQ,∴PE2=PQ2+QE2,即(t+)2=t2+(5+)2,解得t=15,综上,△APQ有一边所在直线与⊙O相切时t的值为或或或15.24.在正方形ABCD中,AB=4,O为对角线AC、BD的交点.(1)如图1,延长OC,使CE=OC,作正方形OEFG,使点G落在OD的延长线上,连接DE、AG.求证:DE=AG;(2)如图2,将问题(1)中的正方形OEFG绕点O逆时针旋转α(0<α<180),得到正方形OE′F′G′,连接AE′、E′G′.①当α=30时,求点A到E′G′的距离;②在旋转过程中,求△AE′G′面积的最小值,并求此时的旋转角α.【分析】(1)证明△AOG≌△DOE(SAS),得出AG=DE即可;(2)①过点E'作E'M⊥AC交AC的延长线于点M,过点A作AN⊥G'E'于点N,则∠E'MO=90°,求出OG'=OE'=4,可得出G'E'=8,则可得出答案;②可知G',E'在以O为圆心,OG'为半径的⊙O上,当OA⊥G'E'时,△AE′G′的面积最小,此时OA的延长线与G'E'相交于点H,求出AH,可得出答案.解:(1)∵O为对角线AC、BD的交点,∴OA=OD,OA⊥OD,∴∠AOG=∠DOE=90°,∵四边形OEFG是正方形,∴OG=OE,∴△AOG≌△DOE(SAS),∴AG=DE;(2)①过点E'作E'M⊥AC交AC的延长线于点M,过点A作AN⊥G'E'于点N,则∠E'MO=90°,∵四边形ABCD是正方形,∴AO=OC=,∵正方形OEFG绕点O逆时针旋转α(0<α<180)得到正方形OE′F′G′,∠MOE'=α=30°,∠G'OE'=90°∴∠OE'M=90°﹣∠MOE'=60°,又∠AOG'=∠AOD﹣α=60°,∴∠AOG'=∠OE'M,OE'=OE=2OC=4,∴OG'=OE'=4,∴G'E'===8,∴ME'=OE'=2=OA,∴△AOG'≌△ME'O(SAS),∴∠OAG'=∠E'MO=90°,∴AG'=OA•tan∠AOG'=OA•tan60°=2=2,∴AM=OA+OM=2+2,∵E'G'•AN,∴AN===3+;②∵G'E'为定长,∴G',E'在以O为圆心,OG'为半径的⊙O上,∴当OA⊥G'E'时,△AE′G′的面积最小,此时OA的延长线与G'E'相交于点H,∴OH=G'E'=4,∴AH=OH﹣AO=4﹣2,∴S△E'G'A=E'G'•AH==16﹣8,此时的旋转角α=∠HOG'+∠AOD=45°+90°=135°.25.如图,已知:P(﹣1,0),Q(0,﹣2).(1)求直线PQ的函数解析式;(2)如果M(0,m)是线段OQ上一动点,抛物线y=ax2+bx+c(a≠0)经过点M和点P.①求抛物线y=ax2+bx+c与x轴另一交点N的坐标(用含a,m的代数式表示);②若PN=时,抛物线y=ax2+bx+c有最大值m+1,求此时a的值;③若抛物线y=ax2+bx+c与直线PQ始终都有两个公共点,求a的取值范围.【分析】(1)设直线PQ的解析式为:y=kx+b,解方程组求得直线PQ的函数解析式为y=﹣2x﹣2;(2)①y=ax2+bx+c过M(0,m)和P(﹣1,0),求得b=a+m,于是得到N(﹣,0);②根据已知条件得到﹣2≤m≤0,抛物线y=ax2+bx+c有最大值m+1,求得y=ax2+(a+m)x+m的顶点坐标为(﹣,),当PN=时,分两种情况,(I)﹣+1=,(II)﹣1+=,解方程即可得到a=﹣或﹣;③根据一元二次方程根的判别式即可得到结论.解:(1)设直线PQ的解析式为:y=kx+b,∵P(﹣1,0),Q(0,﹣2),∴,∴,∴直线PQ的函数解析式为y=﹣2x﹣2;(2)①y=ax2+bx+c过M(0,m)和P(﹣1,0),∴0=a﹣b+m,∴b=a+m,∴y=ax2+(a+m)x+m,即y=(x+1)(ax+m),∴N(﹣,0);②∵M(0,m),﹣2≤m≤0,抛物线y=ax2+bx+c有最大值m+1,∵y=ax2+(a+m)x+m的顶点坐标为(﹣,),∴=m+1,当PN=时,分两种情况,(I)﹣+1=,解得:m=,把m=代入=m+1得,=+1,解得:a=﹣,m=﹣,经检验,a=﹣,m=﹣,均成立;(II)﹣1+=,∴m=a,把m=a代入=m+1,得a+1解得:a=﹣,m=﹣,经验证,均成立;∴a=﹣或﹣;③解方程组得ax2+(a+m+2)x+m+2=0,∵△=(a+m+2)2﹣4a(m+2)=a2+(m+2)2﹣2a(m+2)=(a﹣m﹣2)2,∵﹣2≤m≤0,∴﹣2≤﹣m﹣2≤0,∴当a<0或a>2时,△始终为正,即抛物线y=ax2+bx+c与直线PQ始终都有两个公共点.。

2020年山西省百校大联考中考数学模拟试卷(四) 解析版

2020年山西省百校大联考中考数学模拟试卷(四)  解析版

2020年山西省百校大联考中考数学模拟试卷(四)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b73.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形6.(3分)下列分式运算正确的是()A.=B.C.D.7.(3分)方程组的解是()A.B.C.D.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜个.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是棵,众数是棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.2020年山西省百校大联考中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.【分析】根据有理数的乘法法则计算即可.【解答】解:(﹣1)×(﹣2)=1×2=2.故选:B.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b7【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a6,不符合题意;B、原式=2a3b﹣3a2+1,不符合题意;C、原式=(4x6y4)×(﹣3x)=﹣12x7y4,不符合题意;D、原式=(﹣27a9b6)×(﹣b)=9a9b7,符合题意.故选:D.3.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅【分析】根据公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.解答即可.【解答】解:公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.故选:C.4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9057亿元=905700000000=9.057×1011元,故选:A.5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9,故选:C.6.(3分)下列分式运算正确的是()A.=B.C.D.【分析】利用最简分式的定义对A、D进行判断;利用通分可对B进行判断;利用约分可对C进行判断.【解答】解:A、不能化简,所以A选项错误;B、原式==,所以B选项错误;C、原式==,所以C选项正确;D、不能化简,所以D选项错误.故选:C.7.(3分)方程组的解是()A.B.C.D.【分析】①×3+②×2,消去未知数y,求出未知数x,再把x的值代入①求出y的值即可.【解答】解:,①×3+②×2,得25x=50,解得x=2,把x=2代入①,得6+2y=8,解得y=1,所以方程组的解为.故选:B.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个【分析】在俯视图对应的位置上,标出该位置上最多可摆放小正方体的个数,进而得出答案.【解答】解:在俯视图上标出的各个位置上最多可摆放的小正方体的个数,如图所示因此最多摆放的小正方体的个数为3+2+3+2+2+1=13个,故选:A.9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣【分析】在Rt△AOB中,斜边OA=6,可求出直角边OB,由旋转可得OB′的长,由旋转角为75°,可求出∠AOB′=30°,在Rt△B′OC中,通过解直角三角形可求出点B′的坐标,进而得出k的值.【解答】解:过点B′作B′C⊥OA,垂足为C,在Rt△AOB中,OA=6,∴OB=AB=OA=3=OB′,∵∠AOA′=75°,∠A′OB′=45°,∴∠B′OC=75°﹣45°=30°,在Rt△B′OC中,∴B′C=OB′=,OC=OB′=,∴点B′(,﹣),∴k=﹣×=﹣,故选:D.10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π【分析】连接OO′,OD,根据折叠的性质得到OA=AO,推出△AOO′是等边三角形,得到∠AOO′=60°,根据切线的性质得到∠ODC=90°,求得∠DOB=60°,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OO′,OD,∵折叠扇形OAB使点O落在上的点O'处,∴OA=AO,∵AO=OO′,∴△AOO′是等边三角形,∴∠AOO′=60°,∵CD是⊙O的切线,∴∠ODC=90°,∵BC=OB=OD,∴OD=OC,∴∠OCD=30°,∴∠DOB=60°,∵OD=OA=4,∴DC=4,∴图中阴影部分的面积=S扇形AOO′﹣S△AOO′+S△OCD﹣S扇形BOD=﹣+﹣=4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是11.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=20﹣9=11,故答案为:11.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.【分析】画树状图展示所有12种等可能的结果,找出摸出的两球颜色不同的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果,其中摸出的两球颜色不同的结果数为10,所以摸出的两球颜色不同的概率==.故答案为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是x<1.【分析】直接利用函数图象,结合kx+b≥mx+n,得出x的取值范围.【解答】解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜 3.78a个.【分析】根据题意列代数式,并进行化简即可.【解答】解:根据题意可得列式为:a+(1+10%)a+(1﹣20%)[a+(1+10%)a]=a+1.1a+0.8a+0.8×1.1a=2.9a+0.88a=3.78a.故答案为:3.78a.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.【分析】过点D作DJ⊥AB于J,DK⊥AC于K.解直角三角形求出BC,CD,再证明OE=EC,求出EC即可解决问题.【解答】解:过点D作DJ⊥AB于J,DK⊥AC于K.在Rt△ACB中,∵∠BAC=90°,AB=8,AC=15,∴BC===17,∵AD平分∠BAC,DJ⊥AB,DK⊥AC,∴DJ=DK,∴====,∴CD=×17=,∵OC平分∠ACD,∴===,∵OE∥AC,∴∠EOC=∠AOC=∠ECO,∴OE=EC,∵OD:OA=DE:EO=17:23,∴EC=×=.故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.【分析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)先求出不等式的解集,再求出不等式组的解集,【解答】解:(1)原式=9+(﹣3+2)﹣4×﹣1=9﹣3+2﹣1=5.(2),解不等式①得:x≤4,解不等式②得:x>﹣1,∴不等式组的解集为:﹣1<x≤4.将不等式的解集表示在数轴上如下:17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.【分析】先证明BE∥CF,证明△AEB≌△DFC,可得BE=CF,根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠BEF=∠CFE=∠CFD=90°,∴BE∥CF,∵AB∥CD,∴∠A=∠D,在△AEB和△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF,∵BE∥CF,∴四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是3棵,众数是3棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?【分析】(1)统计出植树三棵和植树四棵的人数,即可补全条形统计图;(2)根据中位数、众数的意义,即可求出答案;(3)样本估计总体,利用样本中“3月12日当天参与了网上植树”的比例估计总体的比例,通过计算可得出答案.【解答】解:(1)统计得出有11人植树三棵,有9人植树四棵,补全条形统计图如图所示:(2)将这30名学生的植树的棵数从小到大排列后,处在中间位置的两个数都是13棵,因此中位数是13,植树棵数出现次数最多的3棵,共用11人,因此植树的众数是3棵,故答案为诶;3,3;(3)3000×90%×=1620(名),3000×90%×=9270(棵),答:估计该校有1620名学生在3月12日当天参与了“网上植树”,活动期间全校学生“网上植树”共9270棵.19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.【分析】(1)如图,连接AM,BM,CM,DM,EM,FM.证明AB=BC=CD=DEF=OF,∠ABC=∠BCD=∠CDE=∠DEF=∠EFO=∠FOB=120°即可.(2)转动10次时,点F在x轴上,点B在点F的正上方,由此即可解决问题.【解答】(1)证明:如图,连接AM,BM,CM,DM,EM,FM.∵====,∴BC=CD=DE=EF=AB,∵OM=BM=AB,∴△ABM是等边三角形,∴∠AMB=60°,∴∠BMC=∠CMD=∠∠EMF=∠AMB=60°,∴∠AMF=360°﹣5×60°=60°,∴=,∴BC=CD=DE=EF=AF=AB,∴MB=MC=CB,∴△MBC是等边三角形,∴∠ABM=∠MBC=60°,∴∠ABC=120°,同理可证∠BCD=∠CDE=∠DEF=∠EF A=∠F AB=120°,∴六边形ABCDEF是正六边形.(2)解:转动10次时,点F在x轴上,点B在点F的正上方,B(22,2).故答案为(22,2).20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)【分析】设CD=xm,根据等腰直角三角形的性质得到AD=CD=x,根据正切的定义用x表示出BD,根据题意列出方程,解方程得到答案.【解答】解:设CD=xm,在Rt△ADC中,∠CAD=45°,∴AD=CD=x,在Rt△CBD中,tan∠CBD=,∴BD=≈=x,∵AD﹣BD=AB,∴x﹣x=16.98,解得,x=101.88≈102(m),答:CD的高度约为102m.21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?【分析】(1)设工作人员平均每小时打包速度的增长率是x,根据“工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨”列出方程并解答;求得第2小时打包18吨,然后求三个小时的总的打包数量;(2)设需要租甲种车y辆,根据“该基地所租车辆不超过10辆”列出不等式并解答.【解答】解:(1)设工作人员平均每小时打包速度的增长率是x,根据题意,得15(1+x)2=21.6.解这个方程,得x1=0.2=20%,x2=﹣2.2(舍去).第2小时打包的数量为:15(1+20)=18(吨).共运送的蔬菜为:1.4+15+18+21.6=56(吨).答:工作人员平均每小时打包速度的增长率是20%,共运送的蔬菜是56吨;(2)设需要租甲种车y辆,依题意得:y+≤10.解得y≥6.所以y的最小值是6.答:至少需要租甲种车6辆.22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.【分析】(1)证明△AFE为等边三角形,故EF=AF,同理可得QA=QG,在Rt△AQF 中,FQ2=AF2+AQ2=EF2+GQ2;(2)证明△GAQ≌△EAH(SAS),可得P A是QH的中垂线,故PH=PQ,进而求解;(3)完善后的图形如图2,同理可得:EP2+GQ2=FQ2+FP2.【解答】(1)如题干图1,∵AF是Rt△GFE的中线,故AF=AE,∵∠E=90°﹣∠G=60°,∴△AFE为等边三角形,故EF=AF,同理可得,△AGF为等腰三角形,故∠QF A=∠G=30°,在Rt△QAF中,∠AQF=90°﹣∠QF A=60°=∠G+∠GAQ,∴QA=QG,在Rt△AQF中,FQ2=AF2+AQ2=EF2+GQ2;(2)如图1,延长QA到H使AH=AQ,连接EH、PQ、PH,∵点A是GE的中点,故AG=AE,而AH=AQ,∠GAQ=∠EAH,∴△GAQ≌△EAH(SAS),∴GQ=HE,∠AEH=∠G,而∠G+∠GEF=90°,∴∠HEP=∠HEA+∠GEP=∠EGF+∠GEF=90°,∵∠DAB=90°,即AP⊥QH,而AQ=AH,∴P A是QH的中垂线,∴PH=PQ,在Rt△PHE中,PH2=PE2+HE2=PE2+GQ2,在Rt△PQF中,PQ2=FQ2+FP2,故PE2+GQ2=FQ2+FP2;(3)完善后的图形如图2,在AD上取点H,使AH=AQ,连接HE、PH、PQ,同理可得,∠HEP=90°,PH=PQ,则PH2=PE2+GQ2,PQ2=FQ2+FP2,故EP2+GQ2=FQ2+FP2.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)令x=0和y=0,可得方程,解得可求点A,B,C的坐标;(2)分三种情况讨论,利用等腰三角形的性质和锐角三角函数可求解;(3)分两种情况讨论,利用锐角三角函数和三角形面积公式可求解.【解答】解:(1)令y=0,可得0=x2﹣x﹣3,解得:x1=﹣1,x2=4,∴点A(﹣1,0),点B(4,0),令x=0,可得y=﹣3,∴点C(0,﹣3);(2)∵点A(﹣1,0),点B(4,0),点C(0,﹣3),∴AB=5,OB=4,OC=3,∴BC===5,当BD=BE时,则5﹣t=t,∴t=,当BE=DE时,如图1,过点E作EH⊥BD于H,∴DH=BH=BD=,∵cos∠DBC=,∴,∴t=,当BD=DE时,如图2,过点D作DF⊥BE于F,∴EF=BF=BE=t,∵cos∠DBC=,∴,∴t=,综上所述:t的值为,和;(3)∵S△BOC=BO×CO=6,∴S△BOC=,S△BOC=,如图1,过点E作EH⊥BD于H,∵sin∠DBC=,∴,∴HE=t,当S△BDE=S△BOC=时,则(5﹣t)×t=,∴t1=1,t2=4,当S△BDE=S△BOC=,时,则(5﹣t)×t=,∴t2﹣5t+16=0,∴方程无解,综上所述:t的值为1或4.。

