东华理工大学物理练习试卷答案静电场中的导体与电介质

合集下载

ch7-静电场中的导体和电介质-习题及答案

ch7-静电场中的导体和电介质-习题及答案

ch7-静电场中的导体和电介质-习题及答案第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr=21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体内的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。

静电场中的导体和电介质习题解答

静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一选择题 1.半径为R 的导体球原不带电, 则导体球的电势为 () q B.羊 4 n o a 今在距球心为 a 处放一点电荷q ( a >R 。

设无限远处的电势为零, qa D . 4 n o (a R )解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷 C.4 n o (a R) q 分布在导体球表面上,且 q ( q ) 0 ,它们在球心处的电势 1 V 乩q 4 n o R点电荷q 在球心处的电势为 47^ q dq V J 据电势叠加原理,球心处的电势 4 n o aV o V Vq 。

4 n o a 所以选(A ) 2.已知厚度为d 的无限大带电导体平板, 则板外两侧的电场强度的大小为 ( 2 A. E B. E 2 o o两表面上电荷均匀分布, 电荷面密度均为 ,如图所示,d C. E 二一 D. E=—— ⑰ 2匂解:在导体平板两表面外侧取两对称平面, 做侧面垂直平板 的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为2 S ,可得E —。

0选择题2图 所以选(C ) 3.如图,一个未带电的空腔导体球壳,内半径为 量为+q 的点电荷。

() R,在腔内离球心的距离为 用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 d 处(d<R ,固定一电o 处的电势为A. C.B. 4 n o d q 1 D. (—4 n 0 d 解:球壳内表面上的感应电荷为 q _q 4n o d 4n o R 选择题3图 1R ) -q,球壳外表面上的电 (+q . j 荷为零,所以有V o 所以选(D ) 4.半径分别为 在忽略导线的影响下,A . R/r B. R 2 / r 2 C. r 2 / R 解:两球相连,当静电平衡时,两球带电量分别为 分布,且两球电势相等,取无穷远为电势零点,则 QR 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电, 两球表面的电荷面密度之比 R / r 为() B. R 2 / r 2 C. r 2 / R 2 D. r / R Q q ,因两球相距很远,所以电荷在两球上均匀 所以选(D )R Q/4 R 2r q /4 r 2「的均匀电介质,若测得导体表面附近场强为 E,则导体球面的自由电荷面密度 为() 上D S S ,即 所以选(B )6. 一空气平行板电容器,充电后测得板间电场强度为 煤油,待稳定后,煤油中的极化强度的大小应是(£ A . —E g £ £(£ 1 )匸 B . E 0£不管是否注入电介(£ 1) C. E 。

第十二章 静电场中的导体和电介质作业答案

第十二章 静电场中的导体和电介质作业答案

B E dx
A
B A
q1 q2 S20
dx
q1 q2 20S
d
3. 有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷
为q的点电荷,如图所示,则 C
(A) 只有当q 0时,金属球才下移.
(B) 只有当q 0时,金属球才下移.
(C) 无论q是正是负金属球都下移.
(D) 无论q是正是负金属球都不动.
0
Q球
1 2
q
二、填空题
1. 地球表面附近的电场强度约为100N/C,方向垂直地面向下,假设地球上的电荷都均
匀分布在地球表面上,则地面的电荷密度为______。
分析:地球是一个等势体,里边的场强为零,达到静电平衡,表面附近的场强
E
0
100
0 100 8. 85 1012 100 8. 85 1010 C2 m-2
q UAB
q
1
UAB
q
1
UAB 40RB外表面
1
q UAB
1 4 0 R B外表面
40RB外表面
q UAB
q UAB
4 0 R B外表面
q
1
UAB
q
1
UAB 40RB外表面
jintian 2. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示,当电 容器充电后,若忽略边缘效应,则电介质中的场强E与空气中的场强E0相比较,应
q
分析:一带电量为q、半径为R的金属薄球壳,里边的场强为零,电介质不被极化,电介质
不产生附加电场,壳外是真空,壳外的场强就是电量q产生的场强。半径为R的金属薄球壳
是一个等势体,
E U壳

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。

华理大物答案第9章(2015)

华理大物答案第9章(2015)
q1 q 2 q E1 E2 1 q 1 0 0s 2 q 2 0 0s (1)

E1 q1 E2 q2
(2)
根据题意
UA UB UA UC E1d1 E 2 d 2 (3)

E1 d 2 1 E 2 d1 2
由(1) 、 (2) 、 (3)式可得 q 1 1.0 10 7 C , q 2 2.0 10 7 C 。 (2) U A E 1 d 1
(2)
(3)


q外 0
U 外 E dl R 2
q q dr 2 40 r 40 R 2
q 外 q
U内 q内
U E dl 0

( E 外 0)
40 R 1
R q 0 q内 1 q 40 R 2 R2
E1 20 r R 1
E1 20 r r
E2
20 r R 2
根据题意 E 1 2.5E 2 可解得 R 2 2.5R 1 2.5 0.5 1.25cm 又 E1 的场强最大,故电压升高后,该处先击穿。令 E 1 E M ,则有
20 r R 1 E M
q1 d1 0S

