数字信号处理实验报告要求

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验报告
专业:信息与计算科学班级:08级(一)班指导老师:刘花璐姓名:肖浩学号:200841210140 实验室:K7-407 实验名称:常见离散信号的Matlab产生和图形显示时间:2011.3.30
一、实验目的及要求
(一)实验目的
加深对常用离散信号的理解
(二)实验要求
(1)预先阅读附录(matlab基础介绍)
(2)讨论复指数序列的性质
三、实验内容与步骤
1.离散采样信号序列
(1)首先产生信号x(n),0≤n≤50
运行结果:
(2绘制信号x(n)的幅度谱和相位谱运行结果:
2.单位抽样序列
{0,1
,0
)
(=

=n
n
n
δ
在matlab中,这一函数可由zeros函数实现运行结果:
3.矩形序列



=
-

≤1
0,1
,0
)
(
N
n
N
n
R
其他
运行结果:4.特定冲击串运行结果: 5.指数序列
n
a
n
x
)
(
运行结果:


通过本次试验学习了用matlab软件处理相关离散信号序列的图形显示,在编写函数中有各类函数的比较,有时没注意其区间的变化容易产生较大的误差,因此要注意区间的选取,多上机操作。

2011年 3月 30 日




年月日。

数字信号处理-实验报告

数字信号处理-实验报告

学生实验报告(理工类)课程名称:数字信号处理专业班级:通信(4)班学生学号:学生姓名:所属院部:网络与通信工程学院指导教师:20 16 ——20 17 学年第一学期金陵科技学院教务处制实验报告书写要求实验报告原则上要求学生手写,要求书写工整。

若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。

纸张一律采用A4的纸张。

实验报告书写说明实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。

各院部可根据学科特点和实验具体要求增加项目。

填写注意事项(1)细致观察,及时、准确、如实记录。

(2)准确说明,层次清晰。

(3)尽量采用专用术语来说明事物。

(4)外文、符号、公式要准确,应使用统一规定的名词和符号。

(5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。

实验报告批改说明实验报告的批改要及时、认真、仔细,一律用红色笔批改。

实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。

实验报告装订要求实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:MATLAB语言工作环境和基本操作实验学时:同组学生姓名:实验地点:工科楼A205 实验日期:实验成绩:批改教师:批改时间:一、实验目的和要求目的:1.初步了解MATLAB开发环境和常用菜单的使用方法;2.熟悉MATLAB常用窗口,包括命令窗口、历史窗口、当前工作窗口、工作空间浏览器窗口、数组编辑器窗口和M文件编辑/调试窗口等;3.了解MATLAB的命令格式;4.熟悉MATLAB的帮助系统。

要求:1. 简述实验原理及目的。

2. 记录调试运行情况及所遇问题的解决方法。

3. 简要回答思考题。

二、实验仪器和设备微型计算机、Matlab6.5以上版本的编程环境。

三、实验过程命令窗口(Command Window):(1) 用于执行MATLAB命令,正常情况下提示符为“>>”,表示MATLAB进入工作状态。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。

⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。

2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。

⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。

3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。

要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。

⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告数字信号处理课程设计实验报告(基础实验篇)实验⼀离散时间系统及离散卷积⼀、实验⽬的和要求实验⽬的:(1)熟悉MATLAB软件的使⽤⽅法。

(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。

(3)利⽤MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。

(4)熟悉离散卷积的概念,并利⽤MATLAB计算离散卷积。

实验要求:(1)编制实验程序,并给编制程序加注释;(2)按照实验内容项要求完成笔算结果;(3)验证编制程序的正确性,记录实验结果。

(4)⾄少要求⼀个除参考实例以外的实例,在实验报告中,要描述清楚实例中的系统,并对实验结果进⾏解释说明。

⼆、实验原理δ的响应输出称为系统1.设系统的初始状态为零,系统对输⼊为单位脉冲序列()n的单位脉冲响应()h n。

对于离散系统可以利⽤差分⽅程,单位脉冲响应,以及系统函数对系统进⾏描述。

单位脉冲响应是系统的⼀种描述⽅法,若已知了系统的系统函数,可以利⽤系统得出系统的单位脉冲响应。

在MATLAB中利⽤impz 由函数函数求出单位脉冲响应()h n2.幅频特性,它指的是当ω从0到∞变化时,|()|Aω,H jω的变化特性,记为()相频特性,指的是当ω从0到∞变化时,|()|∠的变化特性称为相频特性,H jωω。