山西省百校联考中考数学模拟试卷(四)含答案解析

山西省百校联考中考数学模拟试卷(四)含答案解析

山西省百校联考中考数学模拟试卷(四)一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的倒数是()A.﹣3 B.3 C.﹣D.2.下列运算正确的是()A.a2•a3=a6B.a3÷a2=a C.a2+a2=a4D.(a2)3=a53.如图所示几何体的俯视图是()A.B. C.D.4.下列说法正确的是()A.“任意画出一个圆,它是中心对称图形”是随机事件B.为了解我省中学生的体能情况,应采用普查的方式C.天气预报明天下雨的概率是99%,说明明天一定会下雨D.任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次5.不等式组的解集在数轴上表示为()A. B.C. D.6.如图6×7的方格中,点A,B,C,D是格点,线段CD是由线段AB位似放大得到的,则它们的位似中心是()A.P1B.P2C.P3D.P47.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m 于点D和点E,且DB=DE,若∠B=25°,则∠1的度数为()A.60°B.65°C.70°D.75°8.天然气公司为了解某社区居民使用天然气的情况,随机对该社区10户居民进行了调查,如表是这10户居民3月份用气量的调查结果:居民户数 1 2 3 4月用气量(立方米)14 15 22 25则这10户居民月用气量(单位:立方米)的中位数是()A.14 B.15 C.22 D.259.某网上电器商城销售某种品牌的高端电器.已知该电器按批发价上浮50%进行标价,若按照标价的九折销售,则可获纯利润350元,现由于商城搞促销,该电器按照标价的八折销售,则可获纯利润()A.180元B.200元C.220元D.240元10.如图,在以点O为圆心的半圆中,AB为直径,且AB=4,将该半圆折叠,使点A和点B落在点O处,折痕分别为EC和FD,则图中阴影部分面积为()A.4﹣B.4﹣C.2﹣D.2﹣二、填空题:本大题共5个小题,每小题3分,共15分11.计算×﹣的结果是______.12.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是______.13.如图,小明家所在住宅楼楼前广场的宽AB为30米,线段BC为AB正前方的一条道路的宽.小明站在家里点D处观察B,C两点的俯角分别为60°和45°,已知DA垂直地面,则这条道路的宽BC为______米(≈1.732)14.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有______种.15.如图,为一块面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,现要把它加工成正方形DEFG木板(EF在AC上,点D和点G分别在AB和BC上),则该正方形木板的边长为______m.三、解答题:本大题共8个小题,共75分16.(1)计算:()﹣3﹣|﹣1|×(﹣3)2+()0(2)化简:﹣.17.阅读与观察:我国古代数学的许多发现都曾位居世界前列,如图1的“杨辉三角”就是其中的一例.杨辉,字谦光,南宋时期杭州人,在他所著的《详解九章算法》艺术中,揖录了如图1所示的三角形数表,称之为“开方作法本源”图,经观察研究发现,在两腰上的数位1的前提下,杨辉三角有许多重要的特点,例如:每个数都等于它上方两数之和等等.如图2,某同学发现杨辉三角给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)通过观察,请你写出杨辉三角具有的任意两个特点;(阅读材料中的特点除外)(2)计算:993+3×992+3×99+1;(3)请你直接写出(a+b)4的展开式.18.作图与证明:如图,已知⊙O和⊙O上的一点A,请完成下列任务:(1)作⊙O 的内接正六边形ABCDEF ;(2)连接BF ,CE ,判断四边形BCEF 的形状并加以证明.19.某艺术类学校进行绘画特长生的招生工作,每名考生需要参加“素描”“色彩”“速写”三个项目的测试,三个项目的满分均为100分,“素描”“色彩”“速写”按照4:4:2的比例计算得到选手最终成就,现有20名考生报名参加测试,测试结束后,考生的素描成绩如下(单位:分):88,85,90,99,86,68,94,98,78,9796,93,89,94,89,85,80,95,89,77请根据上述数据,解决下列问题:(1)补全下面考生素描成绩的表格(每组数据含最小值不含最大值)和频数分布直方图; 分组 人数(频数)60﹣70 170﹣80 280﹣90 990﹣100 8合计20 (2)如表为甲、乙两名选手比赛成绩的记录表,现要在甲、乙二人中录取一名,请通过计算得出谁最终被录取.项目 成绩素描 色彩 速写 甲98 93 95 乙95 95 10020.如图,在平面直角坐标系xOy 中,一次函数y=k 1x +b 与反比例函数y=的图象交于点A (﹣1,6)和点B (3,m ),与y 轴交于点C ,与x 轴交于点D .(1)求一次函数y=k 1x +b 和反比例函数y=的表达式; (2)点P 是双曲线y=上的一点,且满足S △PCD =S △DOE ,求点P 的坐标.21.为弘扬中华传统文化,某徽章设计公司设计了如图所示的一种新式徽章,每件的成本是50元,为了合理定价,先投放在某饰品店进行试销.试销发现,该徽章销售单价为100元时,每天的销售量是50件,且当销售单价每降低1元时,每天就可多售出5件.(1)如果该店每天要使该徽章的销售利润为4000元,则销售单价应定为多少元?(2)该店每天该徽章的销售是否有最大利润?若有,请求出最大利润及销售单价,若没有,请说明理由.22.如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N 在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.(1)判断四边形EFDG的形状,并证明;(2)求FD的长;(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.23.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+6与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,直线l经过点A和点C,连接BC.将直线l沿着x轴正方形平移m个单位(0<m<10)得到直线l′,l′交x轴于点D,交BC于点E,交抛物线于点F.(1)求点A,点B和点C的坐标;(2)如图2,将△EDB沿直线l′翻折得到△EDB′,求点B′的坐标(用含m的代数式表示);(3)在(2)的条件下,当点B′落在直线AC上时,请直接写出点F的坐标.山西省百校联考中考数学模拟试卷(四)参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的倒数是()A.﹣3 B.3 C.﹣D.【考点】倒数.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.2.下列运算正确的是()A.a2•a3=a6B.a3÷a2=a C.a2+a2=a4D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A:根据同底数幂的乘法法则判断即可.B:根据同底数幂的除法法则判断即可.C:根据合并同类项的方法判断即可.D:根据幂的乘方的运算方法判断即可.【解答】解:∵a2•a3=a5,∴选项A不正确;∵a3÷a2=a,∴选项B正确;∵a2+a2=2a2,∴选项C不正确;∵(a2)3=a6,∴选项D不正确.故选:B.3.如图所示几何体的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中并且注意虚线和实线的不同.【解答】解:从上往下看,易得一个长方形,其中有两条实线和两条虚线虚线,如图所示:故选D.4.下列说法正确的是()A.“任意画出一个圆,它是中心对称图形”是随机事件B.为了解我省中学生的体能情况,应采用普查的方式C.天气预报明天下雨的概率是99%,说明明天一定会下雨D.任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次【考点】概率的意义;全面调查与抽样调查;随机事件.【分析】根据随机事件、概率的意义以及全面调查与抽样调查的定义即可作出判断.【解答】解:A、“任意画出一个圆,它是中心对称图形”是必然事件,本选项错误;B、为了解我省中学生的体能情况,应采用抽查的方式,本选项错误;C、天气预报明天下雨的概率是99%,该事件不是必然事件,说明明天不一定会下雨,本选项错误;D、任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次,该事件是随机事件,本选项正确.故选D.5.不等式组的解集在数轴上表示为()A. B.C. D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:,由x+2≤3得x≤1,由<3得x>﹣3,则不等式组的解集为﹣3<x≤1,在数轴上表示为:故选A.6.如图6×7的方格中,点A,B,C,D是格点,线段CD是由线段AB位似放大得到的,则它们的位似中心是()A.P1B.P2C.P3D.P4【考点】位似变换.【分析】连接CA,DB,并延长,则交点即为它们的位似中心.继而求得答案.【解答】解:∵如图,连接CA,DB,并延长,则交点即为它们的位似中心.∴它们的位似中心是P3.故选C.7.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m 于点D和点E,且DB=DE,若∠B=25°,则∠1的度数为()A.60°B.65°C.70°D.75°【考点】平行线的性质.【分析】先根据等腰三角形的性质和三角形外角的性质求出∠3的度数,再根据平行线的性质求出∠4的度数,再由∠ACB=90°得出∠5的度数,根据平角的定义即可得出结论.【解答】解:如图,∵DB=DE,∠B=25°,∴∠2=25°,∴∠3=25°+25°=50°,∵m∥n,∴∠4=50°,∵∠C=90°,∴∠5=65°,∴∠1=180°﹣50°﹣65°=65°.故选:B.8.天然气公司为了解某社区居民使用天然气的情况,随机对该社区10户居民进行了调查,如表是这10户居民3月份用气量的调查结果:居民户数 1 2 3 4月用气量(立方米)14 15 22 25则这10户居民月用气量(单位:立方米)的中位数是()A.14 B.15 C.22 D.25【考点】中位数.【分析】根据中位数的定义解答即可.【解答】解:10个数,最中间的数为第5个数和第6个数,它们都是22,所以这10户居民用水量的中位数为(22+22)÷2=22.故选C.9.某网上电器商城销售某种品牌的高端电器.已知该电器按批发价上浮50%进行标价,若按照标价的九折销售,则可获纯利润350元,现由于商城搞促销,该电器按照标价的八折销售,则可获纯利润()A.180元B.200元C.220元D.240元【考点】一元一次方程的应用.【分析】设该商品批发价为x元/件,则该商品的标价为(1+50%)x元/件,根据:标价×0.9﹣批发价=纯利润,列方程求得商品的批发价,继而可得该电器按照标价的八折销售可获纯利润.【解答】解:设该商品批发价为x元/件,则该商品的标价为(1+50%)x元/件,根据题意,得:(1+50%)x•0.9﹣x=350,解得:x=1000,则其标价为(1+50%)×1000=1500元/件,∴该电器按照标价的八折销售,则可获纯利润为1500×0.8﹣1000=200元,故选:B.10.如图,在以点O为圆心的半圆中,AB为直径,且AB=4,将该半圆折叠,使点A和点B落在点O处,折痕分别为EC和FD,则图中阴影部分面积为()A.4﹣B.4﹣C.2﹣D.2﹣【考点】扇形面积的计算;翻折变换(折叠问题).【分析】根据题意求得AC=OC=OD=DB=1,CD=2,EC==,进一步求得△EOF 是等边三角形,然后根据S 阴影=S 长方形﹣(S 半圆﹣S 长方形CDFE )+2(S 扇形OEF ﹣S △EOF )即可求得.【解答】解:∵AB 为直径,且AB=4,∴OA=OE=2,∵点A 和点B 落在点O 处,折痕分别为EC 和FD ,∴AC=OC=OD=DB=1,∴CD=2,EC==,∴△EOF 是等边三角形,∴∠EOF=60°,∴S 半圆=π×22=2π,S 长方形CDFE =2×=2, ∴S 阴影=S 长方形﹣(S 半圆﹣S 长方形CDFE )+2(S 扇形OEF ﹣S △EOF ) =4﹣2π+2(﹣×2×) =2﹣. 故选D .二、填空题:本大题共5个小题,每小题3分,共15分11.计算×﹣的结果是 1 .【考点】实数的运算. 【分析】根据实数的运算顺序,首先计算开方和乘法,然后计算减法,求出算式×﹣的结果是多少即可.【解答】解:×﹣ =3×﹣2=3﹣2=1故答案为:1.12.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.【考点】列表法与树状图法.【分析】根据所抽取的数据拼成两位数,得出总数及能被3整除的数,求概率.【解答】解:如下表,∵任意抽取两个不同数字组成一个两位数,共6种情况,其中能被3整除的有57,75两种,∴组成两位数能被3整除的概率为=.故答案为:.13.如图,小明家所在住宅楼楼前广场的宽AB为30米,线段BC为AB正前方的一条道路的宽.小明站在家里点D处观察B,C两点的俯角分别为60°和45°,已知DA垂直地面,则这条道路的宽BC为21.96米(≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意求出∠ABD和∠C的度数,根据正切的定义计算即可.【解答】解:由题意得,∠ABD=∠EDB=60°,∠C=∠EDC=45°,∴AD=AB×tan∠ABD=30米,∴AC=AD=30米,∴BC=AC﹣AB=30﹣30≈21.96米,故答案为:21.96.14.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有4种.【考点】轴对称图形.【分析】结合图象根据轴对称图形的概念求解即可.【解答】解:根据轴对称图形的概念可知,一共有四种涂法,如下图所示:.故答案为:4.15.如图,为一块面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,现要把它加工成正方形DEFG木板(EF在AC上,点D和点G分别在AB和BC上),则该正方形木板的边长为m.