第四章高斯光束光学详解

合集下载

高斯光束 通俗

高斯光束 通俗

高斯光束通俗
(最新版)
目录
1.高斯光束的定义和特点
2.高斯光束的生成原理
3.高斯光束的应用领域
正文
一、高斯光束的定义和特点
高斯光束,又称高斯光束束腰,是指在传播过程中,光束的横截面上光强分布呈现高斯分布的光束。

高斯光束具有很多特点,例如,光束的束腰位置光强分布最为集中,呈高斯分布,离束腰越远,光强分布逐渐减弱。

此外,高斯光束的光学传输特性较好,光束的指向性和稳定性都相对较高。

二、高斯光束的生成原理
高斯光束的生成原理主要基于光的传播规律和高斯光束的聚焦特性。

一般来说,高斯光束可以通过两种方法生成:一种是通过透镜或反射镜等光学元件对光束进行调制,使得光束在传播过程中满足高斯分布;另一种是通过激光器等光源产生的光束,在传播过程中自然形成高斯分布。

三、高斯光束的应用领域
高斯光束在许多领域都有广泛的应用,例如在光通信、光学测量、激光加工、光学成像等方面。

高斯光束的光强分布特点使其在光通信领域具有很高的信噪比和传输速率;在光学测量领域,高斯光束的聚焦性能和指向稳定性使其成为理想的测量工具;在激光加工领域,高斯光束的优异光学性能使其在激光切割、打标等方面具有很高的加工精度和效率;在光学成像领域,高斯光束的成像质量高,可以提高成像系统的分辨率和成像质量。

综上所述,高斯光束以其独特的光学性能和广泛的应用领域,在光学领域具有重要的研究价值和实用意义。

高斯光束

高斯光束

高斯光束高斯光束在光学中,高斯光束(Gaussian beam)是横向电场以及辐射照度分布近似满足高斯函数的电磁波光束。

许多激光都近似满足高斯光束的条件,在这种情况里,激光在光谐振腔(optical resonator)里以TEM00波模传播。

当它在镜片发生衍射,高斯光束会变换成另一种高斯光束,这时若干参数会发生变化。

这解释了高斯光束是激光光学里一种方便、广泛应用的原因。

描述高斯光束的数学函数是亥姆霍兹方程的一个近轴近似(Paraxial approximation)解(属于小角近似(Small-angle approximation)的一种)。

这个解具有高斯函数的形式,表示电磁场的复振幅。

电磁波的传播包括电场和磁场两部分。

研究其中任一个场,就可以描述波在传播时的性质。

高斯光束的瞬时辐射照度示意图纳米激光器产生的激光场强(蓝色)和辐射照度(黑色)在坐标轴上的分布情况共焦腔基模高斯光束腰斑半径数学形式高斯光束作为电磁波,其电场的振幅为:这里为场点距离光轴中心的径向距离为光轴上光波最狭窄位置束腰的位置坐标为虚数单位(即)为波数(以弧度每米为单位),为电磁场振幅降到轴向的1/e、强度降到轴向的1/e2的点的半径为激光的束腰宽度为光波波前的曲率半径为轴对称光波的Gouy相位,对高斯光束的相位也有影响对应的辐射照度时域平均值为这里为光波束腰处的辐射照度。

常数为光波传播介质的波阻抗(Wave impedance)在真空中,。

波束参数高斯光束的许多性质由一系列波束参数决定,下面将分别予以介绍。

束宽对于在自由空间传播的高斯光束,其腰斑(spot size)位置的半径在光轴方向总大于一个最小值,这个最小值被称为束腰。

波长为的光波的腰斑位置在轴上的分布为这里将定义为束腰的位置。

被称为瑞利距离(Rayleigh length)。

瑞利距离和共焦参数与束腰轴向距离等于瑞利距离处的束宽为这两点之间的距离称作是共焦参数(confocal parameter)或光束的焦深(depth of focus)。