离散系统的幅频特性曲线和相频特性曲线直观的反应了系统对不同记为()频率的输⼊序列的处理情况。

三、实验⽅法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)1.离散时间系统的单位脉冲响应clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];impz(a,b,30);%离散时间系统的冲激响应(30个样值点)title('系统单位脉冲响应')axis([-3,30,-2,2]);2.(1)离散系统的幅频、相频的分析⽅法21-0.3()1 1.60.9425j j j e H z e e ωωω---=-+clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];%a 分⼦系数,b 分母系数 [H,w]=freqz(a,b,'whole'); subplot(2,1,1); plot(w/pi,abs(H));%幅度 title('幅度谱');xlabel('\omega^pi');ylabel('|H(e^j^\omega)'); grid on;subplot(2,1,2);plot(w/pi,angle(H));%相位 title('相位谱');xlabel('\omega^pi'); ylabel('phi(\omega)'); grid on;(2)零极点分布图clc; clear all a=[1,-0.3];b=[1,-1.6,0.9425]; zplane(a,b);%零极图 title('零极点分布图')3.离散卷积的计算111()()*()y n x n h n =clcclear all% x=[1,4,3,5,3,6,5] , -4<=n<=2 % h=[3,2,4,1,5,3], -2<=n<=3 % 求两序列的卷积 clear all;x=[1,4,3,5,3,6,5]; nx=-4:2; h=[3,2,4,1,5,3];nh=-2:3;ny=(nx(1)+nh(1)):(nx(length(x))+nh(length(h))); y=conv(x,h);n=length(ny);subplot(3,1,1);stem(nx,x);xlabel('nx');ylabel('x'); subplot(3,1,2);stem(nh,h);xlabel('nh');ylabel('h'); subplot(3,1,3);stem(ny,y);xlabel('n');ylabel('x 和h 的卷积')五、实验结果及分析(计算过程与结果、数据曲线、图表等)1.离散时间系统的单位脉冲响应051015202530-2-1.5-1-0.500.511.52n (samples)A m p l i t u d e系统单位脉冲响应2.离散系统的幅频、相频的分析⽅法00.20.40.60.81 1.2 1.4 1.6 1.82 102030幅度谱ωp i|H (e j ω)0.20.40.60.811.21.41.61.82-2-1012相位谱ωp ip h i (ω)-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t零极点分布图3.离散卷积的计算-4-3-2-1012nxx-2-1.5-1-0.500.51 1.522.53nhh -6-4-20246nx 和h 的卷积六、实验总结与思考实验⼆离散傅⽴叶变换与快速傅⽴叶变换⼀、实验⽬的和要求实验⽬的:(1)加深理解离散傅⾥叶变换及快速傅⾥叶变换概念; (2)学会应⽤FFT 对典型信号进⾏频谱分析的⽅法; (3)研究如何利⽤FFT 程序分析确定性时间连续信号; (4)熟悉应⽤FFT 实现两个序列的线性卷积的⽅法;实验要求:(1)编制DFT 程序及FFT 程序,并⽐较DFT 程序与FFT 程序的运⾏时间。

《数字信号处理》实验报告

《数字信号处理》实验报告

《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

所以,根据本课程的重点要求编写了四个实验。

第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。

由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。

这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。

第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。

限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。

通过该实验加深理解DFT的基本概念、基本性质。

FFT是它的快速算法,必须学会使用。

所以,学习完第三、四章后,可安排进行实验二。

数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。

学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。

IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。

这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。

学习完第六章以后可以进行实验三。

FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。

窗函数法是一种基本的,也是一种重要的设计方法。

学习完第七章后可以进行实验四。

以上所提到的四个实验,可根据实验课时的多少恰当安排。

例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。

若时间紧,可以在实验三、四之中任做一个实验。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:频谱分析与采样定理一、实验目的1.观察模拟信号经理想采样后的频谱变化关系。

2.验证采样定理,观察欠采样时产生的频谱混叠现象3.加深对DFT算法原理和基本性质的理解4.熟悉FFT算法原理和FFT的应用二、实验原理根据采样定理,对给定信号确定采样频率,观察信号的频谱三、实验内容和步骤实验内容(1)在给定信号为:1.x(t)=cos(100*π*at)2.x(t)=exp(-at)3.x(t)=exp(-at)cos(100*π*at)其中a为实验者的学号,用DFT分析上述各信号的频谱结构,选取不同的采样频率和截取长度,试分析频谱发生的变化。