1.0 107 4.0 103 2.3 103V 8.85 1012 0.02
11
大学物理(下)习题册参考解答
5、半径均为 a 的两根平行长直导线,相距为 d (d>>a),求单位长 度上的电容。 解:设两导线间任意 P 点,距导线中心为 r,则 P 点 E 为
U 2 U 3 U U1 100 50 50V
Q3 C3U 3 20 10 6 50 1.0 10 3 C

10第十章 静电场中的导体与电介质作业答案

10第十章 静电场中的导体与电介质作业答案

一、选择题[ B]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0,静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得:022202010=-+εσεσεσ联立解得: 1222σσσσ=-=[ C ]2(基础训练6)半径为R 的金属球与地连接。

在与球心O 相距d =2R 处有一电荷为q 的点电荷。

如图所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【提示】静电平衡时金属球是等势体。

金属球接地,球心电势为零。

球心电势可用电势叠加法求得:000'044q dq q Rd πεπε'+=⎰, 00'01'44q q dq R d πεπε=-⎰, 'q q R d =-,其中d = 2R ,'2qq ∴=-[ C ]3(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差为:(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V【提示】反接,正负电荷抵消后的净电量为661212(82)101000610Q Q Q C U C U C --=-=-=-⨯⨯=⨯这些电荷重新分布,最后两个电容器的电压相等,相当于并联。

并联的等效电容为512C'10C C F -=+=,电势差为'600()'QU V C ==。

3-2电磁-静电场中的导体与电介质 大学物理作业习题解答

3-2电磁-静电场中的导体与电介质 大学物理作业习题解答

C'' 1F A
C5和C6串联后,再与C’’并联的电容为
C C'' C''' C'' C5C6 3F C5 C6
C3 C1
C4
C5
C2 C6 B
(2)设V=200伏,则AB间电荷为 q CV 6 104 C
由于 C'' : C''' 1 : 2 故
q'' : q'',' 因1 此: 2
(3)若球外r处又放一点电荷q,在球外表面上又感应出等量异号
电荷,但他在球心电势为零,故球心处电势为:
v0
q0 40r0
q0 40R1
Q q0 40R2
q 40r
补充2.3 有两个同轴的圆柱面,面内柱面半径为R1,电势为U1,外 柱面半径为R2,电势为U2,求两柱面间两点的电势差。
解:设内筒单位长度的电量为1,外筒为2,故R1与R2之间的电
0r2s2 1 d
2-2 如图平行板电容器面积为S,两板间距为d.(1)在保持电源与 电容器的极板相连接情况下扦入厚度为d’介质,求介质内外场强 之比;(2)电容器与电源断开,再扦入介质,情况如何?(3)扦入不
是介质,而是金属平板.(1),(2)这两种情况如何?
解:(1)在保持电源与电容器的极板相连接情 d
C=C球形+C球
4 0 R 2R1 R2 R1
4 0 R 2
4 0 R 2 2 R2 R1
11
2-11 三个平行金属板A、B、C面积均为200平方厘米,AB间距离
4.0毫米,AC间距离2.0毫米,B和C都接地。如果使A板带正电,

东华理工大学 物理练习试卷答案 静电场中的导体与电介质

东华理工大学 物理练习试卷答案 静电场中的导体与电介质
2q A qA 2 , 1 3S 3S
qB 2 S 110 7 C
U A EAC d AC
1 d AC 2.3 103V 0
12 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球 壳,介质相对介电常数为εr,金属球带电Q.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势;
解: 利用有介质时的高斯定理
(1)介质内R1<r<R2场强 介质外r>R2场强 (2)介质外r<R2电势
Qr Qr D 3 , E内 4πr 4π 0 r r 3
Qr Qr D , E外 3 4πr 4π 0 r 3
D dS q
E0
r>R3的区域
1 Q Q2 1 2 2 W2 0 ( ) 4πr dr 2 R3 2 8π 0 R3 4π 0 r

Qr 4π 0 r 3 r>R3时 E2 E1
在R1<r<1 W W1 W2 ( ) 8π 0 R1 R2 R3
静电场中的导体与电介质
一、选择题
1.有一接地金属球,有一弹簧吊起,金属球原来 不 带 电,若在它的下方放置一电量为q的点电荷则 【C 】 (A)只有当q>0时,金属球才会下移 (B)只有当q<0时,金属球才下移 (C)无论q是正是负金属球都下移 ; (D)无论q是正是负金属球都不动
q
2.A、B为两导体板,面积均为S,平行放置, A板带电荷+Q1 , B板电荷 +Q2,如果使 B板接地,则AB间电场强度的大小E为 【C】
E 则两圆筒的电势差为 2 0 r r R2 R2 dr R2 U E d r ln 2 0 r r 2 0 r R1 R1 R1