第4章高斯光束。

第4章高斯光束。

Aq1 B q2 Cq1 D
结论:高斯光束q参数经薄透镜的变换规律满足ABCD法则
3. 实例分析
0
A B l
l
0 c
已知:
0、l、F
C
q0
方法一:
q A qB
lC
求:
qC
C、RC
2 q i z=0 处: 0 0 A处:qA q0 l
B处:1 qB 1 qA 1 F
2 2 x y x2 y2 z2 z 2R
3. 高斯光束
激光束既不是均匀的平面光波,也不是均匀的球面光波, 而是一种比较特殊的高斯球面波。
A0 ( x2 y2 ) x2 y2 E ( x, y, z ) e xp[ ] e xp ik[ z ] i ( z ) 2 (z) (z) 2 R( z )
几何光学中牛顿公式:
( F l )( F l ) FF
比较可知:几何光线的透镜变换是高斯光束在
0 的情形
0
特例:若入射束腰在物方焦点处, l
F l F , 0 0
F
: 最大值
当物点位于透镜前焦点,像点不在无穷远处,与几何光线不同
4.3 高斯光束的聚焦和准直
2 2
0
r ( z) r
( z ) 0
( z ) 随z以双曲线函数变化
2 L 0 双曲线顶点坐为 0 ,共焦参数 f 2 光能主要分布在双锥体内
2. 波面曲率半径
光波面
( z)
F
0
f 2 R( z ) z 1 z z
0 2 2 z 1 ( ) z

高斯光束的聚焦和准直课件

高斯光束的聚焦和准直课件

高斯光束的参数如束腰半径、波长等 也会影响准直效果。
光学元件质量
透镜、反射镜等光学元件的质量对准 直效果有重要影响,如光学元件的加 工精度、表面质量等。
04
高斯光束聚焦和准直的应用
光学通信
总结词
高斯光束的聚焦和准直技术在光学通信领域具有广泛应用,能够实现高速、高效 、远距离的光信号传输。
详细描述
实时处理能力
对于动态变化的光束,需要具备实 时处理能力,以便快速响应和调整 。
研究方向
新型光学元件研究
研究新型的光学元件,以提高光 束的聚焦和准直精度。
光束质量提升技术
研究提高光束质量的方法和技术 ,以满足各种应用需求。
实时控制系统
研究实时的光学控制系统,以快 速响应和调整光束。
发展前景
应用领域拓展
比较不同聚焦透镜和不同输入光束参 数对聚焦效果的影响,得出结论和建 议。
06
高斯光束聚焦和准直的未来 发展
技术挑战
高精度控制
高斯光束的聚焦和准直需要高精 度的光学元件和控制系统,以实
现光束的稳定和精确控制。
光束质量提高
目前的高斯光束聚焦和准直技术受 到光束质量的限制,如何提高光束 质量是未来的一个重要挑战。
减小。
高斯光束的应用
1 2
3
激光加工
高斯光束可被用于激光切割、打标和焊接等加工领域。
光学测量
高斯光束可被用于光学测量领域,如干涉仪、光谱仪和全息 术等。
光学通信
高斯光束在光纤通信中用作信号传输的光源,具有传输损耗 低、信号稳定等优点。
02
高斯光束的聚焦
聚焦原理
高斯光束的聚焦是指将发散的高 斯光束通过透镜或反射镜系统, 使其在空间上形成一个能量集中

【精品】课件---04-高斯光束

【精品】课件---04-高斯光束

r2
w2 z
exp
i
kz
arctan( z w02
)
exp[i
r2 ] 2R(z)
2.基模高斯光束的相移和等相位面分布
基模高斯光束的相移特性由相位因子决定
x,
y,
z
k
z
r2 2R(z)
arctan
z w02
它描述高斯光束在点(r,z)处相对于原点(0,0)处的相位滞后
R(z) 符号意义为:如果R>0,则球面轴线上的半径方向为z正方向; 如果R<0,则为z负方向。
3
u0
x,
y, z
w0
wz
exp
r2
w2 z
exp i
kz
z arctan( w02
) exp[i
r2 ]
2R(z)
式中:
wz w0
1
z w02
2
w0
1
z z0
2
与轴线交于z点 的等相位面上 的光斑半径
11
二、高阶高斯光束
一)在直角坐标系下的场分布(方形孔径)
高阶高斯光束场的形式:由厄米多项式与高斯函数乘积描述
umn
x,
y,
z
Cmn
w0
wz
Hm
2x
w(
z)
Hn
2y
w(z)
exp
r2
w2
z
exp
i
kz
(1
m
n)
arctan
z w02
exp
i
r2 2R(z)
w0
2
1
z zR
4. 远场发散角