实验内容(2)设x(n)=cos(0.48*π*n)+ cos(0.52*π*n),对其进行以下频谱分析:10点DFT,64点DFT,及在10点序列后补零至64点的DFT 试分析这三种频谱的特点。

四、实验步骤1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。

2.复习FFT算法原理和基本思想。

3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验程序和结果实验1内容(1)N=L/T+1;t=0:T:L;a=48;D1=2*pi/(N*T); % 求出频率分辨率k1=floor((-(N-1)/2):((N-1)/2)); % 求对称于零频率的FFT位置向量%%%%%%%%%%%%%%%%%%%%%%%%%figure(1),x1=cos(100*pi*a*t);y1=T*fftshift(fft(x1));%虽然原来是周期信号,但做了截断后,仍可当作非周期信号。

subplot(2,1,1),plot(t,x1);title('正弦信号');subplot(2,1,2),plot(k1*D1,abs(y1));title('正弦信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(2), x2=exp(-a*t);y2=T*fftshift(fft(x2));%有限长(长度为N)离散时间信号x1的dft 再乘T 来近似模拟信号的频谱,长度为Nsubplot(2,1,1),plot(t,x2);title('指数信号');subplot(2,1,2),plot(k1*D1,abs(y2));title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(3), x3=x1.*x2;y3=T*fftshift(fft(x3))subplot(2,1,1),plot(t,x3);title('两信号相乘');subplot(2,1,2),plot(k1*D1,abs(y3));title('两信号相乘频谱');0.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.140.160.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.0005 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-2000200040006000800000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51指数信号-8000-6000-4000-20000200040006000800000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-20000200040006000800000.0050.010.015两信号相乘频谱T=0.002 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-2000-1500-1000-50050010001500200000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51-2000-1500-1000-500050010001500200000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-2000-1500-1000-500050010001500200000.0050.010.015两信号相乘频谱T=0.001 L=0.180.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-1000100020003000400000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.180.51指数信号-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.001 L=0.120.020.040.060.080.10.12-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.12-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱实验1内容(2)>> N=10;n=1:NT=1x1=cos(0.48*pi*n*T)+cos(0.52*pi*n*T)X1=fft(x1,10)k=1:N;w=2*pi*k/10subplot(3,2,1);stem(n,x1);axis([0,10,-3,3]);title('信号x(n)');subplot(3,2,2);stem(w/pi,abs(X1));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N2=100;n2=1:N2T=1x1=cos(0.48*pi*[1:10]*T)+cos(0.52*pi*[1:10]*T)x2=[x1,zeros(1,90)]X2=fft(x2,N2)k2=1:N2;w2=2*pi*k2/100subplot(3,2,3);stem(x2);axis([0,100,-3,3]);title('信号x(n)补零');subplot(3,2,4);plot(w2/pi,abs(X2));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N3=100;n3=1:N3T=1x3=cos(0.48*pi*n3*T)+cos(0.52*pi*n3*T)X3=fft(x3,100)k3=1:N3;w3=2*pi*k3/100subplot(3,2,5);stem(n3,x3);axis([0,100,-3,3]);title('信号x(n)');subplot(3,2,6);stem(w3/pi,abs(X3));axis([0,1,0,10]);title('DFTx(n)');n =1 2 3 4 5 6 7 8 9 10 T =1510-202信号x(n)0.510510DFTx(n)50100信号x(n)补零0.510510DFTx(n)50100信号x(n)DFTx(n)实验二 卷积定理一、实验目的通过本实验,验证卷积定理,掌握利用DFT 和FFT 计算线性卷积的方法。

数字信号处理(西电上机实验)

数字信号处理(西电上机实验)

数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理与方法:(1) 时域采样。

(2) LTI系统的输入输出关系。

三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。

(2) 编制实验用主程序及相应子程序。

①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。

本实验要用到两种FIR系统。

a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。

可以直接调用MATLAB语言中的卷积函数conv。

conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。

调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。

a. 取采样频率fs=1 kHz, 即T=1 ms。

b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。

②时域离散信号、系统和系统响应分析。

a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验报告格式(1)(1)