大学物理 第七章静电场中的导体、电介质答案

大学物理 第七章静电场中的导体、电介质答案

第七章 静电场中的导体、电介质答案一、选择1.(C )2.(B)3.(C)4.(A)5.(D)6.(D)7.(A)8.(D )9.(A) 10(C) 11(B)12.(C) 13.(C) 14.(B) 15.(D) 16.(A) 17.(D) 18.(C) 19 .(B) 20.( B)21.( C) 22.( B)23.(C) 24.(D) 25.(A) 二、填空1. -q ; -q;2.不变,减小;3.σ(x 、y 、z )/ε0 ,与导体表面垂直朝外(σ>0)或与导体表面垂直朝里(σ<o ) ;4.0、C r q 04πε;5.S Qd 02ε;S Qd0ε; 6.)(21B A q q -; S d q q B A 02)(ε-; 7. 电位移线 、 电力线 ;8.r πλ2/,r r επελ02/ ;9. u/d ,d-t , u/d ;10.σ,)(/r 0εεσ;11.2C 0 ;12.-Q 2/(4C) ;13. R 1/R 2 ; )(4210R R +πε;R 2/R 1 ; 14.r 02πελ;204r L πελ;15. 8.85×10-10C ·m -2 , 负 ;16. 正;17. 9.421310-⋅⨯m V , C 9105-⨯; 18. 2221r r ;19.1/εr20. 2:1, 1:2, 2:9;三、计算题:1. 解:由题给条件(b-a )≤a 和L ≥b ,忽略边缘效应,将两同轴圆筒导体看作是无限长带电体,根据高斯定理可以得到两同轴圆筒导体之间的电场强度为r 00/2/)(επε⎰⎰==∑=⋅s sQ rLE Eds q s d E 内 Lr2QE 0πε= 同轴圆筒之间的电势差: 00ln 22b b a aQ dr Q b U E dl L r L a πεπε=⋅==⎰⎰ 根据电容的定义:02ln L Q C b U aπε== 电容器储存的能量:2201ln 24Q b W cU L aπε==2. 解: (1)设内、外球壳分别带电荷为+Q 和-Q ,则两球壳间的电位移大小为 2=/(4r )D Q π场强大小为20 =/(4r )r E Q πεε2101222020124)()11(442121R R R R Q R R Q r dr Q r d E U r r R R r R R επεεπεεπε-=-==⋅=⎰⎰电量 )/(41221120R R R R U Q r -=επε(2) 电容 12210124R R R R U Q C r -==επε (3)电场能量 1221221021222R R U R R CU W r -==επε3.解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为E 1=q/(ε0S )金属片内部场强为E 2=q/(ε0S )金属片内部场强为E ’=0 则两极板间的电势差为 U A -U B =E 1d 1+E 2d 2=[q/(ε0S )](d 1+d 2) =[q/(ε0S )](d-t)由此得C=q/(U A -U B )=ε0S/(d-t) 因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值无影响。

ch7静电场中的导体和电介质习题及答案.docx

ch7静电场中的导体和电介质习题及答案.docx

第7章静电场中的导体和电介质习题及答案1. 半径分别为/?和厂的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷而密度分 别为6和”2。

忽略两个导体球的静电相互作川和细导线上电荷对导体球上电荷分布的影响。

试证明:冬工。

cr 2 R证明:凶为两球相距县远,半径为/?的导体球在半径为广的导体球上产生的电势忽略不计,半 径为厂的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为/?的导体球的电势为半径为厂的导体球的电势为 26 岔一 cr 2r4 兀 £()厂 4g ()川细导线连接两球,有叫=岭,所以E L = L<T 2 R2. 证明:对于两爪无限大的平行平而带电导体板來说,(1)相向的两而上,电荷的而密度总是 大小相等而符号相反;(2)相背的两而上,电荷的而密度总是大小相等而符号相同。

证明:如图所示,设两导体A 、〃的四个平血均匀帯电的电荷血密度依次为6,内,6, 6 (1)取与平面垂直且底面分别在4、B 内部的闭合圆柱面为高斯面,由高斯定理得盘・亦=0 =丄(6 +牛何故cr 2 +牛=0上式说明相向两而上电荷而密度大小相等、符号相反。

(2)在4内部任取一点P,则其场强为零,并口它是|+|四个均匀带 电平而产生的场强叠加而成的,即乂6 + 6=0故 <T] = cr 43. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为d = 3R 处有一点电荷 + g,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为",金属球接地时电势V =0 由电势叠加原理,球心电势为% = —!—屁+—仝— 4^/?」 4砖0 3/?=/ + q =o 4TI £()R 4兀£()37?=_纟4. 半径为尺的导体球,帶有电量q,球外有内外半径分别为心、&的同心导体球壳,球壳 带有电量Q 。