高斯光束的几何光学原理及应用

高斯光束的几何光学原理及应用

高斯光束的几何光学原理及应用1. 引言高斯光束是一种特殊的光束,其在光学领域中具有广泛的应用。

本文将介绍高斯光束的几何光学原理及其在光学系统设计、激光技术和通信领域的应用。

2. 高斯光束的几何光学原理高斯光束是由高斯函数描述的一种特殊的光束。

它的空间分布可以用横向和纵向的高斯函数表示。

在几何光学中,我们可以近似地将光束看作是无限细的光线束。

以下是高斯光束的几何光学原理:•高斯光束的光线在其传播方向上保持自由传播的特性。

•高斯光束的横向光线束具有自聚焦的特性。

这意味着光束会在聚焦处形成一个较小的光斑,然后再扩散开来。

•高斯光束的纵向光线束在传播过程中保持自由传播的特性,不会发生散焦或聚焦现象。

3. 高斯光束在光学系统设计中的应用高斯光束在光学系统设计中有着重要的应用。

以下是一些常见的应用领域:•折射光学系统设计:在折射光学系统设计中,我们可以使用高斯光束来近似描述折射面上的光线传播。

这有助于优化系统的光学性能、减小畸变等。

•成像系统设计:高斯光束在成像系统设计中起着重要的作用。

我们可以利用高斯光束的自聚焦特性,设计出更小的光斑和更高的分辨率。

•光束整形和变换:高斯光束可以通过光束整形和变换技术进行调整和优化。

例如,我们可以利用透镜和光栅器件对光束进行整形,以达到特定的光学目标。

4. 高斯光束在激光技术中的应用高斯光束在激光技术中有着广泛的应用。

以下是一些常见的应用领域:•医疗激光:高斯光束在医疗激光中被广泛应用于手术切割、激光疗法等方面。

通过调整高斯光束的参数,可以实现精确的组织切割和凝固。

•材料加工激光:高斯光束在材料加工激光中被用于精细切割、钻孔、打标等方面。

由于高斯光束具有自聚焦特性,可以实现更精确和高效的加工过程。

•光通信激光器:高斯光束在光通信激光器中被广泛应用。

高斯光束的自聚焦特性可以实现更高的通信速率和更长的传输距离。

5. 结论高斯光束是一种具有重要应用的光束。

本文简要介绍了高斯光束的几何光学原理以及其在光学系统设计、激光技术和通信领域的应用。

北交大激光原理 第4章 高斯光束部分

北交大激光原理 第4章 高斯光束部分

一、
学习要求
1.掌握高斯光束的描述参数以及传输特性;
2.理解q参数的引入,掌握q参数的ABCD定律;
3.掌握薄透镜对高斯光束的变换;
4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导;
5.理解高斯光束的聚焦和准直条件;
6.了解谐振腔的模式匹配方法。
重点
1.高斯光束的传输特性;
2.q参数的引入;
让实部和虚部对应相等得到:
进而得到:
将 代入上式可求出
2.二氧化碳激光器,采用平凹腔,凹面镜的曲率半径 ,腔长 。求出它所产生的高斯光束的光腰大小和位置,共焦参数 及发散角 。
解:
由 ,可得
由 ,可得
3.某高斯光束光腰大小为 ,波长 。求与腰相距30 ,10 ,1 处光斑的大小及波前曲率半径。
解答:
9. 某高斯光束的 , ,今用一望远镜将其准直,如图3.4所示,主镜用镀金全反射镜: ,口径为 ;副镜为一锗透镜: ,口径为 ,高斯光束的束腰与副镜相距 ,求以下两种情况望远镜系统对高斯光束的准直倍率:(1)两镜的焦点重合;(2)从副镜出射的光腰刚好落在主镜的焦平面。
3.q参数的ABCD定律;
4.薄透镜对高斯光束的变换;
5.高斯光束的聚焦和准直条件;
6.谐振腔的模式匹配方法。
难点
1.q参数,及其ABCD定律;
2.薄透镜对高斯光束的变换;
3.谐振腔的模式匹配。
二、知识点总结
三、典型问题的分析思路
此类问题只涉及高斯光束在自由空间传输,不通过其它光学系统。解此类问题比较简单,根据已知特征参数,高斯光束的结构完全确定,就可以知道任意位置处的光斑尺寸、等相位面曲率半径、q参数及发散角等。
23、试由自在现变换的定义式(2.12.2)用 参数法来推导出自在现变换条件式(2.12.3)。

高斯光束

高斯光束

ω(z)为z 点处的光斑半径,它是距离z 的函数,即
槡 ( ) ω(z)=ω0
1+
λz πω20

(45)
·83·
ω0 是z=0处的ω(z)值,即高斯光束的“束腰”半径。
式(44)中 R(z)是在z 点处波阵面的曲率半径,它也是z 的函数,即
[ ( )] R(z)=z 1+
πω20 λz