数字信号处理实验报告格式(1)(1)

《数字信号处理》实验报告实验一、系统响应与系统稳定性专业:通信工程班级:通信1204班实验一、系统响应及系统稳定性一、设计目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析,观察及检验系统的稳定性。

二、实验原理和方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。

也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。

系统的稳态输出是指当n→∞时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。

注意在以下实验中均假设系统的初始状态为零三、实验内容和分析实验内容编程如下:(1)给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号 x1(n)=R8(n), x2(n)=u(n)① 分别求出x 1(n)=R 8(n)和x 2(n)=u(n)的系统响应,并画出其波形。

② 求出系统的单位脉冲响应,画出其波形。

数字信号处理实验报告11-12-10

数字信号处理实验报告11-12-10

《数字信号处理》实验报告专业学号姓名实验一 利用FFT 实现快速卷积一、实验目的1.加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。

2.掌握循环卷积和线性卷积两者之间的关系。

二、实验原理用FFT 来快速计算有限长度序列的线性卷积。

这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样值()x k ,然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)。

现以FFT 求有限长序列的卷积及求有限长度序列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。

序列x(n)和h(n)的长差不多。

设x(n)的长为N 1,h(n)的长为N 2,要求∑-=-=⊗=1)()()()()(N m m n x m h n y n x n y用FFT 完成这一卷积的具体步骤如下:①为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运算,要求m N 2=(m 为整数)。

②用补零方法使x(n)和h(n)变成列长为N 的序列。

1122()01()01()01()01x n n N x n N n N h n n N h n N n N ≤≤-⎧=⎨≤≤-⎩≤≤-⎧=⎨≤≤-⎩③用FFT 计算x(n)和h(n)的N 点离散傅里叶变换。

④完成X(k)和H(k)乘积,)()()(k H k x k Y = ⑤用FFT 计算 ()Y k 的离散傅里叶反变换得*10*10)(1)(1)(⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∑∑-=--=N k nk N nk N N k W k Y N W k Y N n y三、主要实验仪器及材料微型计算机、Matlab6.5教学版。

四、实验内容1.数字滤波器的脉冲响应为()22()1/2(),8nN h n R n N ==。

数字信号处理基础实验报告

数字信号处理基础实验报告

中南大学《数字信号处理》实验报告课程名称数字信号处理指导教师李宏学院信息科学与工程学院专业班级学号姓名实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法; (2) 加深对常用离散时间信号的理解; (3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。

二、实验内容及要求(1)复习常用离散时间信号的有关内容;常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n kn b )单位阶跃序列⎩⎨⎧=01)(n u00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2) 用MATLAB 编程产生上述任意3种序列(长度可输入确定,对(d) (e) (f)中的参数可自行选择),并绘出其图形;()()n x n a u n =程序如下: 1)单位阶跃序列: n=-20:20; xn=heaviside(n); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位阶跃序列');xlabel('n');ylabel('u(n)');box on得到图像如下:2)单位抽样序列: n=-20:20;xn=heaviside(n)-heaviside(n+1); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位抽样序列');xlabel('n');ylabel('\delta(n)');box on得到图像如下:-20-15-10-50510152000.20.40.60.81单位阶跃序列nu (n )3)矩阵序列: n=-20:20; N=5;xn=heaviside(n)-heaviside(n-N); xn(n==0)=1;xn(n==N)=0;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('矩阵序列');xlabel('n');ylabel('R_{N}(n)');box on 得到图像如下:-20-15-10-50510152000.20.40.60.81单位抽样序列n(n )-20-15-10-50510152000.20.40.60.81矩阵序列nR N (n )4)正弦序列:n=-40:40;A=2;w=pi/8;f=pi/4; xn=A*sin(w.*n+f);plot(n,xn);stem(n,xn);axis([-40 40 -4.2 4.2]) title('正弦序列');xlabel('n');ylabel('x(n)');box on得到图像如下:(3) 混叠现象对连续信号01()sin(2***)x t pi f t =其中,01500f Hz =进行采样,分别取采样频率2000,1200,800s f Hz Hz Hz =,观察|)(|jw e X 的变化,并做记录(打印曲线),观察随着采样频率降低频谱混叠是否明显存在,说明原因。

数字信号处理实验报告(实验三)

数字信号处理实验报告(实验三)