6兀R ,4TI £(b\R4勺 ABn (5) n 匸二二D。

11 静电场中的导体和电解质习题参考答案 (1)

11 静电场中的导体和电解质习题参考答案 (1)

第十一章 静电场中的导体和电介质习题参考答案三、计算题1.答案:(1)330V ,270V ; (2)270V ,270V ; (3)60V , 0V ; (4) 0V ,180V 。

解:本题可用电势叠加法求解,即根据均匀带电球面内任一点电势等于球面上电势,均匀带电球面外任一点电势等于将电荷集中于球心的点电荷在该点产生的电势。

首先求出导体球表面和同心导体球壳内外表面的电荷分布。

然后根据电荷分布和上述结论由电势叠加原理求得两球的电势。

若两球用导线连接,则电荷将全部分布于外球壳的外表面,再求得其电势。

(1) 据题意,静电平衡时导体球带电101.010C q -=⨯,则 导体球壳内表面带电为101.010C q --=-⨯; 导体球壳外表面带电为101210C q Q -+=⨯, 所以,导体球电势U 1和导体球壳电势U 2分别为101231330V 4q q q Q U R R R πε⎛⎫+=-+= ⎪⎝⎭203331270V 4q q q Q U R R R πε⎛⎫+=-+= ⎪⎝⎭(2)两球用导线相连后,导体球表面和同心导体球壳内表面的电荷中和,电荷全部分布于球壳外表面,两球成等势体,其电势为12031270V 4q QU U U R πε+'====(3)若外球接地,则球壳外表面的电荷消失,且02=U1012160V 4q q U R R πε⎛⎫=-= ⎪⎝⎭(4)若内球接地,设其表面电荷为q ',而球壳内表面将出现q '-,球壳外表面的电荷为Q q '+.这些电荷在球心处产生的电势应等于零,即10123104q q q Q U R R R πε⎛⎫'''+=-+= ⎪⎝⎭解得10310C q -'=-⨯,则 203331180V 4q q q Q U R R R πε⎛⎫'''+=-+= ⎪⎝⎭2.解:(1) dSC r 2101εε=dSC r 2202εε=, 则)(221021r r dSC C C εεε+=+=(2)2/101d SC r εε=2/202d SC r εε=, 则 )(21112121021r r r r d S C C C εεεεε+=+=3.答案:(1)2倍; (2)21rrεε+倍。

11静电场中的导体和电介质一解答

11静电场中的导体和电介质一解答

导体球电荷守恒 qex qin 0 qex q1 q2 导体外表面为球面,各处曲率相同,感应电荷均匀分布 由高斯定理可求得导体外表面感应电荷在q处产生的电 场强度 q1 q2
E
4 0 r
2
1
2
q受到的的作用力
qq1 q2 FAq qE 2 4 0 r
静电场中的导体和电介质(一)
第六章
2. 如图,一空心导体球壳带有电荷Q ,内半径为R1、 外半径为R2,点电荷q放置在空腔内距离球心r.设无限 远处为电势零点,试求:1) 球壳内、外表面上的电荷; 2) 球心O点处的总电势.
q qin 0 qin q 解: 球壳内电场为0 球壳电荷守恒
(D)N上的所有电荷都入地. 导体N接地,其电势为零,只有保留负感应电 荷,由负电荷产生的电势与带正电的M产生的电 势叠加才可能出现零值.
旧版静电场中的导体 选择题 2
静电场中的导体和电介质(一)
第六章
3.一空心导体球壳,其内、外半径分别为R1和R2,带 电荷q,如图所示.当球壳中心处再放一电荷为q的点电 荷时,则导体球壳的电势(设无穷远处为电势零点)为 q q q q (C) (D) (A) (B) 4 0 R1 4 0 R2 2 0 R1 0 R2
r
U
Q r C2 C2 C2 U1 U U U U1 C1 C1 r C2 C1 C2 C1 C2
C1
r
静电场中的导体和电介质(一)
第六章
三、计算题 1. 如图,一原来不带电的导体球A,其内
部有两个球形空腔,今在两空腔中心分别放置点电荷q1 和q2,在距离导体球A很远的r(r远大于球A的线度)处 放一点电荷q.求:(1)作用于q1和q2上的力;(2)q 所受的作用力;(3)A外表面的电荷量值并讨论其分 布特点.