φ(z)是与z 有关的位相因子,且
当z 趋向无穷大时(z→∞),高斯光束的发散角 即 为 双 曲 线 两 条 渐 近 线 之 间 的 夹 角,将 其
定义为高斯激光束的远场发散角,通常用θ0 来表示,即
θ0=lzi→m∞2ωz(z)=π2ωλ0
(411)
如图45所示。
图44 高斯光束等相位面的分布示意图
图45 高斯光束的发散角
理论计算表明,基模高斯光束的发散角具有毫弧度的数量级,因此其方向性相当好。由于
高阶模的发散角是随模阶次而增大,所以多模振荡时,光束的方向性要比单基模振荡差。
4 瑞利长度 若在z=zR 处,高斯光束光斑面积为束腰处最小光斑面积的两倍,则从束腰处算起的这个 长度zR 称为瑞利长度,如图46所示。
在瑞利长度zR 位置处,其光斑半径ω(zR)为腰斑半径ω0 的槡2倍,即
1 q(z)
因此,q参数也可以用来表征高斯光束。
将式(44)改写为如下形式
(415)
{ [ ( )] } E(x,y,z)=ωA(z0)exp -ik z+x22+y2 R1(z)-kω22i(z) +iφ(z)
将式(414)代入上式得
{ [ ] } E(x,y,z)=ωA(z0)exp -ik z+x2q2+(zy)2 +iφ(z)

高斯光束 通俗

高斯光束 通俗

高斯光束1. 引言高斯光束是一种常见的光束模式,具有重要的理论和实际应用价值。

它的特点是光强在空间上呈高斯分布,成为光学研究领域中的重要工具。

本文将从通俗的角度出发,介绍高斯光束的基本原理、特性以及其在科学研究和实际应用中的重要性。

2. 高斯光束的基本原理高斯光束是一种光波的传播模式,它的波前呈现出高斯分布的形状。

在光学中,光波的传播可以通过波动方程来描述,而高斯光束正是波动方程的解之一。

波动方程描述了光波的传播行为,其中包括波的幅度、相位和传播速度等信息。

在高斯光束中,光强的分布服从高斯分布的形式,即呈钟形曲线。

光强最大的地方称为光束的中心,而光强逐渐减小的地方则是光束的边缘。

高斯光束的光强分布可以用以下公式表示:I(r)=I0exp(−2r2 w2)其中,I(r)表示光束在距离中心r处的光强,I0为光束中心的光强,w为光束的束腰半径。

3. 高斯光束的特性3.1 光束的束腰和发散角高斯光束的束腰是指光束光强达到峰值的地方,也是光束最细的地方。

束腰的半径w是高斯光束的一个重要参数,它决定了光束的横向尺寸。

束腰半径越小,表示光束越集中,光强越大。

发散角是描述光束传播方向的一个参数,它决定了光束的扩散程度。

高斯光束的发散角与束腰半径有关,当束腰半径越小时,发散角越大,光束扩散越快。

3.2 光束的相位高斯光束的相位是指光波在传播过程中的相对位移。

光束的相位分布可以通过波前的形状来描述,而高斯光束的波前呈现出球面的形状。

这种球面波前在光学研究和应用中具有重要的意义,可以用来实现光束的聚焦和成像等功能。

3.3 光束的自聚焦效应高斯光束具有自聚焦效应,即在传播过程中可以自动聚焦到一个更小的尺寸。

这种自聚焦效应是由于高斯光束的非线性光学特性所导致的。

在某些介质中,高斯光束可以通过与介质相互作用来实现自聚焦,从而形成更强的光束和更小的束腰。

4. 高斯光束的应用4.1 光通信高斯光束在光通信领域有着广泛的应用。

由于高斯光束具有较小的束腰和较大的光强,可以实现高速、高容量的信息传输。

高斯光束光斑大小

高斯光束光斑大小

高斯光束光斑大小
摘要:
一、高斯光束的基本概念
二、高斯光束的传输特性
三、高斯光束的光斑大小与能量分布
四、高斯光束在光学系统中的应用
五、测量高斯光束束腰宽度的方法
正文:
一、高斯光束的基本概念
高斯光束是一种常见的光学光束,它的形状呈高斯分布。