实验三 用双线性变换法设计IIR 数字滤波器1. 实验目的(1) 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。

(2) 掌握数字滤波器的计算机仿真方法。

(3) 通过观察对实际心电图信号的滤波作用, 获得数字滤波的感性知识。

2. 实验内容(1) 用双线性变换法设计一个巴特沃斯低通IIR 数字滤波器。

设计指标参数为:在通带内频率低于0.2π时,最大衰减小于1dB ;在阻带内[0.3π, π] 频率区间上,最小衰减大于15dB 。

(2) 以 0.02π为采样间隔, 打印出数字滤波器在频率区间[0, π/2]上的幅频响应特性曲线。

(3) 用所设计的滤波器对实际心电图信号采样序列(在本实验后面给出)进行仿真滤波处理,并分别打印出滤波前后的心电图信号波形图, 观察总结滤波作用与效果。

3.实验原理为了克服用脉冲响应不变法产生频谱混叠现象,可以采用非线性频率压缩方法(正切变换),从s 平面映射到s1平面,再从s1平面映射到z 平面,即实现了双线性变换。

4. 实验步骤(1) 复习有关巴特沃斯模拟滤波器设计和用双线性变换法设计IIR 数字滤波器的内容, 按照例 6.4.2, 用双线性变换法设计数字滤波器系统函数H(z)。

例 6.4.2 中已求出满足本实验要求的数字滤波器系统函数:(2-1)161212120.0007378(1)()(1 1.2680.705)(1 1.01060.3583)(10.9040.215)z H z zz zz z z -------+=-+-+-+31()k K H z ==∏(2-2)A=0.09036B1=1.2686, C1=-0.7051 B2=1.0106, C2=-0.3583 B3=0.9044, C3=-0.2155由(2-1)式和(2-2)式可见,滤波器H(z)由三个二阶滤波器H1(z),H2(z)和H3(z)级联组成,如图 2-1 所示。

(2) 编写滤波器仿真程序,计算H(z)对心电图信号采样序列x(n)的响应序列y(n)。

《数字信号处理》实验指导书(全)

《数字信号处理》实验指导书(全)

数字信号处理实验指导书电子信息工程学院2012年6月目录实验一离散信号产生和基本运算 (3)实验二基于MATLAB的离散系统时域分析 (7)实验三基于ICETEK-F2812-A 教学系统软件的离散系统时域分析 (9)实验四基于MATLAB 的FFT 算法的应用 (16)实验五基于ICETEK-F2812-A 的FFT 算法分析 (18)实验六基于ICETEK-F2812-A 的数字滤波器设计 (20)实验七基于ICETEK-F2812-A的交通灯综合控制 (24)实验八基于BWDSP100的步进电机控制 (26)实验一离散信号产生和基本运算一、实验目的(1)掌握MATLAB最基本的矩阵运算语句。

(2)掌握对常用离散信号的理解与运算实现。

二、实验原理1.向量的生成a.利用冒号“:”运算生成向量,其语句格式有两种:A=m:nB=m:p:n第一种格式用于生成不长为1的均匀等分向量,m和n分别代表向量的起始值和终止值,n>m 。

第二种格式用于生成步长为p的均匀等分的向量。

b.利用函数linspace()生成向量,linspace()的调用格式为:A=linspace(m,n)B=linspace(m,n,s)第一种格式生成从起始值m开始到终止值n之间的线性等分的100元素的行向量。

第二种格式生成从起始值m开始到终止值n之间的s个线性等分点的行向量。

2.矩阵的算术运算a.加法和减法对于同维矩阵指令的A+BA-B对于矩阵和标量(一个数)的加减运算,指令为:A+3A-9b.乘法和除法运算A*B 是数学中的矩阵乘法,遵循矩阵乘法规则A.*B 是同维矩阵对应位置元素做乘法B=inv(A)是求矩阵的逆A/B 是数学中的矩阵除法,遵循矩阵除法规则A./B 是同维矩阵对应位置元素相除另'A表示矩阵的转置运算3.数组函数下面列举一些基本函数,他们的用法和格式都相同。

sin(A),cos(A),exp(A),log(A)(相当于ln)sqrt(A)开平方 abs(A)求模 real(A)求实部 imag(A)求虚部 式中A 可以是标量也可以是矩阵 例: 利用等差向量产生一个正弦值向量 t=0:0.1:10 A=sin(t) plot(A)这时候即可看到一个绘有正弦曲线的窗口弹出 另:每条语句后面加“;”表示不要显示当前语句的执行结果 不加“;”表示要显示当前语句的执行结果。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。