大学物理静电场中的导体和电介质习题答案

大学物理静电场中的导体和电介质习题答案

第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。

《大学物理AⅠ》静电场中的导体和电介质习题、答案及解法(2010.6.4)(推荐文档)

《大学物理AⅠ》静电场中的导体和电介质习题、答案及解法(2010.6.4)(推荐文档)

静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。

在腔内离球心的距离为a 处放一点电荷q +,如图1所示。

用导线把球壳接地后,再把地线撤去。

选无穷远处为电势零点,则球心O 处的电势为 [ D ](A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。

参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V R aRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。

设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。

[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。

设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204rq πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。

参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==•+•=•=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ](A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。

参考答案:带电导体达到静电平衡时,导体是一个等势体,其外表面是一个等势面。

《静电场中的导体和电解质》答案

《静电场中的导体和电解质》答案

第13章 静电场中的导体和电解质 参考答案一、选择题1(D),2(D),3(B),4(A),5(C),6(B),7(C),8(B),9(C),10(B)二、填空题(1). 4.55×105 C ;(2). σ (x ,y ,z )/ε0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (3). εr ,1, εr ; (4). 1/εr ,1/εr ;(5). σ ,σ / ( ε 0ε r ); (6).Rq 04επ ;(7). P ,-P ,0; (8) (1- εr )σ / εr ; (9). 减小, 减小; (10). 增大,增大.三、计算题1. 一接地的"无限大"导体板前垂直放置一"半无限长"均匀带电直线,使该带电直线的一端距板面的距离为d .如图所示,若带电直线上电荷线密度为λ,试求垂足O 点处的感生电荷面密度.解:如图取座标,对导体板内O 点左边的邻近一点,半无限长带电直线产生的场强为:()⎰∞-=dx i dx E 2004/ελπ ()d i 04/ελπ -= 导体板上的感应电荷产生的场强为:()0002/εσi E-='由场强叠加原理和静电平衡条件,该点合场强为零,即()[]()02/4/000=--εσελd π ∴ ()d π2/0λσ-=2.半径为R 1的导体球,带电荷q ,在它外面同心地罩一金属球壳,其内、外半径分别为R 2 = 2 R 1,R 3 = 3 R 1,今在距球心d = 4 R 1处放一电荷为Q 的点电荷,并将球壳接地(如图所示),试求球壳上感生的总电荷.解:应用高斯定理可得导体球与球壳间的场强为 ()304/r r q E επ= (R 1<r <R 2)设大地电势为零,则导体球心O 点电势为: ⎰⎰π==2121200d 4d R R R R r r q r E U ε⎪⎪⎭⎫⎝⎛-π=21114R R qε根据导体静电平衡条件和应用高斯定理可知,球壳内表面上感生电荷应为-q . 设球壳外表面上感生电荷为Q'.以无穷远处为电势零点,根据电势叠加原理,导体球心O 处电势应为: ⎪⎪⎭⎫ ⎝⎛+-'+π=1230041R q R q R Q d Q U ε假设大地与无穷远处等电势,则上述二种方式所得的O 点电势应相等,由此可得Q '=-3Q / 4 , 故导体壳上感生的总电荷应是-[( 3Q / 4) +q ].3. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布 为 )2/(r E ελπ= 设电容器内外两极板半径分别为r 0,R ,则极板间电压为⎰⎰⋅π==R rRr r r r E U d 2d ελ 0ln 2r Rελπ=电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有 002E r ελπ=,000ln r RE r U = 适当选择r 0的值,可使U 有极大值,即令0)/ln(/d d 0000=-=E r R E r U ,得 e R r /0=,显然有22d d r U < 0,故当 e R r /0= 时电容器可承受最高的电压 e RE U /0max = = 147 kV.4. 如图所示,一圆柱形电容器,内筒半径为R 1,外筒半径为R 2 (R 2<2 R 1),其间充有相对介电常量分别为εr 1和εr 2=εr 1 / 2的两层各向同性均匀电介质,其界面半径为R .若两种介质的击穿电场强度相同,问:(1) 当电压升高时,哪层介质先击穿?(2) 该电容器能承受多高的电压?解:(1) 设内、外筒单位长度带电荷为+λ和-λ.两筒间电位移的大小为 D =λ / (2πr ) 在两层介质中的场强大小分别为E 1 = λ / (2πε0 εr 1r ), E 2 = λ / (2πε0 εr 2r ) 在两层介质中的场强最大处是各层介质的内表面处,即E 1M = λ / (2πε0 εr 1R 1), E 2M = λ / (2πε0 εr 2R ) 可得 E 1M / E 2M = εr 2R / (εr 1R 1) = R / (2R 1)已知 R 1<2 R 1, 可见 E 1M <E 2M ,因此外层介质先击穿. (2) 当内筒上电量达到λM ,使E 2M =E M 时,即被击穿,λM = 2πε0 εr 2RE M 此时.两筒间电压(即最高电压)为:r r r r U R R r M RR r M d 2d 221201012⎰⎰+=επελεπελ⎪⎪⎭⎫ ⎝⎛+=R R R R RE r r M r 22112ln 1ln 1εεε5. 两根平行“无限长”均匀带电直导线,相距为d ,导线半径都是R (R << d ).导线上电荷线密度分别为+λ和-λ.试求该导体组单位长度的电容.解:以左边的导线轴线上一点作原点,x 轴通过两导线并垂直于导线.两导线间x 处的场强为 x E 02ελπ=)(20x d -π+ελ两导线间的电势差为⎰--+π=R d R x xd x U d )11(20ελ )ln (ln 20R d R R R d ---π=ελRRd -π=ln 0ελ 设导线长为L 的一段上所带电量为Q ,则有L Q /=λ,故单位长度的电容U LU Q C /)/(λ==RR d -π=lnε6.圆柱形电容器是由半径为a 的圆柱形导体和与它同轴的内半径为b (b >a )的导体圆筒构成,其间充满了相对介电常量为εr 的各向同性的均匀电介质.设圆柱导体单位长度带电荷为λ,圆筒上为-λ,忽略边缘效应.求电介质中的电极化强度P 的大小及介质内、外表面上的束缚电荷面密度σˊ.解:由D的高斯定理求出介质内的电位移大小为D = λ / (2πr ) (a <r <b ) 介质内的场强大小为E = D / (ε0εr ) = λ / (2πε0εr r ) (a ≤r ≤b ) 电极化强度 P = ε0χe E ()rr r ελεπ-=21 (a ≤r ≤b )内外表面上束缚电荷面密度a aP ='σcos180°=()ar r ελεπ--21b bP ='σcos 0°=()br r ελεπ-217. 一个圆柱形电容器,内圆柱半径为R 1,外圆柱半径为R 2,长为L (L >>R 2-R 1),两圆筒间充有两层相对介电常量分别为εr 1和εr 2的各向同性均匀电介质,其界面半径为R ,如图所示.设内、外圆筒单位长度上带电荷(即电荷线密度)分别为λ和-λ,求: (1) 电容器的电容. (2) 电容器储存的能量.解:(1) 根据有介质时的高斯定理可得两筒之间的电位移的大小为D = λ / (2πr ) 介质中的场强大小分别为E 1 = D / (ε0εr 1) = λ / (2πε0εr 1r ) E 2 = D / (ε0εr 2) = λ / (2πε0εr 2r )1r 2两筒间电势差⎰⎰⋅+⋅=21221d d R RR R r E r E UR R R R r r 220110ln π2ln π2εελεελ+=()()[]21021122/ln /ln r r r r R R R R εεεεελπ+=电容 ()()R R R R L U QC r r r r /ln /ln 22112210εεεεε+π== (2) 电场能量 2102112224ln ln 2r r r r R R R R L C Q W εεεεελπ⎪⎪⎭⎫ ⎝⎛+==8. 如图所示,一平板电容器,极板面积为S ,两极板之间距离为d ,其间填有两层厚度相同的各向同性均匀电介质,其介电常量分别为ε1和ε2.当电容器带电荷±Q 时,在维持电荷不变下,将其中介电常量为ε1的介质板抽出,试求外力所作的功.解:可将上下两部分看作两个单独的电容器串联,两电容分别为d S C 112ε= ,d SC 222ε=串联后的等效电容为 ()21212εεεε+=d SC带电荷±Q 时,电容器的电场能量为 ()S d Q C Q W 21212242εεεε+== 将ε1的介质板抽去后,电容器的能量为 ()S d Q W 202024εεεε+='外力作功等于电势能增加,即 ⎪⎪⎭⎫⎝⎛-=-'=∆=102114εεS d Q W W W A四 研讨题1. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。