【考点】相似三角形的应用.【分析】直接利用勾股定理结合直角三角形的性质得出BN的长,再利用相似三角形的判定与性质表示出AD的长,进而得出答案.【解答】解:过点B作BN⊥AC于点N,∵面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,∴BC=2cm,∴AC==2.5(m),∴2.5BN=1.5×2,解得:BN=1.2,∵∠A=∠A,∠AED=∠ABC,∴△AED∽△ABC,∴=,设DE=x,则=,解得:AD=x,∵DG∥AC,∴△GBD∽△CBA,∴=∴=解得:x=.故该正方形木板的边长为m.故答案为:.三、解答题:本大题共8个小题,共75分16.(1)计算:()﹣3﹣|﹣1|×(﹣3)2+()0(2)化简:﹣.【考点】分式的加减法;实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及绝对值的代数意义化简,计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,即可得到结果.【解答】解:(1)原式=8﹣9+1=0;(2)原式=﹣==.17.阅读与观察:我国古代数学的许多发现都曾位居世界前列,如图1的“杨辉三角”就是其中的一例.杨辉,字谦光,南宋时期杭州人,在他所著的《详解九章算法》艺术中,揖录了如图1所示的三角形数表,称之为“开方作法本源”图,经观察研究发现,在两腰上的数位1的前提下,杨辉三角有许多重要的特点,例如:每个数都等于它上方两数之和等等.如图2,某同学发现杨辉三角给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)通过观察,请你写出杨辉三角具有的任意两个特点;(阅读材料中的特点除外)(2)计算:993+3×992+3×99+1;(3)请你直接写出(a+b)4的展开式.【考点】完全平方公式.【分析】(1)从每行的数字个数和数字之和可得规律;(2)根据图中第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数即可求得;(3)根据(a+b)n展开后,各项是按a的降幂排列的,系数依次是从左到右(a+b)n﹣1系数之和.它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和即可得出.【解答】解:(1)∵第1行有1个数字,数字之和为1=20,第2行有2个数字,数字之和为2=21,第3行有3个数字,数字之和为4=22,第4行有4个数字,数字之和为8=23,…第n行有n个数字,数字之和为2n﹣1;(2)993+3×992+3×99+1=(99+1)3=1003=106;(3)(a+b)4=a4+4a3b+6a2b2+4ab3+b4.18.作图与证明:如图,已知⊙O和⊙O上的一点A,请完成下列任务:(1)作⊙O的内接正六边形ABCDEF;(2)连接BF,CE,判断四边形BCEF的形状并加以证明.【考点】正多边形和圆;作图—复杂作图.【分析】(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;(2)首先连接OE,由六边形ABCDEF是正六边形,易得EF=BC,=,则可得BF=CE,证得四边形BCEF是平行四边形,然后由∠EDC=∠DEF=120°,∠DEC=30°,求得∠CEF=90°,则可证得结论.【解答】解:(1)如图1,首先作直径AD,然后分别以A,D为圆心,OA长为半径画弧,分别交⊙O于点B,F,C,E,连接AB,BC,CD,DE,EF,AF,则正六边形ABCDEF即为⊙O所求;(2)四边形BCEF是矩形.理由:如图2,连接OE,∵六边形ABCDEF是正六边形,∴AB=AF=DE=DC,FE=BC,∴===,∴=,∴BF=CE,∴四边形BCEF是平行四边形,∵∠EOD==60°,OE=OD,∴△EOD是等边三角形,∴∠OED=∠ODE=60°,∴∠EDC=∠FED=2∠ODE=120°,∵DE=DC,∴∠DEC=∠DCE=30°,∴∠CEF=∠DEF﹣∠CED=90°,∴四边形BCEF是矩形.19.某艺术类学校进行绘画特长生的招生工作,每名考生需要参加“素描”“色彩”“速写”三个项目的测试,三个项目的满分均为100分,“素描”“色彩”“速写”按照4:4:2的比例计算得到选手最终成就,现有20名考生报名参加测试,测试结束后,考生的素描成绩如下(单位:分):88,85,90,99,86,68,94,98,78,9796,93,89,94,89,85,80,95,89,77请根据上述数据,解决下列问题:(1)补全下面考生素描成绩的表格(每组数据含最小值不含最大值)和频数分布直方图;分组人数(频数)60﹣70 170﹣80 280﹣90 990﹣100 8合计20(2)如表为甲、乙两名选手比赛成绩的记录表,现要在甲、乙二人中录取一名,请通过计算得出谁最终被录取.项目素描色彩速写成绩甲98 93 95乙95 95 100【考点】频数(率)分布直方图;频数(率)分布表;加权平均数.【分析】(1)根据考生的素描成绩可得70﹣80的人数(频数),90﹣100的人数(频数),进一步补全频数分布直方图;(2)根据加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,求出甲、乙两名选手比赛成绩,再比较大小即可求解.【解答】解:(1)填表如下:分组人数(频数)60﹣70 170﹣80 280﹣90 990﹣100 8合计20如图所示:(2)4+4+2=10,4÷10=0.4,2÷10=0.2,=98×0.4+95×0.4+95×0.2=96.2,=98×0.4+95×0.4+100×0.2=96,∵96.2>96,∴甲最终被录取.20.如图,在平面直角坐标系xOy 中,一次函数y=k 1x +b 与反比例函数y=的图象交于点A (﹣1,6)和点B (3,m ),与y 轴交于点C ,与x 轴交于点D .(1)求一次函数y=k 1x +b 和反比例函数y=的表达式; (2)点P 是双曲线y=上的一点,且满足S △PCD =S △DOE ,求点P 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A 坐标代入反比例函数解析式中求出k 2的值,即可确定出反比例函数解析式;将B 坐标代入反比例解析式中求出m 的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式中求出k 1与b 的值,即可确定出一次函数解析式;(2)如图,当P 在第二象限时,连接PC ,PO ,作PE ⊥y 轴于E ,求得D 的横坐标为2,根据已知条件得到PE=OD=2,求得P 的横坐标为﹣2,把x=﹣2代入y=﹣中得y=3,于是得到结论;同理可得当点P 在第四象限时,求得P (2,﹣3).【解答】解:∵A (﹣1,6)在y=上得k 2=﹣6.∴y=﹣,∵B (3,m )反比例函数y=﹣的图象上,∴m=﹣2,因为y=k 1x +b 过A (﹣1,6)、B (3,﹣2)两点, ∴, 解得:,∴一次函数的表达式是y=﹣2x +4;(2)如图,当P 在第二象限时,连接PC ,PO ,作PE ⊥y 轴于E ,把y=0代入y=﹣2k +4中得x=2,∴D 的横坐标为2,∵S △PCD =S △DOE , ∴CO •PE=CO •OD ,∴PE=OD=2,∴P 的横坐标为﹣2,把x=﹣2代入y=﹣中得y=3,∴此时点P 的坐标为(﹣2,3),同理可得当点P 在第四象限时,P (2,﹣3),∴点P 的坐标是(﹣2,3),(2,﹣3).21.为弘扬中华传统文化,某徽章设计公司设计了如图所示的一种新式徽章,每件的成本是50元,为了合理定价,先投放在某饰品店进行试销.试销发现,该徽章销售单价为100元时,每天的销售量是50件,且当销售单价每降低1元时,每天就可多售出5件. (1)如果该店每天要使该徽章的销售利润为4000元,则销售单价应定为多少元?(2)该店每天该徽章的销售是否有最大利润?若有,请求出最大利润及销售单价,若没有,请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)利用每件商品利润×销量=总利润4000,得出关系式求出即可;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:(1)设应将单价降低x 元,则商店每天的销售量为(50+5x )件,由题意得(50﹣x )(50+5x )=4000,解得:x 1=10,x 2=30.答:如果要使该企业每天的销售利润为4000元,应将销售单价应定为70元或90元; (2)y=﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,=4500;∴当x=80时,y最大值即销售单价为80元时,每天的销售利润最大,最大利润是4500元.22.如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N 在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.(1)判断四边形EFDG的形状,并证明;(2)求FD的长;(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.【考点】几何变换综合题.【分析】(1)四边形EFDG是平行四边形,理由为:如图1,连接AM,由E、F、G、H分别为中点,利用利用中位线定理得到两组对边相等,即可得证;(2)如图1,过点M作MH⊥AB,交AB的延长线于点H,根据内错角相等,两直线平行,得到AC与BM平行,由三角形ACB与三角形MBN都为等腰直角三角形,由BC求出AB 的长,进而求出BH的长,由AB+BH求出AH的长,在直角三角形AMH中,利用勾股定理求出AM的长,利用中位线定理求出FD的长即可;(3)四边形EFDG为正方形,理由为:如图2,连接CN,AM,分别交EF、CN于点L与K,由CB﹣BM求出CM的长,得到CM=BN,再由一对直角相等,AC=BC,利用SAS得到三角形ACM与三角形CBN全等,利用全等三角形对应边、对应角相等得到AM=CN,∠CAM=∠BCN,利用同角的余角相等,求出∠AKC为直角,利用两组对边平行的四边形为平行四边形得到四边形EFDG为平行四边形,再由一个内角为直角,且邻边相等即可得证.【解答】解:(1)四边形EFDG是平行四边形,证明:如图1,连接AM,∵E、F、D、G分别为AC、AN、MN、CM的中点,∴FD=EG=AM,EF=GD=CN,∴四边形EFDG是平行四边形;(2)如图1,过点M作MH⊥AB,交AB的延长线于点H,∵∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,∴AC∥BM,∴∠MBH=∠CAB=45°,∴AB==4,∴BH=MH=MBsin45°=,∴AH=AB+BH=4+=5,在Rt△AMH中,由勾股定理得:AM===2,则FD=AM=;(3)四边形EFDG是正方形,证明:如图2,连接CN,AM,分别交EF、CN于点L与K,由已知得:点M和点D分别落在BC与AB边上,∴CM=CB﹣BM=4﹣2=2,∴CM=BN,∵∠ACM=∠CBN=90°,AC=BC,∴△ACM≌△CBN(SAS),∴AM=CN,∠CAM=∠BCN,∵∠ACK+∠KCM=90°,∴∠ACK+∠CAK=90°,在△ACK中,∠AKC=180°﹣(∠ACK+∠CAK)=180°﹣90°=90°,由(1)可得EG∥AM∥FD,EF∥CN∥GD,∴四边形EFDG是平行四边形,∴∠GEL=∠ELA=∠AKC=90°,∴四边形EFDG是矩形,∵EG=AM=CN=EF,∴四边形EFDG是正方形.23.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+6与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,直线l经过点A和点C,连接BC.将直线l沿着x轴正方形平移m个单位(0<m<10)得到直线l′,l′交x轴于点D,交BC于点E,交抛物线于点F.(1)求点A,点B和点C的坐标;(2)如图2,将△EDB沿直线l′翻折得到△EDB′,求点B′的坐标(用含m的代数式表示);(3)在(2)的条件下,当点B′落在直线AC上时,请直接写出点F的坐标.【考点】二次函数综合题.【分析】(1)通过解方程,﹣x2+x+6=0可得A点和B点坐标,再计算自变量为0时的函数值可得到C点坐标;(2)根据勾股定理求得BC=10,即可证得AB=BC,根据AC∥FD,得出=,求得BE=BD,即可证得四边形EB′DB是菱形,得出B′D∥BC,然后过点B′作B′H⊥AB与H,证得△B′HD∽△COB,即可求得B′H=﹣m+6,HD=﹣m+8,进一步求得OH,得出B′的坐标;(3)根据菱形的性质得出BM=B′M,由平移的定义可知DE∥AC,根据平行线分线段成比例定理证得BD=AD=AB=5,求得D的坐标,根据勾股定理求得AC的解析式,进而求得DF的解析式,然后联立方程,即可求得F的坐标.【解答】解:(1)将y=0代入y=﹣x2+x+6得,﹣x2+x+6=0,解得x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0);将x=0代入y=﹣x2+x+6得y=6,∴点C的坐标为(0,6);(2)在RT△COB中,由勾股定理得BC===10,∵AB=AO+OB=2+8=10,∴AB=BC,∵AD=m,∴DB=AB﹣AD=10﹣m,∵AC∥FD,∴=,∴BE=BD=B′E=B′D=10﹣m,∴四边形EB′DB是菱形,∴B′D∥BC,过点B′作B′H⊥AB与H,∴∠B′DH=∠CBO,∠B′HD=∠COB=90°,∴△B′HD∽△COB,∴==,即==,∴B′H=﹣m+6,HD=﹣m+8,当点B′在y轴的右侧时,OH=OB﹣HD﹣DB=8﹣(﹣m+8)﹣(10﹣m)=m﹣10,当点B′在y轴的左侧时,OH=HD+DB﹣OB=(﹣m+8)+(10﹣m)﹣8=10﹣m,∴点B′的坐标为(m﹣10,﹣m+6);(3)∵四边形EB′DB是菱形,∴BM=B′M,由平移的定义可知DE∥AC,∴==1,∴BD=AD=AB=5,∵OA=2,∴OD=3,∴D的坐标为(3,0),设直线AC的解析式为y=kx+b,代入A(﹣2,0),C(0,6)得:,解得,∵DF∥AC,设直线DF的解析式为y=3x+b,代入D(3,0)得9+b=0,解得b=﹣9,∴直线DF为y=3x﹣9,解得或,∴F的坐标为(﹣1,3﹣12).9月28日。