二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。

其主要内容包括采样、量化、滤波、变换分析、重建等。

其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。

频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。

采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。

三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。

采集的信号包括噪声信号、含有正弦波和方波的混合信号等。

2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。

这一步通常通过ADC(模数转换器)实现。

3.滤波处理:将量化后的数字信号输入到数字滤波器中。

我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。

4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。

5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。

我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。

四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。

这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。

2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。

在频域分析中,我们可以更清楚地看到信号的频率特性。

例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告通信与信息工程学院数字信号处理课程设计班级:姓名:学号:指导教师:设计时间:成绩:评语:通信与信息工程学院二〇一四年题目一:采样定理的验证1.课程设计目的及要求:1). 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。

2). 掌握利用MATLAB实现连续信号采用与重构的方法,加深理解采样与重构的概念。

3 ). 初步掌握线性系统的设计方法,培养独立工作能力。

4). 学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

5). 验证信号与系统的基本概念、基本理论,掌握信号与系统的分析方法。

6). 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。

2.详细设计过程及调试结果:1).设()(0.8)()n,利用filter函数求出()*()x n u nx n x n的源程序:n=0:49xn=(0.8).^nB=1A=[1,-0.8]yn=filter(B,A,xn)stem(n,yn)xlabel('n');ylabel('yn')本题验结果及分析:2):模拟信号()sin(20),010.01a s x t t t T s π=≤≤=,在,0.050.1s s 和间隔采样得到()x n :a.每一个s T 画出()x n 的源程序:t=0:0.01:1;T0=0.1; T1=0.01;n1=0:100; T2=0.05;n2=0:20; T3=0.1;n3=0:10; xt=sin(20*pi*t); xn1=sin(20*pi*n1*T1); xn2=sin(20*pi*n2*T2);xn3=sin(20*pi*n3*T3);subplot(4,1,1);plot(t,xt);title('模拟信号xt图');xlabel('t');ylabel('xt');grid on; subplot(4,1,2);stem(n1,xn1,'.');title('0.01s采样图');xlabel('n');ylabel('xn1');grid on; subplot(4,1,3);stem(n2,xn2,'.');title('0.05s采样图');xlabel('n');ylabel('xn2');grid on; subplot(4,1,4);stem(n3,xn3,'.');title('0.1s采样图');xlabel('n');ylabel('xn3');grid on;调试结果分析:b.采用sin c内插从样本()y t的源程序:x n重建模拟信号()at=0:0.01:1;T0=0.1;xt=sin(20*pi*t);T1=0.01;n1=0:100;T2=0.05;n2=0:20;T3=0.1;n3=0:10;xt=sin(20*pi*t);subplot(4,1,1);plot(t,xt);title('原信号xt模拟图');xlabel('t');ylabel('xt');grid on;xn1=sin(20*pi*n1*T1);xn2=sin(20*pi*n2*T2);xn3=sin(20*pi*n3*T3);t1=0:T1:1;t2=0:T2:1;t3=0:T3:1;tn1=ones(length(n1),1)*t1-n1'*T1*ones(1,length(t1));tn2=ones(length(n2),1)*t2-n2'*T2*ones(1,length(t2));tn3=ones(length(n3),1)*t3-n3'*T3*ones(1,length(t3));yt1=xn1*sinc(tn1*pi/T1);subplot(4,1,2);plot(t1,yt1);axis([ 0 1 -1 1]); title('sinc内插0.01恢复的xt1图');xlabel('n');ylabel('xt1');grid on; yt2=xn2*sinc(tn2*pi/T2);subplot(4,1,3);plot(t2,yt2);axis([ 0 1 -1 1]); title('sinc内插0.05恢复的xt2图');xlabel('n');ylabel('xt2');grid on; yt3=xn3*sinc(tn3*pi/T3);subplot(4,1,4);plot(t3,yt3);axis([ 0 1 -1 1]); title('sinc内插0.1恢复的xt3图');xlabel('n');ylabel('xt3');grid on;调试结果分析:c.采用三次样条内插从样本()x n重建模拟信号源程序:t=0:0.01:1; xt=sin(20*pi*t);T1=0.01;n1=0:100;T2=0.05;n2=0:20;T3=0.1;n3=0:10;T1=0:T1:1;T2=0:T2:1;T3=0:T3:1;xt=sin(20*pi*t);xn1=sin(20*pi*T1);xn2=sin(20*pi*T2);xn3=sin(20*pi*T3);yt1=spline(T1,xn1,t);yt2=spline(T2,xn2,t);yt3=spline(T3,xn3,t);subplot(4,1,1);plot(t,xt);title('原信号xt模拟图');xlabel('t');ylabel('xt');grid on;subplot(4,1,2);plot(t,yt1);axis([ 0 1 -1 1]);title('三次样条0.01恢复的xt1图');xlabel('n');ylabel('xt1');grid on; subplot(4,1,3);plot(t,yt2);axis([ 0 1 -1 1]);title('三次样条0.05恢复的xt2图');xlabel('n');ylabel('xt2');grid on; subplot(4,1,4);plot(t,yt3);axis([ 0 1 -1 1]);title('三次样条0.1恢复的xt3图');xlabel('n');ylabel('xt3');grid on; 调试结果分析:3.总结体会:连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