静电场中的导体与电介质版答案

静电场中的导体与电介质版答案

第十章 静电场中的导体和电介质一.选择题[B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出σ 1S+σ 2S=0022202010=-+εσεσεσ[B ]2、(基训5)两个同心的薄金属球壳,半径为R 1,R 2(R 1<R 2),若分别带上电量q 1和q 2的电荷,则两者的电势分别为V 1和V 2(选择无限远处为电势零点)。

现用细导线将两球壳连接起来,则它们的电势为:(A)V 1 (B) V 2 (C)V 1+V 2 (D) (V 1+V 2)/2 【解析】原来两球壳未连起来之前,内、外球的电势分别为2021011π4π4R q R q V εε+=2022012π4π4R q R q V εε+=用导线将两球壳连起来,电荷都将分布在外球壳,现在该体系等价于一个半径为R 2的均匀带电球面,因此其电势为22021π4V R q q V =+=ε[C ]3、(基训6)半径为R 的金属球与地连接。

在与球心O 相距d =2R 处有一电荷为q 的点电荷。

如图16所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【解析】利用金属球是等势体,球体上处电势为零。

球心电势也为零。

0442q o o dq qR R πεπε''+=⎰ AB+σ12OR dqR qR q d o q oo 244πεπε-='⎰'RqR q 2-=' 2qq -='∴[C ]4、(基训8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为:(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【解析】 C U C U C Q Q Q 32121106-⨯=-=-=V FC C C Q C Q U 600101106''5321=⨯⨯=+==--[A ]5、(自测6)一平行板电容器充满相对介电常数为r ε的各向同性均匀电介质,已知介质表面极化电荷面密度为σ'±。