湖北省荆楚百校联盟考试2023-2024学年九年级上学期期中数学试题

湖北省荆楚百校联盟考试2023-2024学年九年级上学期期中数学试题

湖北省荆楚百校联盟考试2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.将一元二次方程245x x -=化为一般形式后,其中二次项系数、一次项系数分别是()A .1,5B .1,-5C .-4,5D .-4,-52.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A .赵爽弦图B .笛卡尔心形线C .科克曲线D .斐波那契螺旋线3.O 的直径为10cm ,如果点P 到圆心O 的距离是d ,则()A .当8d =cm 时,点P 在O 内B .当10d =cm 时,点P 在O 上C .当5d =cm 时,点P 在O 上D .当4d =cm 时,点P 在O 外4.在五千年的历史长河中,中华文化绚丽多彩从未断流,而“成语”则是中华文化的一大瑰宝,下列成语所描述的事件中,不可能事件是()A .百步穿杨B .瓮中捉鳖C .守株待兔D .水中捞月5.如图,将ABC 绕顶点C 逆时针旋转角度α得到A B C ''' ,且点B 刚好落在A B ''上,若26A ∠=︒,44BCA '∠=︒,则α等于()A .37︒B 6.“我想把天空大海给你,把大江大河给你,没办法,好的东西就是想分享于你直播带货平台“东方甄选元,当售价为每袋80元时,每分钟可销售降价措施.据市场调查反映销售单价每降降价x 元(x 为偶数),若要平均每分钟获利A .()4010010x ⎛-+ ⎝C .()4010010x ⎛-+ ⎝7.已知二次函数y ax =()()(122,,1,,3,A y B y C -A .123y y y <<B 8.如图,武汉晴川桥可以近似地看作半径为索垂直相连,其正下方的路面A .50m B 9.二次函数2y ax bx =+③m 为任意实数,则a b +则122x x +=;⑥3a c +<A .2B .3二、填空题15.如图,矩形纸片矩形纸片EFCD后,最大的圆,恰好可以作为一个圆锥的侧面和底面,则16.如图,在正方形ABCD 且EG =2,连接DE ,将线段段CF 长的最小值为三、解答题17.解下列方程:(1)22410x x --=(配方法)(2)2730x x -+=(公式法)18.关于x 的一元二次方程2221()0x m x m +-+=有两个不相等的实数根.(1)求m 的取值范围;(2)若此方程的两根分别为1x ,2x ,且12129x x x x ++=,求m 的值.19.为落实国家“双减”政策,立德中学在课后托管时间里开展了“音乐社团、体育社团、文学社团,美术社团”活动.该校从全校600名学生中随机抽取了部分学生进行“你最喜欢哪一种社团活动(每人必选且只选一种)”的问卷调查,根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题(1)求证:AF 是O 的切线;(2)若6,10BC AB ==,求 22.如图,排球运动员站在点手后的运动路径都是形状相同的抛物线,且抛物线的最高点平距离,竖直高度总是比出手点的水平距离18OA =米,球网高度m=时,求排球运动路径的抛物线解析式;(1)当2m=时,排球能否越过球网?是否出界?请说明理由;(2)当2(3)若该运动员调整起跳高度,使球在点A处落地,此时形成的抛物线记为后立即向右弹起,形成另一条与1L形状相同的抛物线1米,球场外有一个可以移动的纵切面为梯形的无盖排球回收框∠=∠=︒),其中MQ=QMN PNM(MNPQ90过向右反弹后沿2L的路径落入回收框MNPQ框内).设点M的横坐标为t,则t的取值范围是23.如图,我把对角线互相垂直的四边形叫做(1)性质探究:如图1.已知四边形ABCD△ABC=.(1)求抛物线的解析式及点D坐标;面积的最大值及此时(2)点E是第一象限内抛物线上的动点,连接BE和CE,求BCE点E的坐标;的面积最大时,P为y轴上一点,过点P作抛物线对称(3)在(2)的条件下,当BCE轴的垂线,垂足为M,连接ME,BP,探究EM MP PB++是否存在最小值,若存在,请直接写出此时点M的坐标;若不存在,请说明理由.。

百校联考(一)·数学答案

百校联考(一)·数学答案

数学参考答案及评分标准一、选择题(本大题共10个小题,每小题3分,共30分)题号123456789答案DBDCAABAB10C二、填空题(本大题共6个小题,每小题3分,共18分)11.-1<x ≤212.答案不唯一,例如矩形的四个角相等,但矩形不一定是正方形13.1914.815.x <-1或0<x <116.33姨三、解答题(本大题共8个小题,共72分)17.解:(1)原式=12+2-3姨+12+3×3姨3333333333333333334分=3333333333333333333333333333.5分(2)原式=(a -3)2a (a -3)÷a 2-9a 333333333333333333333338分=(a -3)2a (a -3)·a (a -3)(a +3)333333333333333333339分=1a +333333333333333333333333333.10分18.解:12u +32v =5,①3u +v =6.姨姨姨姨姨姨姨姨姨②由②,得v =6-3u .333333333333333333333333③1分把③代入①,得12u +32(6-3u )=5333333333333333333.2分解这个方程,得u =1333333333333333333333333.4分把u =1代入③,得v =333333333333333333333333.5分所以这个方程组的解是u =1,v =3姨.333333333333333333336分19.解:(1)如图所示:评分说明:①作∠A 的平分线AD ,交BC 于点E 3333333;2分②经过点B 作AD 的垂线交AD 于点F 333333;4分③连接CF .(2)33333333333333333333336分20.解:(1)填表:平均数(分)中位数(分)众数(分)七年级组8585八年级组80333333333333333333333333333333333分(2)七年级组代表队成绩好些33333333333333333333.4分因为两个队的平均数都相同,七年级组的中位数大,所以在平均数相同的情况下中位数大的七年级组代表队成绩好些3333333333333333333.5分(3)∵s 2七年级组=(80-85)2+(75-85)2+(85-85)2+(100-85)2+(85-85)25=70333.6分s 2八年级组=(100-85)2+(70-85)2+(100-85)2+(80-85)2+(75-85)25=16033333.7分∴s 2七年级组<s 2八年级组,因此,七年级组代表队选手成绩较为稳定.333333338分(4)根据决赛成绩,第六名成绩为80分共有两人,他们是七年级组1号选手和八年级组4号选手.从两个人中随机选取一个,每个人被选取的可能性相同333.9分∴七年级组1号选手被选中的概率是12333333333333333.10分21.(1)证明:∵AB=AC 且D 是BC 的中点,∴AD ⊥BC.∴∠ADC =90°.333333333333333333333333331分∵⊙O 与BC 相切于点E ,∴OE ⊥BC .∴∠OED =90°333333333333333333333333333.2分∴∠ADC=∠OED .∴AD ∥OE .∴∠OEA =∠DAE 3333333333333333333333333.3分∵OA=OE ,∴∠OEA =∠BAE .∴∠BAE =∠DAE 3333333333333333333333333.4分(2)解:∵AD =24,sin C =35,AD ⊥BC ,∴AC =AD sin C=40.∴AB=AC =40333333333333333333333333333.5分设⊙O 的半径为r ,则BO =40-r .∵AB=AC ,∴∠C=∠B 3333333333333333333333333333.6分∴sin B =sin C =3533333333333333333333333333.7分山西中考模拟百校联考试卷(一)∵⊙O 与BC 相切于点E ,∴OE ⊥BC.∴sin B =OE BO =r 40-r =35.8分∴r =15,即⊙O 的半径是15.9分22.解:(1)套餐1:y =58+0.25(t -50)或y =0.25t +45.5.2分套餐2:y =88+0.19(t -200)或y =0.19t +50.4分(2)每月通话100<t <200(分钟)时,套餐1:应交电话费y 与通话时间t (分钟)之间的函数表达式为y =58+0.25(t -50).套餐2:电话费为88元.5分由58+0.25(t -50)>88,得t >170.由58+0.25(t -50)=88,得t =170.由58+0.25(t -50)<88,得t <170.答:每月通话100<t <170(分钟)时,选择套餐1合算;每月通话t =170(分钟)时,选择套餐1合算和套餐2都可以;每月通话170<t <200(分钟)时,选择套餐2合算.8分23.解:(1)答案不唯一,如:4分(2)理由:在题图⑤中,由平移的性质知BE ∥GH ,BE=GH .∴四边形EBHG 是平行四边形.∵BE ⊥AF 于E ,∴∠GEB =90°.∴四边形EBHG 是矩形.5分在题图⑥中,连接OI ,NI .∵ON 是所作半圆的直径,∴∠OIN =90°.∵MI ⊥ON ,∴∠OMI=∠IMN =90°且∠OIM=∠INM .∴△OIM ∽△INM .6分∴OM IM =IM NM.即IM 2=OM ·NM .7分在题图⑤中,根据操作方法可知,AF 2=AB ·AD .∵四边形ABCD 是矩形,BE ⊥AF ,∴DC ∥AB ,∠ADF=∠BEA =90°.∴∠DFA=∠EAB .∴△DFA ∽△EAB .8分∴AD BE =AF BA .即AF ·BE=BA ·AD .9分∴AF=BE .即BH=BE .∴四边形EBHG 是正方形.10分24.解:(1)当y =0时,-13x 2+13x +4=0.解方程,得x 1=-3,x 2=4.∵点B 在点A 的右侧,∴点A ,B 的坐标分别为(-3,0),(4,0).2分当x =0时,y =4.∴点C 的坐标分别为(0,4).3分(2)设点P 的坐标为(x ,y ).∵点B ,C 的坐标分别为(4,0),(0,4);∴OB=OC.又∵∠COB =90°,∴∠OCB =45°.4分当∠ACO+∠BCP =45°时,∠ACP=∠ACO+∠BCP+∠OCB=45°+45°=90°,∴CP ⊥AC.∴∠ACP=∠ACO+∠OCP =90°.5分过点P 作PE ⊥y 轴于点E ,则PE=x ,OE=y.∴CE =4-y .∵在△AOC 中,∠AOC=90°,∴∠ACO+∠CAO =90°.∴∠CAO=∠OCP .6分∴tan ∠ECP =tan ∠CAO =OC AO =43.∴PE CE =43,即x 4-y =43.解得y =-34x +4.7分∵点P 在抛物线上,∴P 的坐标也可以表示为(x ,-13x 2+13x +4).∴-13x2+13x+4=-34x+4.解方程,得x1=0(不合题意,舍去),x2=134.∴y=2516.∴点P的坐标为134,251611.9分(3)存在满足条件的点D.10分点D的坐标为-4011,241111或(1,2)或-1811,-201111.13分附参考解析:由(1)可得AO=3,OC=4,由勾股定理得AC=5.∴tan∠CAO=43,sin∠CAO=45,cos∠CAO=35.假设存在满足条件的点D,设菱形的对角线交于点F,设运动时间为t.Ⅰ.若以AN为菱形对角线,如图①.此时CN=t,菱形边长AM=t.∴AF=12AN=12(5-t).在Rt△MAF中,cos∠FAM=AFAM =12(5-t)t=35.解得t=2511.∴AN=5-t=3011.过点N作NG⊥x轴于点G,则NG=AN·sin∠CAO=2411,AG=AN·cos∠CAO=1811.∴OG=3-AG=1511.∴N-1511,241111.∵点D与点N横坐标相差t个单位,纵坐标相同,∴D-4011,241111.Ⅱ.若以MN为菱形对角线,如图②.此时CN=t,菱形边长AM=AN=t.∵AN=CN=t,AN+CN=5,∴t=52,点N为AC的中点.∴N-32,112.∵点D与点N横坐标相差t个单位,纵坐标相同,∴D(1,2).Ⅲ.若以AM为菱形对角线,如图③.此时CN=t,菱形边长等于(5-t).在Rt△AFN中,cos∠CAO=AFAN=12t5-t=35,解得t=3011.∴OF=3-AF=3-12t=1811,DF=NF=AN·sin∠CAO=5-301111×45=2011.∴D-1811,-201111.综上所述,存在满足条件的点D,其坐标为-4011,241111或(1,2)或-1811,-201111.①③②。

2024年安徽省合肥市百校联赢名校大联考中考二模数学试题(含答案与解析)

2024年安徽省合肥市百校联赢名校大联考中考二模数学试题(含答案与解析)