在高斯光束中,光斑大小、能量分布等参数都是重要的特性。

二、高斯光束的传输特性
高斯光束的传输特性表现为,在远离光源的地方,光束会沿着传播方向呈特定角度扩散。

这个特定角度即为我们所称的远场发散角。

远场发散角与光束的波长成正比,与光束的束腰半径成反比。

因此,束腰半径越小,远场发散角越大。

三、高斯光束的光斑大小与能量分布
高斯光束的光斑大小与能量分布紧密相关。

光斑大小决定了光束在空间中的覆盖范围,而能量分布则影响了光束的亮度。

高斯光束的光斑大小与其束腰半径有关,束腰半径越小,光斑大小越小。

四、高斯光束在光学系统中的应用
高斯光束在光学系统中有着广泛的应用,如激光加工、激光通信、光学成像等。

在光学系统设计中,我们需要根据高斯光束的特性来优化系统的性能。

五、测量高斯光束束腰宽度的方法
测量高斯光束的束腰宽度一般通过测量不同位置处光束的宽度,再进行双曲线拟合求解。

但需要注意的是,激光器的束腰半径意义不大,可以通过后续光束的准直聚焦改变其束腰半径。

激光原理教案第4章

激光原理教案第4章

激光原理技术及应用》讲义(第4 章高斯光束)王菲长春理工大学2007 年 4 月第四章 高 斯 光 束(4 学时)§1.高斯光束的基本性质、波动方程的基模解在标量近似下稳态传播的电磁场满足赫姆霍茨方程轴的距离 r x 2 y 2呈高斯变化,在近轴处是球面。

4-1-4 )4-1-5)4-1-7a)=>4-1-6) ( 4-1-7a)4-1-7b)( 4-1-8 )Z 0为输入与输出面间距离。

( 4-1-8 )4-1-5)=>其中标量 u 0 表示相干光的场分量。

缓变振幅近似下的特是Z 的缓变函数。

将( 4-1-3)代入( 4-1-1)得设解参数 P (z )是与光束传播有关的复相移, q (z )是复曲率半径, (4-1-1)( 4-1-2 ) ( 4-1-3 )(4-1-4)( 4-1-5 )表示光束强度随4-1-9)振幅 r 下降到中心值的 1/e 时,光斑尺寸 r 2z 0 = 0,即(4-1-10)k( 4-1-11) 4-1-12)4-1-21)是波动方程( 4-1-1 )的一特解,称基模高斯光束。

基模高斯光束的性质由三参数决定。

4-1-22)、高斯光束的基本性质4-1-12) ( 4-1-5) =>4-1-14)(4-1-10)=> 4-1-13)=>4-1-13 ) 由( 4-1-7b ) 4-1-8) => => 4-1-11)4-1-17)=>4-1-14)4-1-15) (4-1-16) (4-1-17) 4-1-18)4-1-19)=>4-1-20)综上知4-1-21)1.高斯光束在 z =常数的平面内,场振幅以高斯函数 exp ( r 2(2z ))的形式从中心 (即传播轴线 )向外平滑地减小。

当振幅减小到中心值的 l/e 处的 r 值定义为光班半径。

光斑半径随坐标 z 按双曲线规律向外扩展。

2.高斯光束的等相面等相面是指相位相同点的轨迹,一般为空间曲面。

《高斯光束》课件

《高斯光束》课件

02
高斯光束的数学模型
高斯光束的电场分布
描述高斯光束的电场分布通常使用高 斯函数,其形式为$E(r,z)=E_{0} frac{omega_{0}}{w(z)} exp(frac{r^{2}}{w(z)^{2}}) exp(ifrac{kr^{2}}{2R(z)}+ivarphi(z))$, 其中$E_{0}$是光束中心电场强度, $omega_{0}$是束腰半径,$w(z)$ 是光束半径,$R(z)$是光束的波前曲 率半径,$varphi(z)$是相位。
VS
高斯光束的电场分布具有中心强度高 、向外逐渐减小的特点,这种分布有 利于在一定范围内实现较高的能量集 中度。
高斯光束的能量分布
高斯光束的能量分布与电场分布类似,也呈现出中心强 度高、向外逐渐减小的特点。
在实际应用中,高斯光束的能量分布可以通过控制激光 器的参数和光束传输过程中的光学元件进行调整,以满 足不同应用需求。
高斯光束的特性
总结词
高斯光束具有许多独特的性质,包括光束宽度随传播距离增加、中心光强为零、能量集中于光束的腰斑等。
详细描述
高斯光束的一个重要特性是它的光束宽度随着传播距离的增加而增加,这是由于光束在传播过程中不断发生衍射 。此外,高斯光束的中心光强为零,即光束的最小值点位于中心。高斯光束的能量主要集中在腰斑处,即光束宽 度最小的地方,这使得高斯光束在远场具有很好的汇聚性能。
总结词
高斯光束在光学无损检测中能够穿透物质并检测其内部 结构和缺陷。
详细描述
高斯光束具有较好的穿透性和方向性,能够深入物质内 部并检测其结构和缺陷。在无损检测中,高斯光束被用 来检测材料内部的裂纹、气孔、夹杂物等缺陷,为产品 质量控制和安全性评估提供可靠的依据。这种检测方法 具有非破坏性和高灵敏度等优点,广泛应用于航空航天 、核工业等领域的安全监测和质量控制。