大学物理(下)第十章作业与解答

大学物理(下)第十章作业与解答

第十章静电场中的导体和电介质一. 选择题1. 有一带负电荷的大导体,欲测其附近P点处的场强,将一电荷量不是足够小的正点电荷放在该点,如图,测得它所受电场力大小为F,则(A) 比P点处场强的数值大(B) 比P点处场强的数值小(C) 与P点处场强的数值相等(D) 与P点处场强的数值哪个大无法确定注意:此类型题如果1. q0的电荷与带电体的电荷相异,则选A(比P点处场强的数值大)2. q0的电荷与带电体的电荷相同,则选B(比P点处场强的数值小)[ ]2. 对于带电的孤立导体球(A) 导体内的场强与电势均为零(B) 导体内的场强为零,电势为恒量(C) 导体内的电势比导体表面高(D) 导体内和导体表面的电势高低无法确定[ ]3. 同心导体球与导体球壳周围电场的电场线分布如图,由电场线分布可知球壳上所带总电荷(A)(B)(C)(D) 无法确定[ ]4. 一无限大均匀带电平面A,其附近放一与它平行的有一定厚度的无限大导体板B,如图示,已知A上的电荷面密度为+σ,则在导体板B的两个表面1和2上的感生电荷面密度为:(A)(B)(C)(D)[ ]5. 一不带电导体球半径为R,将一电量为 +q的点电荷放在距球心O为d(d >R)的一点,这时导体球中心的电势为(无限远处电势为零)(A) 0(B)(C)(D)注意:考虑球心的位置,距球面各点的距离相等;再考虑到,导体球达致静电平衡时感应电荷的代数和必为零,所以球面上的感应电荷对球心总的电势应为零,只剩下点电荷对球心的电势。

[ ]6. 在静电场中做一闭合曲面S,若有(式中为电位移矢量),则S面内(A) 既无自由电荷,也无极化电荷(B) 无自由电荷(C) 自由电荷和极化电荷的代数和为零(D) 自由电荷的代数和为零[ ]7. 一空气平板电容器,充电后两极板上带有等量异号电荷,现在两极板间平行插入一块电介质板,如图示,则电介质中的场强与空气部分中的场强相比较有:(A) ,两者方向相同(B) ,两者方向相同(C) ,两者方向相同(D) ,两者方向相反注意:根据高斯定理,电位移矢量无论在空气中还是介质中都是相等的。

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

1、一片二氧化钛晶片,其面积为 1.0cm2, 厚度为 0.10mm 。把平行板电容器的两极板紧
贴在晶片两侧。此时电容器的电容为_____________. ;当在电容器的两板上加上 12V 电压时,
极板上的电荷为_____________. ;电容器内的电场强度为_____________ .。(二氧化钛的相
[
]
3、(2018 年暨南大学)将一带电量为 Q 的金属小球靠近一个不带电的金属导体时,则有:
(A)金属导体因静电感应带电,总电量为-Q;
(B)金属导体因感应带电,靠近小球的一端带-Q,远端带+Q;
(C)金属导体两端带等量异号电荷,且电量 q<Q;
(D)当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、 填空题
1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)
的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布

;若腔内有电荷,则空腔导体上的电荷应分布


3、如图所示,两同心导体球壳,内球壳带电量+q,外球壳带电量-2q。
(C)、使电容增大,但与介质板的位置无关;(D)、使电容增大,但与介质板的位置有关。
[
]
3、(2011 年太原科技大学)两个半径相同的金属球,一为空心,一为实心,把两者各自
孤立时的电容值加以比较,则:
(A)空心球电容值大;
(B)实心球电容值大;
(C)两球电容值相等;
(D)大小关系无法确定
[
]
二、 填空题
(1)若两极上分别带有电荷+Q 和—Q,求各区域的电位移 D,电场强度 E,及电势 U;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U AC U AB
EAC d AC EABd AB
1 EAC d AB 2 2 E AB d AC
1
2