百校联赢·2024安徽名校大联考二数 学注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

3.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,满分40分)1.6-的绝对值是( ) A .16B .6C .16-D .6-2.下列计算正确的是( )A .()235a a a -+=B .()326a a a ⋅-=-C .()32a a a -÷=D .()326a a ⎡⎤-=⎣⎦3.某几何体的三视图如图所示,这个几何体是( )A .B .C .D .4.在数轴上表示不等式组11210x x -⎧≤⎪⎨⎪+≥⎩的解集,正确的是( )A .B .C .D .5.下列函数中,当0x <时,y 的值随x 的增大而增大的是( ) A .y x =-B .1y x=C .1y x =-D .21y x =-6.如图,正方形ABCD 内接于O ,点E 在O 上连接BE ,CE ,若18ABE ∠=︒,则BEC DCE ∠-∠=( )A .16°B .17°C .18°D .20°7.如果从两个奇数和两个非0的偶数中任选两个不重复的数组成一个两位数,恰好组成偶数的概率是( )A .12B .13C .23D .148.如图,点P 在正方形ABCD 的边BC 上,以PD 为边作矩形PDEF ,且边EF 过点A .若1AB =,则矩形PDEF 的面积为()A .1BC .34D 9.在同一平面直角坐标系中,一次函数y ax b =+与二次函数2y ax bx =+的图象可能是()A .B .C .D .10.如图,在等边ABC △中,2AB =,M 为AB 的中点,D ,E 分别是线段BM ,BC 上的动点,2CE BD =,以DE 为边向上作等边DEF △,则线段MF 的最小值为( )A .12B .32C D 二、填空题(本大题共4小题,每小题5分;满分20分)11.计算:1=______.12.国家统计局公布了2023年的人口数据:2023年末全国人口140967万人,比上年末减少208万人,其中208万用科学记数法表示为______.13.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理.如图,在ABC △中,90C ∠=︒,四边形CDEF 为正方形,AFE AGE ≌△△,BGE BDE ≌△△,4AC =,3BC =,则CD =______.14.如图,O 为坐标原点,反比例函数ky x=(0k >,0x >)的图象与矩形OABC 的两边AB ,BC 相交于点D ,E ,点A ,C 分别在x ,y 轴上,DF y 丄轴于点F ,EG x 丄轴于点G .若1OF =,23OG OA =.(1)线段EG 的长为______.(2)连接EF ,若EF EG =,则矩形OABC 的面积为______.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值,22111x x x x-+--,其中1x =. 16.某超市有线下和线上两种销售方式,去年计划实现总销售利润200万元,经过努力,实际总销售利润为225万元,其中线下销售利润比原计划增长5%,线上销售利润比原计划增长15%,则该超市去年实际完成线下销售利润、线上销售利润各多少万元?四、(本大题共2小题,每小题8分,满分16分)17.如图,在由边长为1个单位长度的小正方形组成的网格中,ABC △的顶点均为格点(网格线的交点).(1)将线段AB 先向左平移1个单位长度,再向下平移3个单位长度,得到线段11A B ,画出线段11A B ; (2)将线段AC 绕点B 顺时针旋转90°,得到线段22A C ,画出线段22A C ;(3)在ABC △外找一点P ,画出射线CP ,使得CP 平分ACB ∠.18.【观察思考】如图,春节期间,广场上用红梅花(黑色圆点)和黄梅花(白色圆点)组成“中国结”图案.【规律总结】 请用含n 的式子填空:(1)第n 个图案中黄梅花的盆数为______;(2)第1个图案中红梅花的盆数可表示为12⨯,第2个图案中红梅花的盆数可表示为23⨯,第3个图案中红梅花的盆数可表示为34⨯,第4个图案中红梅花的盆数可表示为45⨯,…;第n 个图案中红梅花的盆数可表示为______; 【问题解决】(3)已知按照上述规律摆放的第n 个“中国结”图案中红梅花比黄梅花多68盆,结合图案中红梅花和黄梅花的排列方式及上述规律,求n 的值.五、(本大题共2小题,每小题10分,满分20分)19.如图,无人机在点A 处测得大楼顶端D 的俯角为24°,垂直上升8米到达B 处,测得大楼底端C 的俯角为64°,已知50BC =米,求大楼CD 的高度,参考数据:sin 240.41︒≈,cos 240.91︒≈,tan 240.45︒≈,sin 640.90︒≈,cos 640.44︒≈,tan 64 2.05︒≈.20.如图,已知平行四边形ABCD 的两个顶点A ,B 均在O 上,边BC 与O 相交于点E ,OA AD ⊥,连接AC 交O 于点F ,延长AO 交BE 于点G .(1)若平行四边形ABCD 的面积为80,8BE =,2CE =,求OA 的长; (2)求证:2CD AC AF =⋅.六、(本题满分12分)21.寒假期间,某校举行学生参加家务劳动视频评比,成绩记为x 分(60100x ≤≤),分为四个分数段:①6070x ≤<,②7080x ≤<,③8090x ≤<,④90100x ≤≤.学校从600人的参赛视频中随机抽取了部分视频统计成绩,并绘制了统计图表,部分信息如下:请根据以上信息,完成下列问题: (1)补全频数分布直方图;(2)样本成绩的中位数落在第______分数段中;(3)若80分以上(含80分)成绩的学生被评为“劳动能手”,根据统计成绩,试估计全校被评为“劳动能手”的学生人数.七、(本题满分12分)22.在四边形ABCD 中,点E 为AB 的中点,分别连接CE ,DE . (1)如图1,若A B ∠=∠,ADE BEC ∠=∠. (ⅰ)求证:2AE AD BC =⋅;(ⅱ)若DE 平分ADC ∠,求证:AED DCE ∠=∠;(2)如图2,若90DAB B ∠+∠=︒,90DEC ∠=︒,3AD =,1BC =,求CD 的长.八、(本题满分14分)23.在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+-与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C ,连接BC . (1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PAPB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN △与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.百校联赢·2024安徽名校大联考二数学参考答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BDCACCAADA10.A解析:在边AB 上截取BG BE =,连接AF ,GF ,GE ,易证BDE GFE ≌△△,∴GF BD =,60EGF B ∠=∠=︒,∴60AGF ∠=︒. ∵2AG CE BD ==,∴2AG GF =.取AG 的中点N ,连接FN , ∴FN GN GF ==,∴60GNF ∠=︒,∴30NAF ∠=︒.当MF AF ⊥时,MF 取最小值为1124MA AB =, ∵2AB =,∴线段MF 的最小值为12.二、填空题(本大题共4小题,每小题5分,满分20分) 11.312.62.0810⨯13.114.(1)32(2解析:(1)∵1OF =,∴点D 点的纵坐标为1,∵点D 在反比例函ky x=的图象上,∴(),1D k ,∴OA k =, ∵23OG OA =,∴23OG k =,即点E 的横坐标为23k , ∵点E 在反比例函数k y x =图象上,∴点E 的纵坐标为3223k y k ==,∴32EG =;(2)令EG 与DF 交于点H ,∵32EF EG ==,1GH OF ==,∴12EH =,∴FH ==,∴OG FH ==∴3322OA OG ===,∴矩形OABC32=.三、(本大题共2小题,每小题8分,满分16分)15.解:原式2221211111x x x x x x x x --+=-==----,当1x =+时,原式11=+-=.16.解:设去年计划完成线下销售利润x 万元,线上销售利润y 万元, 根据题意得()()20015%115%225x y x y +=⎧⎪⎨+++=⎪⎩,解得50150x y =⎧⎨=⎩,∴()15%5052.5+⨯=万元,()115%150172.5+⨯=万元.答:该超市去年实际完成线下销售利润52.5万元,线上销售利润172.5万元. 四、(本大题共2小题,每小题8分,满分16分) 17.解:(1)如图,11A B 即为所求; (2)如图,22A C 即为所求; (3)如图,射线CP 即为所求.18.解:(1)24n +; (2)()1n n +;(3)由题意得()()12468n n n +-+=,解得9n =,8n =-(不合题意,舍去) 即第9个图案中红梅花比黄梅花多68盆.五、(本大题共2小题,每小题10分,满分20分)19.解:如图,过点A ,B 作C D 的垂线,分别与CD 的延长线交于点E ,F , 在Rt BCF △中,64CBF ∠=︒,50BC =米, ∵sin CF CBF BC ∠=,∴45CF ≈米,∵cos BFCBF BC∠=,∴22BF ≈米, 在Rt ADE △中,22AE BF ==米,24DAE ∠=︒, ∵tan DEDAE AE∠=,∴9.9DE ≈米,又∵8EF AB ==米, ∴27.1CD CF DE EF =--=(米) 即大楼的高度CD 约为27.1米.20.解:(1)如图1,连接OB ,∵四边形ABCD 为平行四边形,OA AD ⊥,∴OG BE ⊥.∵平行四边形ABCD 的面积为80,8BE =,2CE =,∴10BC =,∴8AG =, 在直角OBG △中,142BG BE ==, 由勾股定理得()22284OA OA -+=,解得5OA =; (2)如图2,分别连接AE ,BF ,∵AG BE ⊥,∴ABE AEB ∠=∠,∵AFB AEB ∠=∠,∴AFB ABC ∠=∠, ∵BAF CAB ∠=∠,∴ABF ACB ∽△△,∴AF ABAB AC=,即2AB AC AF =⋅, ∵AB CD =,∴2CD AC AF =⋅.六、(本题满分12分)21.解:(1)1836%50÷=(人),第③段人数为5024%12⨯=(人), 第④段人数为501817123---=(人), 频数分布直方图,如图所示; 家务劳动评比成绩频数分布直方图(2)②;(3)()60024%350100%180⨯+÷⨯=(人), 答:估计全校被评为“劳动能手”的学生人数为180. 七、(本题满分12分)22.解:(1)(ⅰ)A B ∠=∠,ADE BEC ∠=∠,∴AED BCE ∽△△,∴AE ADBC BE=, ∵E 为AB 的中点,∴AE BE =,∴AE ADBC BE=,即2AE AD BC =⋅; (ⅱ)如图1,分别作EH AD ⊥于点H ,EP CD ⊥于点P ,EQ BC ⊥于点Q , 易证:AEH BEQ ≌△△,∴EH EQ =,∵DE 平分ADC ∠,∴EP EH =,∴EP EQ =,即CE 平分BCD ∠,∴DCE BCE ∠=∠, 由AED BCE ∽△△得AED BCE ∠=∠,∴AED DCE ∠=∠; (2)如图2,过点A 作AF BC ∥,交CE 的延长线于点F ,连接DF , 易证BEC AEF ≌△△,∴BC AF =,CE EF =,B EAF ∠=∠. ∵90DAB B ∠+∠=︒,∴90DAB BAF ∠+∠=︒,∴90DAF ∠=︒, ∵90DEC ∠=︒,∴DF DC =, 在直角ADF △中,222AD AF DF +=,∵3AD =,1BC =,∴1AF =,∴CD DF ==.八、(本题满分14分) 23.解:(1)由题意得309330a b a b --=⎧⎨+-=⎩,解得12a b =⎧⎨=-⎩;(2)(ⅰ)易得()0,3C -,设直线BC 为3y kx =-,∵点()3,0B ,∴330k -=,解得1k =,即直线BC 为3y x =-, 设(),3M m m -,则3PM PB m ==-,1PA m =+,∵3PA PB =,∴133m m+=-,解得2m =,经检验2m =符合题意, 当2m =时,222233y =-⨯-=-,∴3PN =,31PM PB m ==-=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)易得1PA m =+,3PB PM m =--,223PN m m =-++,PQN △的面积为()21232m m QR -++⋅,APM △的面积为()()1312m m -+, ∴()()()211233122m m QR m m -++⋅=-+,解得1QR =; 当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m -=-,纵坐标为()()2212134m m m m --⨯--=-, ∴R 点的坐标为()2,4m m m -,∵N 点坐标为()2,23m m m --,∴32RN m =-,∴()22231NQ m =-+, ∴当32m =时,NQ 取最小值; 当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +-⨯+-=-, ∴R 点的坐标为()2,4m m -,∵N 点的坐标为()2,23m m m --,∴21RN m =-,∴()222211NQ m =-+, ∴当12m =时,NQ 取最小值. 综上,m 的值为32或12.。