Chap4高斯光束

Chap4高斯光束
⎛ λz ⎞ ⎛z⎞ ⎜ ⎟ 1+ ⎜ = ω 1 + 0 ⎜f⎟ ⎜ πω 2 ⎟ ⎟ ⎝ ⎠ ⎝ 0⎠ Lλ = 2π fλ
2 2
—任意位置光斑尺寸 —基模光腰半径 —等相面曲率半径
L πω f = = 0 = zR 2 λ
2
ω0 =
π
f2 R = R(z ) = z + z
共焦参数 瑞利长度
实际应用中常称2zR为高斯光束的准直距离 对一般稳定腔,需作下列转换:
4.1 高斯光束的基本性质和特征参数
(2)横向场分布及光斑花样
⎛ 2 ⎞ ⎛ 2 ⎞ − ω 2 (z ) ⎟H n ⎜ ⎟e Hm⎜ x y ⎜ ω (z ) ⎟ ⎜ ω (z ) ⎟ ⎝ ⎠ ⎝ ⎠
r2
—厄米—高斯函数
花样:沿x方向有m条节线,沿y方向有n条节线。 (3)相移特征
r2 z φ r , z = kz + k − m + n + 1 arctg 2R f
L( R1 − L)( R2 − L)( R1 + R2 − L) g1 g 2 (1 − g1 g 2 ) L2 f = = 2 ( R1 + R2 − 2 L) (g1 + g 2 − 2 g1 g 2 )2
2
4.1 高斯光束的基本性质和特征参数
4.1.2 基模高斯光束的基本性质
1、振幅分布及光斑半径
及 R ( z ) 表征
2
⎡ ⎛ f ⎞2 ⎤ R = R( z ) = z ⎢1 + ⎜ ⎟ ⎥ z ⎠ ⎦ ⎣ ⎝
⎡ ⎛ π ω (z ) ⎞ ω0 = ω ( z )⎢1 + ⎜ ⎜ λ R(z ) ⎟ ⎟ ⎢ ⎠ ⎣ ⎝

高斯光束介绍

高斯光束介绍

高斯光束介绍通常情形,激光谐振腔发出的基模辐射场,其横截面的振幅分布遵守高斯函数,故称高斯光束。

我们常常会收到客户关于光斑大小的查询,其实问的就是光斑的束腰直径或束腰半径。

束腰,是指高斯光绝对平行传输的地方。

半径,是指在高斯光的横截面考察,以最大振幅处为原点,振幅下降到原点处的0.36788倍,也就是1/e倍的地方,由于高斯光关于原点对称,所以1/e的地方形成一个圆,该圆的半径,就是光斑在此横截面的半径;如果取束腰处的横截面来考察,此时的半径,即是束腰半径。

沿着光斑前进,各处的半径的包络线是一个双曲面,该双曲面有渐近线。

高斯光束的传输特性,是在远处沿传播方向成特定角度扩散,该角度即是光束的远场发散角,也就是一对渐近线的夹角,它与波长成正比,与其束腰半径成反比,计算式是:2*波长/(3.1415926*束腰半径),故而,束腰半径越小,光斑发散越快;束腰半径越大,光斑发散越慢。

光斑描述如下图:我们用感光片可以看到,在近距离时,准直器发出的光在一定范围内近似成平行光,距离稍远,光斑逐渐发散,亮点变弱变大;可是从光纤出来的光,很快就发散;这是因为,准直器的光斑直径大约有400微米,而光纤的光斑直径不到10微米。

同时,对于准直器最大工作距离的定义,往往可理解为该准直器输出光斑的共焦参数,该参数与光斑束腰半径平方成正比,与波长成反比,计算式是:3.1415926*束腰半径*束腰半径/波长。

