智能信息处理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是智能信息处理?及其起源、发展与应用。

智能信息处理是模拟人与自然界其他生物处理信息的行为,建立处理复杂系统信息的理论、算法和系统的方法和技术。智能信息处理主要面对的是不确定性系统和不确定性现象的现象处理问题。智能现象处理在复杂系统建模、系统分析、系统决策、系统控制、系统优化和系统设计等领域具有广大的应用前景。

起源:20世纪90年代以来,在智能信息处理研究的纵深发展过程中,人们特别关注到精确处理和非精确处理的双重性,强调符号物理机制与联结机制的综合,倾向于冲破“物理学式”框架的“进化论”新路,一门称为计算智能的新学科分支被概括地提出来了,并以更快的目标蓬勃发展。

首次给出计算智能定义的是美国学者James C. Bezdek。他在题为“什么是计算智能”的报告中讲到:智能有三层次,第一层是生物智能(BI),第二层是人工智能(AI),第三层是计算智能(CI)。目前,国际上提出计算智能就是以人工神经网络为主导,与模糊逻辑系统、进化计算以及信号与信息处理系统的综合集成。

我们认为新一代的计算智能信息处理技术应该是神经网络、模糊系统、进化计算、混沌动力学、分型理论、小波变换、人工生命等交叉学科的综合集成。一般来说,智能信息处理分为两大类,一类为基于传统计算机的智能信息处理,另一类为基于神经计算的智能信息处理。

为了适应信息时代的信息处理要求,当前信息处理技术逐渐向智能化方向发展,从信息的载体到信息处理的各个环节,广泛地模拟人的智能来处理各种信息。人工智能学科与认知科学的结合,会进一步促进人类的自我了解和控制能力的发挥。研究具有认知机理的智能信息处理理论与方法,探索认知的机制,建立可实现的计算模型并发展应用,有可能带来未来信息处理技术突破性的发展。

现阶段信息处理技术领域呈现两种发展趋势:一种是面向大规模、多介质的信息,使计算机系统具备处理更大范围信息的能力;另一种是与人工智能进一步结合,使计算机系统更智能化地处理信息。智能信息处理是计算机科学中的前沿交叉学科,是应用导向的综合性学科,其目标是处理海量和复杂信息,研究新的、先进的理论和技术。智能信息处理研究涵盖基础研究、应用基础研究、关键技术研究与应用研究等多个层次。它不仅有很高的理论研究价值,而且对于国家信息产业的发展乃至整个社会经济建设、发展都具有极为重要的意义。

总的来说,具有神经计算的智能信息处理正朝着生物智能方向发展,“计算智能”时期重要的理论基础。一般认为计算智能包括神经网络、模糊系统和进化计算三个主要方面,其积极意义在于促进了基于计算和基于物理符号相结合的各种智能理论、模型和方法的综合集成,有利于发展思想更先进,功能更强大并能够解决更复杂系统问题的智能行为。目前国际上计算智能研究正注意几个结合:神经网络与进化计算结合;神经网络与模糊及混沌三者的结合;神经网络与近代信号处理方法子波、分型等的结合,以更有效地模拟人脑的思维机

制使人工智能导向生物智能。神经网络本身又分为人工神经网络(ANN)、生物神经网络(BNA)及计算神经网络,即所谓的ABC 神经网络。总之要研究的内容非常的丰富,正向纵深方向发展。

开展智能信息处理的基础理论研究,包括信息和知识处理的数学理论、复杂系统的算法设计和分析、并行处理理论与算法、量子计算和生物计算等新型计算模式、机器学习理论和算法、生物信息和神经信息处理等。以因特网应用为主要背景的特定领域智能信息处理,包括:大规模文本处理、图像视频信息检索与处理、基于Web 的知识挖掘、提炼和集成等。另外还有商务和金融活动中的智能信息处理,包括电子政务、电子商务、电子金融等,推动智能信息技术在国民经济各领域的应用,努力实现并提高信息处理技术的社会效应和经济效益。

相关文档
最新文档