福建省福州市九校教学联盟2023-2024学年九年级上学期期中联考数学试题

福建省福州市九校教学联盟2023-2024学年九年级上学期期中联考数学试题

福建省福州市九校教学联盟2023-2024学年九年级上学期期中联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如所示图形中,是中心对称图形的是()A .B .C .D .2.已知二次函数22(1)3y x =---,下列说法正确的是()A .对称轴为直线1x =-B .函数的最大值是3C .抛物线开口向上D .顶点坐标为()1,3-3.在平面直角坐标系中,将点()43P -,绕着原点O 顺时针旋转90︒到P ',则点P '的坐标为()A .()34,B .()43-,C .()34-,D .()43,4.为了测量一个铁球的直径,将该铁球放入工件槽(相邻两边互相垂直)内,测得的有关数据如图所示(单位:cm ),则该铁球的直径为()A .5cmB .8cmC .10cmD .12cm 5.下列说法正确的是()A .“打开电视机,正在播放《新闻联播》”是必然事件B .天气预报“明天降水概率50%”,是指明天有一半的时间会下雨C .要调查某品牌圆珠笔笔芯的使用寿命,宜采用全面调查方式D .甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是2=0.3s 甲,2=0.4s 乙,则甲的成绩更稳定6.下列图象中,当0ab >时,函数2y ax =与y ax b =+的图象是()A .B .C .D .7.下列说法中,正确的是()A .经过半径的端点并且垂直于这条半径的直线是这个圆的切线B .平分弦的直径垂直于弦,并且平分弦所对的两条弧C .90°的圆周角所对的弦是直径D .如果两个圆周角相等,那么它们所对的弦相等.8.若二次函数22(0)y ax ax c a =-+>的图象经过()()()1233,,4,,1,A y B y C y -三点,则123,,y y y 的大小关系是().A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<9.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?意思是:矩形面积为864平方步,宽比长少12步,问宽和长各几步?设长为x 步,可列方程为()A .()12864x x -=B .()12864x x +=C .()2212864x x ++=D .()2212864x x +-=10.如图,平面直角坐标系中,已知()1,0A ,()3,0B ,()6,0C ,抛物线2y ax bx c =++A.25B.52二、填空题11.在平面直角坐标系中,将函数下平移3个单位长度,所得图象的函数解析式为12.已知点()3,2P-关于原点的对称点为13.某种绿豆在相同条件下发芽试验的结果如下:每批粒数n1050100发芽的频数m94492发芽的频率m n(精确到0.0010.9000.8800.920则估计这种绿豆发芽的概率为14.如图,AB、AC、BD是则BD的长为.15.有一个弧长为2cmπ三、解答题17.解方程:2610x x --=.18.已知关于x 的一元二次方程()220x m x m +++=,(1)求证:无论m 取何值,原方程总有两个不相等的实数根.(2)若1x ,2x 是原方程的两根,且2212123x x x x +=-,求m 的值.四、作图题19.如图,在平面直角坐标系中,已知ABC 三个顶点的坐标分别为()2,3A ,()4,2B ,()5,4C .(1)画出ABC ,并作出它关于x 轴对称的图形111A B C △.(2)画出ABC 绕点O 逆时针旋转90︒的图形222A B C △.(3)求111A B C △的面积.20.杭州亚运会,34岁巩立姣以19.58米的成绩夺得亚运会女子铅球冠军,实现亚运三连冠.下图是她在比赛前的某次掷球练习,铅球出手以后的轨迹可近似看作是抛物线的一部分,铅球出手时离地面1.7米,铅球离抛掷点水平距离8米时达到最高位置8.1米.如图,以水平面为x轴,她所站位置的铅垂线为y轴建立平面直角坐标系,设铅球飞行的高度为y米,铅球飞行水平距离为x米.(1)求y与x之间的函数关系式;(2)巩立姣杭州亚运会夺冠成绩是否超过此次练习的成绩六、问答题21.一个不透明的口袋里装有分别标有汉字“我”、“爱”、“中”、“国”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先摇均匀.(1)若从中任取一个球,球上的汉字刚好是“爱”的概率是多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“中国”的概率.七、解答题22.牛草山奶牛养殖场如今达到了日产鲜奶500千克的规模.根据以前市场销售经验,如果鲜奶售价为20元/千克,每天可售出鲜奶400千克,鲜奶售价每提高1元,日销售鲜奶数量将减少10千克,每天没能售出的鲜奶全部按10元/千克的价格廉价卖给奶制品加工厂.养殖场研究决定将鲜奶的售价提高到x元/千克,而当地物价部门结合本地收入与消费水平规定鲜奶售价不低于20元/千克且不超过40元/千克,设养殖场每天鲜奶总销售收入为y元.(1)求y与x之间的函数表达式,并直接写出自变量x的取值范围;(2)鲜奶售价定为多少时,养殖场每天鲜奶销售总收入最多?养殖场每天鲜奶销售总收入最多是多少元?23.如图,AB 为O 的直径,AC 平分BAD ∠,交弦BD 于点G ,连接半径OC 交BD 于点E ,过点C 的一条直线交AB 的延长线于点F ,AFC ACD ∠=∠.(1)求证:直线CF 是O 的切线;(2)若22DE CE ==,求AD 的长;如图1,点D 是AC 边上一点,连接DE ,将DE 绕点E 逆时针旋转90︒至EF ,连接.若4AC =,2BE =,求BEF △的面积;如图2,连接AE ,将AE 绕点E 顺时针旋转90︒至EM ,连接BM ,取BM 的中点EN .试探究线段EN ,BE ,AB 之间的数量关系;如图3,连接AE ,P 为AE 上一点,在AP 的上方以AP 为边作等边APQ △,刚好点P 关于直线AC 的对称点,连接CP ,当12CP AP +取最小值的条件下,点G 是直线上一点,连接CG ,将CGP △沿CG 所在直线翻折得到CGK △(CGK △与ABC 同一平面内),连接AK ,当AK 取最小值时,请直接写出CGK APQ S S △△的值..已知二次函数图象的顶点在原点,且点()2,1C 在此二次函数的图象上.(1)求二次函数的表达式;(2)如图1,直线21y mx m =-+与二次函数的图象交于A 、B 两点(点C 在直线若32ABC S = ,求m 的值;(3)如图2,直线2y kx k =-与二次函数的图象交于D 、E 两点,过点D 的直线二次函数的图象于点F ,求证:直线EF 过定点.。

中考百校联考四数学试卷

中考百校联考四数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. √3D. -√32. 若a=2,b=-3,则a-b的值为()A. 5B. -5C. 0D. 13. 下列方程中,无解的是()A. 2x+3=0B. 3x+4=7C. 5x+2=0D. 4x+3=24. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的周长为()A. 16cmB. 20cmC. 22cmD. 24cm5. 若函数f(x)=2x-1,则f(-3)的值为()A. -7B. -5C. -3D. 16. 下列图形中,全等的是()A. 两个正方形B. 两个矩形C. 两个等腰三角形D. 两个等边三角形7. 若m+n=5,mn=6,则m²+n²的值为()A. 29B. 25C. 21D. 118. 下列数列中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...9. 若a、b、c是等差数列,且a+b+c=12,则b的值为()A. 4B. 6C. 8D. 1010. 下列函数中,单调递减的是()A. y=x²B. y=2x+1C. y=3x-2D. y=-x+1二、填空题(每题3分,共30分)11. 若a=√2,b=-√2,则a²+b²的值为______。

12. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标为______。

13. 下列等式中,正确的是______。

14. 若函数y=3x+2,则当x=1时,y的值为______。

15. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠ABC的度数为______。

16. 已知等比数列的前三项为1, 3, 9,则该数列的公比为______。

17. 下列图形中,是轴对称图形的是______。

2023年山西省百校联考中考数学模拟试卷(一)及答案解析

2023年山西省百校联考中考数学模拟试卷(一)及答案解析

A.8.31×104 立方米
B.8.31×108 立方米
C.8.31×1010 立方米
D.8.31×1012 立方米
5.(3 分)如图,直线 a∥b,若∠1=110°,∠2=40°,则∠3 的度数是( )
A.55°
B.60°
C.70°
D.80°
6.(3 分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是( )

三、解答题(本大题共 8 个小题,共 75 分.解答应写出文字说明、证明过程或演算步骤)
16.(8 分)(1)计算:
(2)化简:


17.(8 分)如图,在四边形 ABCD 中,AB∥DC,AD=DC,∠ADC 的平分线交 AB 于点 E, 连接 CE.请判断四边形 AECD 的形状,并说明理由.
是( )
A.1500 名学生是总体
B.200 名学生选择的太空实验是样本
C.200 是样本容量
D.每一名学生选择的太空实验是个体
8.(3 分)如图,∠DCE 的顶点 C 在量角器外圈的 160°刻度处时,点 D,E 所在位置对应
的刻度分别为外圈 90°和 30°,则∠DCE 的度数是( )
A.30°
试卷第 3页,总 7 页
18.(8 分)某中学为落实“山西新中考”中关于球类项目的测评方案,欲购进一批足球和 排球,补充体育活动器材,其中每个排球的价格比每个足球的价格贵 15 元,用 3000 元 购买足球的数量与用 3600 元购买排球的数量相同. (1)分别求出足球和排球的单价. (2)若学校计划用不超过 8000 元的经费购进足球、排球共 100 个,那么最多可以购进 排球多少个?
B.40°
C.45°

山西中考模拟百校联考(三)数学试卷解析

山西中考模拟百校联考(三)数学试卷解析

x 2 3
11. 不等式组 2(x 2) 3x 6 的解集是
.
【考点】解不等式组 【难度星级】★ 【答案】 1 x 2 【解析】由①得 x 1 ,由②得 x 2 ,解集为 1 x 2 .
-3-
-3--3-
12. 如图是一组有规律的图案,它们是由边长相同的正方形和等边三角形组成,其中正方形涂有阴影,依
4. 某体校要从四名射击选手中选拔一名选手参加省体育运动会,选拔赛中每名选手连续射靶 10 次,他们 各自的平均成绩及其方差如下表所示




-
x
8.6
8.4
8.6
7.6
x (环)
s2
0.56
0.74
0.94
1.92
如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是( )
A. 甲
B. 乙
C. 丙
“盈不足”.该章第一个问题大意是“有几个人一起去买一件物品,每人出 8 元,多 3 元;每人出 7 元,
少 4 元.问该物品售价为多少元?”,则该物品售价为
元.
【考点】一元一次方程应用题
【难度星级】★
【答案】 53
【解析】设物品售价为 x 元,由题意得 x 3 x 4 ,解得 x 53 . 87
12 .
10. 如图,正方形 ABCD 的边长为 2,点 O 为其中心,将其绕点 O 顺时针旋转 45°后得到正方形 A'B'C'
D',这旋转前后两正方形重叠部分构成的多边形的周长为( )
参考计算: 2
1
2
22
2, 1 2 1
2-1
A. 16-8 2
B. 16 2-16
C. 12-8 2

数学初三联考试卷及答案

数学初三联考试卷及答案

一、选择题(每题3分,共30分)1. 下列数中,是整数的是()A. 2.5B. -3.14C. √2D. 1/32. 若 a > b > 0,则下列不等式中正确的是()A. a^2 > b^2B. a + b > a - bC. ab > a^2D. ab < b^23. 下列函数中,是奇函数的是()A. y = x^2B. y = 2x + 1C. y = |x|D. y = √x4. 已知等腰三角形ABC中,AB = AC,AD为底边BC的中线,则下列结论正确的是()A. ∠BAD = ∠BACB. ∠B = ∠CC. AB = ADD. BC = 2AD5. 若 m + n = 2,m^2 + n^2 = 6,则 mn 的值为()A. 1B. 2C. 3D. 46. 下列方程中,无解的是()A. x + 2 = 0B. x^2 - 4 = 0C. 2x + 3 = 7D. 2x^2 - 5x + 2 = 07. 若 a, b, c 成等差数列,且 a + b + c = 12,则 abc 的值为()A. 36B. 48C. 60D. 728. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 直角三角形的斜边中点到三个顶点的距离相等D. 等边三角形的边长比为 1:2:39. 下列数中,属于无理数的是()A. √9B. √16C. √25D. √3610. 若 a, b, c 成等比数列,且 a + b + c = 12,b = 3,则 c 的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 若 a^2 + b^2 = 25,则 (a + b)^2 的值为 _______。