qA S
qC

1S


2 3
qA

2107 C
qB 2S 110 7 C
2

qA 3S
,
1

2q A 3S
UA

EACd AC

充入介质前相比较,增大(↑)或减小(↓)的情形为 (A) E↑,C↑,U↑,W↑.
【B 】
(B) E↓,C↑,U↓,W↓.
(C) E↓,C↑,U↑,W↓.
(D) E↑,C↓,U↓,W↑.
7. 如图所示,在平行板电容器的一半容积内充入相对介电常数为εr的电介质. 在有电介质部分和无电介质部分极板上自由电荷面密度的比值σ2/σ1=____ε_r.
电场强度的大小E=_____。σ / ( ε 0ε r )
10. 1、2是两个完全相同的空气电容器.将其充电后与电源断开,再将一块各向
同性均匀电介质板插入电容器1的两极板间,如图所示, 则电容器2
电场能量W2如何变化?(填增大,减小或不变) U2 __减__小_____,W2
的__减_电_小_压__U_2_,____
【C 】
ቤተ መጻሕፍቲ ባይዱ
(A)高斯面内不包围自由电荷,则面上各点电位移矢量D为零。
(B)高斯面上处处D为零,则面内必不存在自由电荷。
(C)高斯面的D通量仅与面内自由电荷有关。
(D)以上说法都不正确。
6. 一空气平行板电容器充电后与电源 断开,然后在两极板间充满某种各向同性、
均匀电介质,则电场强度的大小E、电容C、电压U、电场能量W四个量各自与
q (1 1 ) Q
Q (1 r 1)
4π 0 r r R2 4π 0 R2
4π 0 r r R2
13.一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R1 = 2 cm, R2 = 5 cm,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在 电压U = 32 V的电源上,(如图所示),试求距离轴线R = 3.5 cm处的A点的电场
静电场中的导体与电介质
一、选择题
1.有一接地金属球,有一弹簧吊起,金属球原来 不 带 电,若在它的下方放置一电量为q的点电荷则 【 C 】
(A)只有当q>0时,金属球才会下移
(B)只有当q<0时,金属球才下移
(C)无论q是正是负金属球都下移 ;
(D)无论q是正是负金属球都不动
q
2.A、B为两导体板,面积均为S,平行放置, A板带电荷+Q1 , B板电荷 +Q2,如果使 B板接地,则AB间电场强度的大小E为 【 C 】
11 三个平行金属板A,B和C的面积都是200cm2,A和B相距4.0mm, A与C相距2.0 mm.B,C都接地,如图所示.如果使A板带正电 3.0×10-7C,略去边缘效应,问B板和C板上的感应电荷各是多少? 以地的电势为零,则A板的电势是多少?
解: 如题11图示,令A板左侧面电荷面密度为σ 1, 右侧面电荷面密度为σ 2
(1)在r<R1和R2<r<R3区域 E0
在R1<r<R2时
E1

Qr
4π 0r 3
r>R3时
(A)W0 / εr
(B)W0
【A 】
(C)W0εr
(D)W0 / ε0
4.一空气平行板电容器,两极板间距为d,充电后板间电压为U.然后将
电源断开,在两板间平行地插入一厚度为d/3的金属板,则板间电压为【 C 】
(A)U
(B)U/3
(C)2 U/3
(D)3U/2
5. 关于高斯定理,下列说法哪一个是正确的
14 半径为R1=2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径 分别为R2=4.0cm和R3=5.0cm,当内球带电荷Q=3.0×10-8C 时,求: (1)整个电场储存的能量; (2)如果将导体壳接地,计算储存的能量;
解: 如图,内球带电Q,外球壳内表面带电-Q, 外球壳外表面带电+Q
1
2
+q
7题
8题
10题
8. 导体空腔内有电荷+q时,当导体空腔处于静电平衡时,空腔内表面有感应 电荷__ -_q __,外表面有感应电荷_ _+q___.
9. 一平行板电容器,两极板间充满各向同性均匀电介质,已知相对介电常数 为εr,若极板上的自由电荷面密度为σ,则介质中的电位移的大小D=__σ_,
强度和A点与外筒间的电势差.
解:设内外圆筒沿轴向单位长度上分别带有电荷+ 和 ,
r
根据高斯定理可求得两圆筒间任一点的电场强度为

则两圆筒的电势差为 E
R2 R2 d r
U E dr
2 0 r r
ln R2
R1
R1 2 0 r r 2 0 r R1
R1
A
R2
R
解得
2 0 rU
ln R2
于是可求得A点的电场强度为
U
R1
EA

U R ln(R2
/
R1 )
=
998
V/m
方向沿径向向外
A点与外筒间
的电势差:
R2
U Edr
U
R2 d r
U
ln R2
R
ln(R2 / R1 ) R r ln( R2 / R1 ) R
= 12.5 V
(A) Q1
2 0 S
(B) Q1 Q2
2 0 S
(C) Q1
0S
(D) Q1 Q2
2 0 S
3.一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W0.若断开
电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各
向同性均匀液态电介质中,问这时电场总能量有多大?
1 0
d AC

2.3103V
12 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球 壳,介质相对介电常数为εr,金属球带电Q.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势;
解: 利用有介质时的高斯定理
(1)介质内R1<r<R2场强 介质外r>R2场强
(2)介质外r<R2电势

SD dS q
Qr
Qr
D 4πr 3 , E内 4π0 r r 3
D

Qr 4πr 3
, E外

Qr
4π 0r 3
U
r
E外
dr

Q
4π 0r
介质内R1<r<R2 电势


U r E内 dr r E外 dr
相关文档
最新文档