数字信号处理实验报告(1)

数字信号处理实验报告(1)

数字信号处理实验报告(1)河南工业大学电气工程学院《数字信号处理》课程实验报告学生姓名:俞阳学号:201323020620 专业班级:自动1306实验日期:5月15日成绩:实验一离散时间信号与系统分析一、实验目的1.掌握离散时间信号与系统的时域分析方法。

2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。

3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。

二、实验原理1.离散时间系统一个离散时间系统是将输入序列变换成输出序列的一种运算。

若以][ T来表示这种运算,则一个离散时间系统可由下图来表示:图 离散时间系统输出与输入之间关系用下式表示)]([)(n x T n y =离散时间系统中最重要、最常用的是线性时不变系统。

2.离散时间系统的单位脉冲响应设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。

可得到:)()()()()(n h n x m n h m x n y m *=-=∑∞-∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。

3.连续时间信号的采样采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。

对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘积,即:][⋅T)()()(ˆt t x t x T a a δ=其中,)(ˆt x a 是连续信号)(t xa 的理想采样,)(t T δ是周期冲激脉冲 ∑∞-∞=-=m T mT t t )()(δδ设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(ˆt xa 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(ˆΩj X a ,即)]([)(t x F j X a a =Ω)]([)(t F j M T δ=Ω)](ˆ[)(ˆt x F j Xa a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即)]()([21)(ˆΩ*Ω=Ωj X j M j X aa π 其中⎰∞∞-Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(ˆ 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。

数字信号处理实验报告

数字信号处理实验报告

物理与电子电气工程学院实验报告课程名称:数字信号处理院系:物理与电子电气工程学院专业:电子信息科学与技术班级:学号:姓名:物理与电子电气工程学院实验报告实验报告(1)实验名称实验一离散时间信号分析实验日期2013.10.19 指导教师(2)绘制单位跃阶)u序列(n解:MATLAB程序如下:>> n=-10:10;>> x=[zeros(1,10),ones(1,11)]; >> stem(n,x,'fill')>> grid on(4)正弦型序列)35sin()(ππ+=n A n x解:MATLAB 程序如下: >> n=-10:10; >> w=pi/5; >> ph=pi/3; >> A=2;(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: >> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> stem(n,x,'fill') >> grid on(2)实现任意序列(2)()(-+=n n n h δδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=circshift(x,[0,-4]); %左移四位>> stem(n,y,'fill') >> grid on(4)实现任意序列)(=n x (2)2()1(2)()(+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x+y; %两数列相加(5)实现任意序列)(=n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x.*y; %实现两序列的积 >> stem(n,k,'fill')(6)分别实现()(=n n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: ①>> n=-10:10;②>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=cumsum(x); %%实现函数自身的累加(由左向右累加)>> stem(n,y,'fill')>> grid on实验一实验心得:首先,第一次实验,我又开始重拾MATLAB方法。

数字信号处理实验报告

数字信号处理实验报告

实验报告课程名称:数字信号处理授课班级:学号:姓名:指导老师:实验一离散时间信号及系统的时域分析实验类别:基础性实验1实验目的:(1)了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境。

(2)熟悉MA TLAB中产生信号和绘制信号的基本命令,学会用MA TLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。