12. 已知 x^2 - 4x + 4 = 0,则 x 的值为 _______。

13. 若 a, b, c 成等差数列,且 a + b + c = 12,则 b 的值为 _______。

2020年山西中考模拟百校联考试卷(二)数学答案

2020年山西中考模拟百校联考试卷(二)数学答案

一、选择题1~5ADBDC 6~10CDBAC二、填空题11.-3≤x <-112.(3n +2)13.甲14.93.9(或92.9)15.27-87三、解答题16.解:(1)原式=23-23+3-8………………………………………………4分=-5.…………………………………………………………………5分(2)原式=x 2+1-2x x ·x(x +1)(x -1)……………………………………………7分=(x -1)2(x +1)(x -1)…………………………………………………………9分=x -1x +1.………………………………………………………………10分17.解:(1)尺规作图如图所示,⊙O 即为所求作圆.A BCD O………………………………………………………………………………………3分(2)53-2π4……………………………………………………………………5分18.解:(1)∵…,S 2S 3=12OB·OC 12OD·OC =OBOD,………………………………………………1分∴S 1S 4=S 2S 3.∴S 1·S 3=S 2·S 4.………………………………………………………………………2分(2)如答图,分别过点A ,C 作AE ⊥BD 于点E ,CF ⊥BD 于点F.……………………3分∵S 1S 4=12OB·AE 12OD·AE =OB OD ,S 2S 3=12OB·CF 12OD·CF=OBOD ,……4分∴S 1S 4=S 2S 3.∴S 1·S 3=S 2·S 4.………………………………………………………………………5分(3)10+82………………………………………………………………………7分19.解:(1)25……………………………………………………………………………2分(2)列表如下:(树状图略)金木水火土金克生克生木克生生克水生生克克火克生克生土生克克生小明小红………………………………………………………………………………………5分总共有20种等可能结果,其中相生的有10种结果,相克的有10种结果.……6分∴P (小明获胜)=12,P (小红获胜)=12.………………………………………………7分∵12=12,∴游戏规则公平.…………………………………………………………8分20.解:(1)设甲种酥梨每箱的售价为x 元,则乙种酥梨每箱的售价为(x -28)元.……1分则4400x =3000x -28.……………………………………………………………………3分解,得x =88.…………………………………………………………………………4分经检验,x =88是原方程的解.………………………………………………………5分88-28=60(元).答:甲种酥梨每箱的售价为88元,乙种酥梨每箱的售价为60元.………………6分(2)协会恰好完成销售任务时,甲、乙两种酥梨的销售量均为4400÷88=50(箱).…7分设乙种酥梨按原售价销售a 箱.则(88-48)×50+(60-40)a +(60×0.9-40)(50-a )≥2940.…………………………8分解,得a ≥40.………………………………………………………………………9分答:乙种酥梨至少按原售价销售40箱,才能使该贫困户第二个月获利不少于2940元.………………………………………………………………………………………10分21.解:(1)∵点D 的纵坐标为4,∴将y =4代入y =8x中,得x =2.∴点D 坐标为(2,4).……………………………………………………………1分∵B ,C 两点的坐标分别为(-4,0),(-1,0),∴BC=BO-CO =4-1=3.∵四边形ABCD 是平行四边形,∴AD ⫽BC ,AD=BC =3.∴点A 的横坐标为2-3=-1.∴点A 的坐标为(-1,4).……………………………………………………………2分山西中考模拟百校联考试卷(二)数学参考答案及评分标准答图A C D O B S 1S 2S 4S 3F E把点A(-1,4)代入y=kx中,得k=-4.∴反比例函数的表达式为y=-4x(x<0).…………………………………………3分(2)四边形AEFD是平行四边形,证明如下:………………4分如答图,过点E作EG⊥x轴于点G,连接AC.∵A,C两点的横坐标相同,∴AC⊥x轴.∴在Rt△EBG和Rt△ABC中,tan∠EBG=EG BG=AC BC=43.……………………………………………………………5分∴设EG=4n,BG=3n,则点E的坐标为(3n-4,4n),∵点E在y=-4x图象上,∴4n(3n-4)=-4,解,得n1=13,n2=1(舍).……………………………………………………………6分∴点E的坐标为()-3,43.∵AB⫽CD,∴∠FCO=∠EBG,∴tan∠FCO=tan∠EBG=43.∴FO=43.……………………………………………………………………………7分∴点F的坐标为()0,43.∵点E,F的纵坐标相同,∴EF⫽x轴,即EF⫽BC.……………………………………………………………8分又∵AD⫽BC,∴EF⫽AD.∴四边形AEFD .……………………………………………………9分22.解:(1)2-2(2…………………………………………………………2分(2)点C′在折痕GH上,证明如下:…………………………………………………3分∵四边形ABCD是正方形,∴∠C=∠ADC=90°.由图1中的折叠可知:∠BDC=12∠ADC=12×90°=45°,∠BC′E=∠C=90°.∴∠DC′E=180°-∠BC′E=180°-90°=90°.…………………………………………4分∴在△DC′E中,C′E=C′D·tan45°=C′D.∴点C′在DE的中垂线上.由图2中的折叠可知:DH=HE,GH⊥DE.∴GH垂直平分DE.∴点C′在折痕GH上.………………………………………………………………5分(3)PB⊥PE,证明如下:方法一:∵四边形ABCD是正方形,∴∠A=90°,AD=BC=AB=DC.…………………………………………………………6分由图2中的折叠可知:∠DHG=90°.∴四边形AGHD是矩形.∴AD=GH,AG=DH.设GH=BC=BC′=DC=AB=a,则BD=BCsin45°=2a.C′D=BD-BC′=2a-a.…………………………………………………………7分在△DC′E中,DE=C′Dcos45°=2()2a-a=2a-2a.∴DH=HE=AG=12DE=12()2a-2a=a-.∴GB=HC=AB-AG=a-()a-=.………………………………………8分由图3中折叠可知:PB=PE,即PB2=PE2.在Rt△PGB和Rt△PHE中,由勾股定理得:PB2=PG22,PE2=PH2+2∴PG2+)2=PH2+()a-2.∵PG=GH-PH=,∴(a-PH)2+)2=PH2+()a-2.解,得PH=,即PH=GB.………………………………………………………9分∴Rt△PGB≌Rt△EHP(HL).∴∠GBP=∠HPE.∵∠GBP+∠GPB=90°,∴∠HPE+∠GPB=90°.∴∠BPE=180°-(∠HPE+∠GPB)=180°-90°=90°.∴PB⊥PE.…………………………………………………………………………10分答图方法二:如答图,连接PD ,PC ,由(2)得GH 是DE 的中垂线,∴PD=PE.…………………………………………………6分由折叠性质可得PB=PE ,∴PD=PB.…………………………………………………7分在△PBC 和△PDC 中,ìíîïïPB =PD ,PC =PC ,BC =DC .∴△PBC ≌△PDC (SSS ).∴∠PCB=∠PCD ,即点P 在∠BCD 的平分线上.……………………………………8分过点P 作PF ⊥BC 于点F ,则四边形GPFB 为矩形,∴PF=GB.又∵PH ⊥CD ,∴PH=PF.……………………………………………………………………………9分∴PH=BG.在Rt△PHE 和Rt△BGP 中,{PH =BG ,PB =EP .Rt△PHE ≌Rt△BGP (HL ).∴∠HPE=∠GBP ,∴∠HPE+∠GPB =∠GBP+∠GPB =90°,∴∠BPE =180°-(∠HPE+∠GPB )=90°,∴PB ⊥PE.…………………………………………………………………………10分(4)方法不唯一,例如:A C ′D CBGHKP′A C ′D CBGH P′E图4(方法一)图4(方法二)………………………………………………………………………………………11分方法一:沿过H 点的折痕HK 折叠正方形纸片ABCD ,使HC 落到线段HG 上,点C 落到的位置即点P′.……………………………………………………………………12分方法二:将正方形纸片对折,使点B 落在点D 处,折痕为对角线AC ,则AC 与GH 的交点即点P′.…………………………………………………………………………12分23.解:(1)把A (-1,0)代入y =ax 2+4x +5中,得a -4+5=0,解,得a =-1.∴抛物线的关系式为y =-x 2+4x +5.……………………………………………1分当x =0时,得y =5,∴点C 的坐标为(0,5).…………………………………………2分当y =0时,得-x 2+4x +5=0.解,得x 1=-1,x 2=5.∵点A 在点B 左侧,∴点B 的坐标为(5,0).…………………………………………3分设直线BC 的关系式为y =kx +b .把点B (5,0)和C (0,5)代入上式,得{5k +b =0,b =5.解,得{k =-1,b =5.∴直线BC 的关系式为y =-x +5.…………………………………………………5分(2)由点A ,B ,C 坐标可知:AO =1,OB =5,OC =5.∴△COB 为等腰直角三角形,AB=AO+OB =1+5=6.…………………………………6分∴∠CBO =45°,△ADB 为等腰直角三角形.如答图,过点P 作PQ ⊥x 轴于点Q ,交BC 于点K .………7分在△EKP 和△QKB 中,∵∠PEK=∠BQK =90°,∠EKP=∠QKB ,∴∠EPK=∠QBK =45°.∴△EPK 为等腰直角三角形.…………………………8分∵四边形AEPD 是平行四边形,∴EP=AD.∴EP=AD=EK=DB .又∵∠PEK=∠ADB =90°,∴△EPK ≌△DAB.∴PK=AB =6.∵点P 为抛物线上的动点,点K 为直线BC 上的点,点P 的横坐标为m ,∴设P (m ,-m 2+4m +5),K (m ,-m +5).∴PK=PQ-KQ =-m 2+4m +5-(-m +5)=-m 2+5m .……………………………9分∴-m 2+5m =6.解,得m 1=2,m 2=3.∴四边形AEPD 是平行四边形时的m 值为2或3.………………………………10分(3)m 1=21+60110,m 2=19+60110,m 3=1,m 4=3.………………………14分(其他解法,请参照给分)A C ′ED CBGA″PNMH F 答图。

2024年河南省郑州市九年级多校联考数学中考三模试题(无答案)

2024年河南省郑州市九年级多校联考数学中考三模试题(无答案)

2024河南省郑州市九年级多校联考数学三模注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的1.的相反数是( )A. B.4 C.D.2.2024年4月16日,国家统计局发布,一季度国内生产总值29.6万亿元,按不变价格计算,同比增长,比上年四季度环比增长.其中数据“29.6万亿”用科学记数法表示为()A. B. C. D.3.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )A. B. C.D.4.下列代数式的运算,一定正确的是( )A. B. C. D.5.如图,直线,等腰直角三角板的底角顶点落在上,直角顶点落在上,若,则的度数为( )A. B. C. D.6.如图,四边形内接于,若,则的度数为()14-14-4-145.3%1.6%122.9610⨯132.9610⨯140.29610⨯142.9610⨯2232a a -=()2239a a =()437a a =()()22a b a b a b +=+-MN PQ ∥ABC A PQ C MN 10BCM ∠=︒PAB ∠55︒60︒65︒70︒ABCD O 110AOC ∠︒=ABC ∠A. B. C. D.7.已知关于的方程有实数根,则的值有可能是()A. B. C. D.8.《朱仙镇木版年画》特种邮票于2008年发行,一套四枚,内容取自中国四大传统年画之一河南朱仙镇木版年画的经典故事,分别为“步下鞭”“三娘教子”“满载而归”“凤香兰”,面值均为1.2元.这些邮票除图案外,质地、规格完全相同.初中毕业之际,小明想把珍藏的这四枚邮票送给好朋友小亮两枚,于是将这些邮票背面朝上、让小亮随机抽取,则小亮抽到的邮票正好是“三娘教子”和“满载而归”的概率是( )A. B. C. D.9.如图,平面直角坐标系中,正方形的顶点为原点,点,对角线的交点为,平分,交于点,交于点,则点的坐标为( )A. B. C. D.10.如图1,中,为上的动点,点从点出发以1个单位长度/秒的速度向点移动,交折线于点,设,的面积为,若与的函数图象如图2所示,当为的中点时,的值为( )125︒120︒115︒110︒x ()()24x x m --=m 3-2-1-131121614OABC O ()2,2B M CD OCA ∠OB D OA E D 11,22⎛⎫ ⎪⎝⎭)1--(22-ABC △D AB D A B DM AB ⊥A C B --M AD x =ADM △y y x M BC y图1图2A.2B.D.二、填空题(每小题3分,共15分)11.写出一个图象经过第四象限的函数解析式:______.12.不等式组的解集是______13.小明为了解本社区居民最喜欢的支付方式,对本社区不同年龄层次的居民进行问卷调查(只选一种方式),并将调查数据整理后绘成两幅不完整的统计图.该社区中1820岁的居民约有9000人,请根据图中信息估算其中41~60岁的居民中最喜欢微信支付方式的人数约为______人.14.如图,以为直径的中,点为外一点,切于点,连接交于点,过点作,交于点,交于点.若,,则的长为______.15.如图,中,,,,点,为,上的动点,以为对称轴折叠,得到,点的对应点为,射线交射线于点.当点落在线段的三等分点上时,的长为______.923251,350x x -<⎧⎨-≥⎩AB O C O CB O B AC O D D DM AB ⊥O M AB N 5AB =3BM =CD Rt ABC △90ACB ∠=︒3AC =4BC =M N AB BC MN BMN △PMN △B P MN AC D P AC CD三、解答题(本大题共8个小题,满分75分)16.(10分)(1)计算:;(2)解方程:.17.(9分)某市为实现教育均衡发展,举行了全市小学和初中学科抽测,其中初中抽测了八年级数学,市教育局从,两中学各随机抽取了10名八年级学生进行抽测,抽测成绩(满分100分)如下:中学10名八年级学生数学抽测成绩:50 66 66 66 78 80 81 82 83 94中学10名八年级学生数学抽测成绩:64 65 69 74 76 76 76 81 82 83两校八年级学生数学抽测成绩统计表平均数方差中位数众数中学74.6141.0466中学74.640.8476(1)表中______;______;(2)请根据上表中的统计量,评判,两中学样本学生的数学抽测成绩;(3)若,两中学八年级学生都超过1000人,按照市教育局的抽样方法,用样本学生数据估计,两中学总体数学抽测水平可行吗?为什么?18.(9分)如图,平行四边形中,,点为的中点,连接.(1)过点作,交于点(尺规作图,不写作法,保留作图痕迹);(2)求证:四边形为菱形;(3)若平行四边形的周长为18,,求四边形的面积.19.(9分)如图,一架无人机在一条笔直的公路上方飞行,处为一辆行驶中的小汽车,为公路上的一0112⎛⎫-+- ⎪⎝⎭213111x x x --=+-A B A B A aB ba =b =A B A B A B ABCD 90ADB ∠=︒M AB DM B BN DM ∥CD N DMBN ABCD 3BD =DMBN A BC座桥梁,当无人机飞行到处时,测得处、处的俯角分别为和,此时,小明在桥梁的入口处测得无人机的仰角为.已知桥梁的总长度为,求此时小汽车距桥梁入口的距离的长.(结果精确到,参考数据:,,,,,)20.(9分)如图,中,,轴,交轴于点,点为反比例函数的图象上一点,将绕点逆时针旋转得到,当的对应边经过点时,点的对应点落在轴上.(1)求反比例函数的解析式;(2)求证:点在反比例函数的图象上;(3)若为点的旋转路径,则图中阴影部分的面积为______.21.(9分)“五一”期间,某服装商场举行促销活动,活动方案如下:方案促销方案方案一所有服装全场六折方案二“满100送100”(如:购买199元服装,赠100元购物券;购买200元服装,赠200元购物券)方案三“满100减50”(如:购买199元服装,只需付149元;购买200元服装,只需付100元)(注:一人只能选择一种方案)(1)小明想买一件上衣和一件裤子,已知上衣的标价为290元,小明通过计算发现,若按方案一购买这两种服装与用方案二先买上衣再买裤子的花费相同.①求裤子的标价;②请你帮小明设计此次购买应选择哪种方案,并说明理由;D A C 56︒37︒B D 45︒BC 100m A AB 1m sin560.83︒≈cos560.56︒≈tan56 1.48︒≈sin370.60︒≈cos370.80︒≈tan370.75︒≈ 1.41≈Rt OAB △90AOB ∠=︒AB y ⊥y ()0,3C B k y x=OAB △B NMB △BA BM O O N x k y x=M k y x =AM A(2)小明研究了该商场的活动方案三,发现实际售价(元)可以看成标价(元)的函数,请你写出,当时,关于的函数表达式为______,当时,关于的函数表达式为______,当时,关于的函数表达式为______;(3)小明准备用方案一或方案三购买一件标价为元的服装,当的取值范围是多少时,用方案三购买更合算?22.(10分)为准备2024年中考体育加试,小明和小亮周日下午去训练场进行实心球的练习,实心球的飞行路线可近似看作二次函数图象的一部分,如图所示是小明同学掷的实心球运动的路线,如图建立平面直角坐标系,小明的出手点为,点为实心球飞行轨迹的最高点.(1)求小明投掷实心球的飞行路线的解析式;(2)请计算小明的投掷距离;(3)小亮的出手点为,且飞行路线的最高点仍为点,问小明和小亮谁的投掷距离远,远多少?(精确到.)23.(10分)中,,过点作,点为边上一个动点,将射线绕点逆时针旋转,交射线于点,连接.问题初现:(1)如图1,若,则线段与的数量关系为______;类比探究:(2)如图2,若,求出线段与的数量关系,并说明理由;拓展应用:(3)在(2)的条件下,若,,点在上运动,当四边形为轴对称图形时,请直接写出线段的长.y x 0100x <<y x 100200x ≤<y x 200300x ≤<y x x ()0200x <<x ()0,2A ()0,2.25A 0.01m 1.414≈ 2.646≈Rt ABC △90ACB ∠=︒B BD AB ⊥P AB CP C 90︒BD Q PQ 45A ∠=︒AP BQ A ∠α=AP BQ 3AC =4BC =P AB CPBQ AP图1图2备用图。

2023年广东省万阅百校联考中考质检数学试卷(无答案)

2023年广东省万阅百校联考中考质检数学试卷(无答案)