所以要做成长工作距离(意味着在更长的传输距离里高斯光束仍近似成平行光)的准直器,必然要把光斑做大,透镜相应要加长加粗。

我们对于准直系统的计算,理论根据就是高斯光束的传输特性计算式。

对于线度远大于输入光斑的透镜来讲,该输入光可视为点光源,其远场发散角就是该点光源的“边沿线”夹角;于是我们可根据透镜的具体参数,简单的用几何光学的方法计算该准直系统的光斑大小和最大工作距离。

而从高斯函数,我们可以计算当通光孔径多大时,光能的损失是多少。

高斯光束的传播特性课件

高斯光束的传播特性课件

高斯光束的未来发展趋势
01 发展现状分析
前景广阔
02 未来趋势探讨
挑战与机遇并存
03 科学研究发展
跨学科交叉
高斯光束在工业应用中的创新
制造工艺
高效精准 节约成本
设备应用
智能控制 自动化生产
材料加工
高质量 快速加工
能源利用
节能环保 绿色生产
● 07
第7章 高斯光束的传播特性 课件
高斯光束的重要性
折射率与热效应
热效应
高斯光束在介质中 传播时会产生热效
应。
折射率变化
热效应会导致折射率 发生变化,影响高斯 光束的传播和聚焦效
果。
总结
高斯光束的传播特性受到折射率、衍射效应、非线性光学和热 效应等因素的影响。理解这些因素对于光学应用和光束传输具 有重要意义。
● 03
第3章 高斯光束的光学系统
高斯光束的聚焦系统
● 04
第四章 高斯光束的传播实验
高斯光束的干涉实验
迈克尔逊干涉仪观测
利用迈克尔逊干涉 仪观测高斯光束的
干涉条纹
分析干涉条纹
分析干涉条纹的形状 和对比度,验证高斯
光束的传播特性
高斯光束的衍射实验
在衍射光栅实验中,观测高斯光束的衍射效 应是探究光栅对高斯光束的光斑形状和光强 分布的影响。通过实验,可以进一步了解光 的衍射现象,验证高斯光束在衍射过程中的 特性。
衍射效应
光束传播中的衍射 现象
散射效应
光束在物质中传播时 的散射现象
折射效应
光束在介质中传播时 的折射规律
高斯光束的调制特性
高斯光束可以通过调制改变其传播特性,例 如调制频率、相位等参数可以实现对光束的 精准控制。调制技术在光通信和激光加工中 有着重要的应用价值。

高斯光束

高斯光束
若有解
( x, y, z) 则为一个正确的波束解,这个解与
x, y有关部分完全含于高斯函数中,其他因子仅为z的函数。
解第一式:
1 f ( z) 2i z k
积分常数
2 f 2 ikf 比较 两式 2 fg ikg
因此,得解
g c f
(c const )

g ( z)
讨论内容:
一、高斯光束的定义 二、高斯光束波函数的解(亥姆霍兹方程的波束解)
1.高斯光束的纵向相位因子
三、高斯光束的传播特性
2.高斯光束的等相面曲率半径
3.高斯光束的束宽与远场发射角
高斯光束
定义:在光学中,高斯光束(Gaussian
分布近似满足高斯函数的电磁波光束。 beam)是横向电场以及辐照度
基本应用:许多激光都近似满足高斯光束的条件,在这种情况里,激光
在光谐振腔里以TEM00波模传播。当它在镜片发生衍射,高斯光束会变换成 另一种高斯光束,这时若干参数会发生变化。这解释了高斯光束是激光光学 里一种方便、广泛应用的原因。
描述:高斯光束的数学函数是亥姆霍兹方程的一个近轴近似解(属于小角
近似的一种)。这个解具有高斯函数的形式,表示电磁场的复振幅。电磁波 的传播包括电场和磁场两部分。研究其中任一个场,就可以描述波在传播时 的性质。
2 0
2i (1 z) k

4z 2 2z 2 2 ( z ) (1 2 2 ) 0 [1 ( 2 ) ] k k0
2
f ( z)
同理,可得
1 2iz (1 ) 2 2 ( z) k0
g ( z)
0
2z 1 ( 2 ) k0
e