(3)通过MA TLAB仿真一些简单的离散时间系统,并研究它们的时域特性。

(4)通过MA TLAB进行卷积运算,利用卷积方法观察分析系统的时域特性。

2. 实验报告要求●简述实验原理及目的。

●结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。

●记录调试运行情况及所遇问题的解决方法。

3.实验内容:思考题:9.2.1 运行程序P9.2.1,哪个参数控制该序列的增长或衰减:哪个参数控制该序列的振幅?若需产生实指数序列,应对程序作何修改?9.2.2运行程序P9.2.1,该序列的频率是多少?怎样改变它?哪个参数控制该序列的相位?哪个参数可以控制该序列的振幅?该序列的周期是多少?9.2.3 运行程序P9.2.3,对加权输入得到的y(n)与在相同权系数下输出y1(n)和y2(n)相加得到的yt(n)进行比较,这两个序列是否相等?该系统是线性系统吗?9.2.4 假定另一个系统为y(n)=x(n)x(n-1)修改程序,计算这个系统的输出序列y1(n),y2(n)和y(n)。

比较有y(n)和yt(n)。

这两个序列是否相等?该系统是线性系统吗?(提高部分)9.2.5运行程序P9.2.4,并比较输出序列y(n)和yd(n-10)。

这两个序列之间有什么关系?该系统是时不变系统吗?9.2.6 考虑另一个系统:修改程序,以仿真上面的系统并确定该系统是否为时不变系统。

(选做)n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);[x1,n1]=sigmult(n,n,x,n)[x2,n2]=sigshift(x,n,1)[y,ny1]= sigadd(x1,n1,x2,n2)[y1,ny11]= sigshift(y,ny1,D)[sx,sn]= sigshift(x,n,D)[sx1,sn1]=sigmult(n,n, sx,sn)[sx2,sn2]=sigshift(sx,sn,1)[y2,ny2]= sigadd(sx1,sn1,sx2,sn2)D= sigadd(y1,ny11,y2,ny22)六、实验心得体会:实验时间批阅老师实验成绩实验二 FFT 实现数字滤波实验类别:提高性实验 1.实验目的(1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验课程设计
题目:数字滤波器的设计与实现
一、课程设计目的
(1) 掌握用脉冲响应不变法和双线性变换法设计无限脉冲响应数字滤波器(IIR DF )的原理和方法;
(2) 掌握用窗函数法和频率采样设计有限脉冲响应数字滤波器(FIR DF )的原理和方法;
(3) 学会根据信号的频谱确定滤波器指标参数;
(4) 学会调用MATLAB 信号处理工具箱中的滤波器设计函数设计IIR DF 和FIR DF 。

二、课程设计原理
已知一个连续时间信号())π2cos()π2sin(21t f t f t x +=,Hz 1001=f ,Hz 3002=f ,x (t )为两个单频信号叠加后的混合信号,其时域波形和幅频特性图如图1所示。

由图可知,混合信号时域混叠,无法在时域进行分离,但是频域是分离的,可以通过设计合适的IIR DF 和FIR DF 将两个单频信号分离,形成两个单一频率信号。

-2-1
1
2
t/s
x (t )(a)混合信号时域波

050100150200250
30035040045050000.5
1
f/Hz 幅度(b)混合信号幅频特性
图1混合信号x (t )及其频谱图
三、课程设计内容
设计低通滤波器和高通滤波器将两个单频信号分离。

滤波器的通带截止频率和阻带截止频率通过观察x (t )的幅频特性图自行确定,设采样频率为Hz 1000=s f ,要求滤波器的通带最大衰减和阻带最小衰减分别为dB 50,dB 1s p ==αα。

调用MATLAB 中的滤波器设计函数编写
程序设计低通滤波器和高通滤波器(其中,低通滤波器用脉冲响应不变法和双线性变换法两种方法设计,高通滤波器用窗函数法和频率采样法两种方法设计),并绘制滤波器的幅频特性图、经滤波分离后的信号时域波形图和幅频特性图,观察分离效果。

四、课程设计报告要求
课程设计报告应包含以下几个方面的内容:
1.课程设计目的
2.课程设计要求
3.课程设计过程(包括设计步骤、完整的程序及仿真图)
4.结果分析
5.心得体会、问题或者建议
6.参考文献。

相关文档
最新文档