2023年广东省万阅百校联考中考质检数学试卷学校:___________姓名:___________班级:___________考号:___________一、未知1.下列数中,最小的是( )A .﹣1B .|﹣1|C .0D .2二、单选题2.国产C 919飞机,全称919COMAC ,是我国按照国际民航规章自行研制、具有自主知识产权的大型喷气式民用飞机,座级158-168座,最大航程达5555000m .数据5555000用科学记数法表示为( )A .70.555510⨯B .65.55510⨯C .555.5510⨯D .3555510⨯三、未知A .20°B .25°5.分式方程7311x x x +=--的解是( )A .x =2B .xA.①②④B.①③四、填空题11.分解因式:x2﹣2x﹣8=__.五、未知12.将抛物线y=x2﹣x+1向下平移一个单位长度,再向左平移一个单位长度,得到的抛物线的解析式为_________.13.佛山市清晖园、梁园,番禺余荫山房和东莞可园这四座古典园林被称为“岭南四大园林”,小明准备在“五一”假日期间在这四大园林中随机选择两处去游玩,则小明选择梁园和可园的概率是___________.14.如图,在△ABC中,点E在BC上,且∠ABD=∠ACD,若补充一个条件,则可以补充的条件为_______.(填写“E为BC中点”不得分)15.如图,在平面直角坐标系中,点A (﹣3,0),B (﹣1,0),D 是y 轴上的两个动点,且CD =3,BC ,则AD +BC 的最小值为______.六、解答题16.解不等式组:()2+1>43+5x x x ⎧⎨≤⎩七、未知(1)尺规作图:作边AB 的垂直平分线(1)m=_______,n=______(2)扇形统计图中不关注对应的圆心角的度数为(1)求k的值;(1)【初步应用】如图2,有两块平面镜AB,BC1经过两次反射,得到反射光线∠B=90°,证明:DO1∥O2E;(1)求抛物线的解析式;(2)求PD的最大值;八、解答题23.如图,AB为⊙O的直径,C为圆上的一点,D为劣弧»BC的中点,过点D作⊙O 的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.∥;(1)求证:BC PF(2)若⊙O的半径为5,DEV (3)在(2)的条件下,求DCP。

湖北省荆楚百校联考2024届九年级下学期初中中考一模数学试卷(含答案)

湖北省荆楚百校联考2024届九年级下学期初中中考一模数学试卷(含答案)

数学模拟卷(一)(本试卷共6页,满分120分,考试时间120分钟)注意事项:1.考生答题全部在试题卷上.2.请学生将自己的姓名、班级用0.5毫米的黑色墨水签字笔填写在试卷的密封区.一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一个选项符合题目要求)1.我国三国时期的学者刘徽在建立负数的概念上有重大贡献.刘徽首先给出了正负数的定义,“今两算得失相反,要令正负以名之”.例,如果把收入10元记作+10元,那么支出15元应记作()A.-15元B.0元C.元D.15元2.下列图形是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.B.C.D.4.将一个直角三角板和一把直尺按如图方式摆放,三角板的直角顶点在直尺的一边上,若,则的度数是()A.28°B.52°C.62°D.72°5.下列立体图形中,主视图是三角形的是()A.B.C.D.6.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其它差别,从袋子中随机取出1个球是红球的概率是()A.B.C.D.7.某体育中心准备改扩建一块运动场地,现有甲、乙两个工程队参与施工,相关信息如下:工程队每天施工面积(单位:)施工总面积(单位:)施工时间(单位:天)甲1800乙x1200两个工程队同时完成工作任务根据以上信息求x的值,则下列方程正确的是()A.B.C.D.8.一种弹簧秤最大能称不超过20kg的物体,不挂物体时弹簧的长为15cm,每挂重1kg物体,弹簧伸长0.5cm.在弹性限度内,挂重后弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为()A.B.C.D.9.一次综合实践主题为:只用一张矩形纸条和刻度尺,测量一次性纸杯杯口的直径.小明同学所在的学习小组设计了如下方法:如图,将纸条拉直并紧贴杯口,纸条的上下边沿分别与杯口相交于A、B、C、D四点,然后利用刻度尺量得该纸条的宽为7cm,,.请你根据上述数据计算纸杯的直径是()A.5cm B.8cm C.10cm D.10.2cm10.如图,抛物线与x轴正半轴交于A、两点,与y轴负半轴交于点C.①;②;③.上述结论中,正确的个数有()A.0个B.1个C.2个D.3个二、填空题(共5题,每题3分,共15分)11.分解因式:______.12.在一次数学测试中,第一小组6位学生的成绩(单位:分)分别为:84,78,89,74,●,75,其中有一位同学的成绩被墨水污染,但知道该小组的平均分为80分,则该小组成绩的中位数是______.13.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了1次就停止,则x的取值范围是______.14.学生甲在凉亭A处测得湖心岛C在其南偏西15°的方向上,又从A处向正东方向行驶300米到达凉亭B 处,测得湖心岛C在其南偏西60°的方向上,则凉亭B与湖心岛C之间的距离为______.15.如图,在四边形ABCD中,,,BD平分且与CD垂直,E为AB的中点.当与的差最大时,则EF的长为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤.)16.(6分)计算:.17.(6分)如图,在中,D为斜边BC的中点.延长AD至E,使得,连接CE,BE.请按要求画出图形,判断四边形ABEC的形状并说明理由.18.(6分)先化简,再求值..已知.19.(8分)某校为了解全校1500名学生参加学校兴趣活动的情况,随机抽取部分学生进行问卷调查,形成了如下调查报告:学生参加学校兴趣活动的情况调查报告主题学生参加学校兴趣活动的情况调查调查方式抽样调查调查对象××学校学生第一项你每周参与兴趣小组活动的时间是(单选)A .8小时B .6小时C .4小时D .2小时E .0小时第二项你每周参与兴趣小组活动的主要类型是(可多选)F .发明制作G .劳动实践H .音乐类I .体育类J .美术类数据的收集、整理与描述第三项……调查结论…请根据以上调查报告的统计分析,解答下列问题:(1)参与本次抽样调查的学生有______人;(2)若将上述报告第一项的条形统计图转化为相对应的扇形统计图,求扇形统计图中选项“兴趣活动时间6小时”对应扇形的圆心角度数;(3)估计该校1500名学生中,参与劳动实践兴趣小组的人数;(4)如果你是该校学生,为鼓励同学们积极地参与兴趣小组活动,请你面向全体同学写出一条建议.20.(8分)如图,一次函数的图象与反比例函数的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,.(1)求的值;(2)当,时,求x的取值范围.21.(8分)如图,在中,,以AB为直径的交AC于点F,D为BC的中点,直线DF与直线AB交于点E.(1)求证:DF为的切线;(2)若,,求EF的长.22.(10分)电商平台经销某种品牌的儿童玩具,进价为50元/个.经市场调查发现:每周销售量y(个)与销售单价x(元/个)满足一次函数关系(其中x为整数,且).部分数据如下表所示:销售单价x(元/个)556070销售量y(个)220200160根据以上信息,解答下列问题:(1)求y与x的函数关系式;(2)求每周销售这种品牌的儿童玩具获得的利润W元的最大值;(3)电商平台希望每周获得不低于1100元的利润,请计算销售单价的范围.23.(11分)在中,,E,F,D分别是AC,AB,BC上的点,,.(1)求的度数(图1);(2)若点G为BC的中点(图2),其它条件不变,请探究FG与EG是否垂直;(3)将(1)中绕点D逆时针旋转一定的角度得到,如图3所示,G为线段的中点,吗?请说明理由.24.(12分)如图1,抛物线与x轴交于A,C两点,与y轴交于点,经过点C 的直线与抛物线的另一个交点为M.(1)直接写出b,c的值;(2)若,求k的值;(3)若D为BC上的点,F为AC上的点,,过点B作x轴的平行线交抛物线于点E,连接DE,BF,如图2,当取得最小值时,求点F的坐标.参考答案一、选择题题号12345678910答案A D D C B A A B C D 二、填空题11.12.7913.14.15.三、解答题16.(6分)解:原式.17.(6分)解:画图如下,四边形ABEC是矩形.理由如下:∵D为斜边BC的中点.∴,又,∴四边形ABEC是平行四边形.已知,∴平行四边形ABEC是矩形.18.(6分)解:原式.因为,所以,原式.19.(8分)解:(1)参与本次抽样调查的学生有200人;(2)选项“兴趣活动时间6小时”对应扇形的圆心角度数为144°;(3)解:(人)所以,估计该校1500名学生中,参与劳动实践兴趣小组的人数为840人;(4)建议如下:合理安排学习时间,多参加兴趣小组活动.答案合理即可.20.解:(1)过点A作y轴的垂线,垂足为D.点C为AB的中点,,又;,∴,∴,设,点A在第一象限,则,∴.(2)因为,所以,由,得,所以,.当时,x的取值范围是:.21.(8分)(1)证明:连接OD,OF.∵O为AB的中点,D为BC的中点;∴.∴;;又∵;∴,∴,∵,OD为和的公共边,∴,∴,已知,∴,已知OF为的半径,∴DF为的切线.(2),D为BC的中点;∴.在中,,∴,.∵公共,,,∴,设,则,;在中,;解这个方程得,(不符合题意,舍去),,∴.22.(10分)解:(1).(2),∵,∴由二次函数的性质可知,时,W有最大值,(元).(3)当时,,解这个方程得,,,因为,,结合二次函数的图象分析,电商平台希望每周获得不低于1100元利润,销售单价x的范围是:.23.(11分)解:(1).(2).证明,延长FG至H,使.连接EF,EH,CH.∵,,∴易证明,;∴.在和中,,,.∴.∴,又,∴.(3).证明,延长交AB于点M,延长FG至N,使.连接,,.,,∴,由三角形内角和可得,,∵,,,∴,∴,,∴,∴,∴,在和中,,,,∴,∴,又,∴.24.(12分)解:(1),;(2);(3)如图所示,作,在CQ上截取.连接FK,KB.KB与x轴交于点T,过点K作轴,垂足为G.又∵,∴,∴,∴,当点F在点T的位置时,取等号.即,的最少值等于BK.过作x轴的平行线交抛物线于点E,∴,∴,即.∵,∴,∴,设,则;在中,,解这个方程得,(负值不符合题意,舍去).∴点K的坐标为,∴直线BK的函数表达式为:.∴,即当取得最小值时,F的坐标为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级中考百校大联考在线数学试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 下列各式计算正确的是()
A.B.
C.D.
2 . 如图,在RtΔABC中,AD是斜边BC上的高,∠B=30°,那么线段BD与CD的数量关系为()
A.BD=CD B.BD=2CD C.BD=3CD D.BD=4CD
3 . 已知函数的部分图像如图所示,若,则的取值范围是()
A.B.C.D.
4 . 如图,由4个相同正方体组合而成的几何体,它的左视图是()
A.B.C.
D.
5 . 某中学数学兴趣小组 10 名成员的年龄情况如下:
年龄(岁)12131415
人数1234
则这个小组成员年龄的平均数和中位数分别是()
A.13,13B.14,13C.13,14D.14,14
6 . 方程x2-2x-1=0的根的情况是()
A.有两个不等实数根B.有两个相等实数根C.无实数根D.无法判定
7 . 深圳地铁14号线连接福田中心区、布吉、横岗、大运新城、坪山中心、坑梓,支撑整个东部发展轴,覆盖东部地区南北向交通需求走廊.该地铁线全长约50340米,共设站17座,采用自动化无人驾驶,预计2022年竣工,其中50340米用科学记数法表示为()
A.5.034×104B.5.034×103C.5.034×105D.5×105
8 . 如图,点A、B、C在⊙O上,∠ACB=30°,则sin∠AOB的值是()
A.B.
C.D.
9 . |﹣3|的相反数是()
A.﹣3
C.3D.3或﹣3
B.﹣
10 . 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是()
A.B.C.D.
二、填空题
11 . 不等式组的最大整数解是__________.
12 . 化简:-=______,|3-|+(2-)=______.
13 . 如图,扇形纸片AOB中,已知∠AOB=90º,OA=6,取OA的中点C,过点C作DC⊥OA交于点D,点F是
上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD、DF、FA依次剪下,则剩下的纸片(阴
影部分)面积是______________.
14 . 已知平行四边形的周长为28,自顶点作于点,于点.若,
,则__________.
15 . 如图,若AB∥CD,EF与AB、CD分别相交于点E,F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,
EP⊥FP,则∠BEP=______°.
三、解答题
16 . 先化简,再求值:,其中a=4.
17 . 如图,某生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动12米到B处,测得∠EBF=30°,∠CBD=45°,sin∠CAD=.
(1)求旗杆EF的高;
(2)求旗杆EF与实验楼CD之间的水平距离DF的长.
18 . 某学校为了解学生体能情况,规定参加测试的每名学生从“A:立定跳远”、“B:耐久跑”、C:“掷实心球”,D:“引体向上”四个项目中随机抽取两项作为测试项目.
(1)据统计,初二(3)班共12名男生参加了“立定跳远”的测试,他们的成绩如下:
95 100 90 82 90 65 89 74 75 93 92 85
①这组数据的众数是,中位数是;
②若将不低于90分的成绩评为优秀,请你估计初二年级180名男生中“立定跳远”成绩为优秀的学生约为多少人.
(2)请你不全表格,并求出小明同学恰好抽到“立定跳远”、“耐久跑”两项的概率.
A B C D
A
B
C
D
19 . 大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:
x(天)123 (50)
p(件)118116114 (20)
销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+.
(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.
(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.
(3)这50天中,该超市第几天获得利润最大?最大利润为多少?
20 . 如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,B
A.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
21 . 在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.
(1)已知点A(1,0),B(0,),则以AB为边的“坐标菱形”的最小内角为______;
(2)若点C(2,1),点D在直线y=5上,以CD为边的坐标菱形”为正方形,求育直线CD表达式;
(3)⊙O的半径为,点P的坐标为(3,m),若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正
方形,求m的取值范围.
22 . 在等边△ABC中,P为BC边的三等分点,PE⊥AB于E,PF⊥BC交AC于点
A.
(1)判断△EPF的形状,并说明理由;
(2)FE,PB的延长线交于点G,等边△ABC边长为6,求GB的长.
23 . 一次函数y=k x+b的图象与反比例函数y=的图象交于点A(2,1),B(﹣1,n)两点.(1)求反比例函数的解析式;
(2)求一次例函数的解析式;
(3)求△AOB的面积.。

相关文档
最新文档