第四讲-高斯光束

第四讲-高斯光束

18
二、共焦腔中的高斯光束
2.3 高斯光束的发散角
dW ( z ) 2z 2 W02 2 2 2 2 [z ( ) ] dz W0
1
19
二、共焦腔中的高斯光束
光束的发散角在z=0处为0,光斑半径W(z0)最小,称之为高斯光束的 腰,又叫腰粗。 W(z)随z值的增大而增大,这表示光束逐渐发散. 当z →∞时,
内容目录
一、激光器及光学谐振腔概述 二、共焦腔中的高斯光束 三 高斯光束的扩束准直 三、高斯光束的扩束准直 四、高斯光束的应用——超小光纤探针
2
一、激光器及光学谐振腔概述
1.1 激光器的基本组成
激励能源
方向性好、亮度高 单色性好、相干性好

工作物质 全反射镜 激光输出 部分反射镜
L
光学谐振腔
Light Amplification by Stimulated Emission of Radiation 受激辐射式光频放大器
例如,

共焦腔CO2激光器,波长λ=10.6μm,腔长L=1m,计算得远场半发散角为
3rad θ=2.59 2 59×10-3 d。

共焦腔He-Ne激光器,波长λ=0.6328μm,腔长L=30cm,可计算得到 θ=1.15 =1 15×10-3rad 可见,共焦腔基模半发散角具有毫弧度数量级,具有优良的方向性。
W02 通常称z=0到z=f=
20
二、共焦腔中的高斯光束
w(z) w0 θ0 O
R(f) )=2 2f
w(z)
2W0
R(z)
z
f
计算表明: 2 0 内含86.5%的光束总功率
21
二、共焦腔中的高斯光束

高斯光束的基本性质及特征参数课件

高斯光束的基本性质及特征参数课件
变换方法
通过使用各种光学元件,如反射镜、 棱镜等,可以对高斯光束进行各种形 式的变换,如旋转、平移、缩放等。
高斯光束的操控与调制
操控技术
利用光学元件对高斯光束进行操控,如改变光束方向、实现光束分裂等。
调制方法
通过在光束中加入外部信号,可以对高斯光束进行调制,实现信息传输和信号 处理等功能。
05
CHAPTER
高斯光束的聚焦
通过透镜可以将高斯光束聚焦到一点 ,聚焦点处的光强最大过程中,其传播方向呈发散状。
光强分布
高斯光束的光强呈高斯型分布,中心光强最大,向外逐渐减小。
衍射极限
高斯光束的衍射极限由波长和束腰宽度决定,短波长、小束腰宽度 的高斯光束具有更好的聚焦性能。
高斯光束的模拟与仿真
高斯光束的数值模拟方法
有限差分法
通过离散化高斯光束的波动方程,使用差分公式 求解离散点上的场值。
有限元法
将高斯光束的波动方程转化为变分问题,利用分 片多项式逼近解。
谱方法
将高斯光束的波动方程转化为频域或谱域的方程 ,通过傅里叶变换求解。
高斯光束的物理仿真实验
光学实验平台
搭建光学实验装置,通过实际的光路系统模拟高斯光束的传播。
光学成像
1 2 3
高分辨率成像
高斯光束在光学成像领域可用于实现高分辨率、 高清晰度的成像,从而提高图像的细节表现力和 清晰度。
荧光显微镜
高斯光束作为激发光,能够均匀地激发样品中的 荧光物质,提高荧光显微镜的成像质量和稳定性 。
光学共聚焦显微镜
利用高斯光束的聚焦和扫描特性,可以实现光学 共聚焦显微镜的高精度、高灵敏度成像。
激光加工
高效加工
01
高斯光束具有较高的亮度和能量集中度,能够实现高效、高精
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波动方程的近轴解
沿坐标z方向传播的高斯光束虽然不是平面波,但光波的复振幅 可以近似表达如下:
u(x, y, z) = U (x, y, z)eikz 式中 U (x, y, z) 为坐标轴z的缓慢变化的函数, k 为传播常数, eikz 表示沿坐标z方向迅速变化的相位项, U (x, y, z) 则为坐标z的
=
A0
W0 W (z)
exp[−
W
r
2
2
(
z)
]
exp[ikz
+
ik
r2 2R(z)
+
iφ ]
其中
W (z)
= W0[1+
(
z z0
)2 ]1/ 2
=
W0[1+
( λz πW02
)2 ]1/ 2
z点的光斑尺寸
R(z) = z[1+ ( z0 )2 ] = z[1+ (πW02 )2 ]
z
λz
z处的波阵面的半径
z = ±z0 φ(z) = ±π / 4
பைடு நூலகம்
z → ±∞ φ(z) → ±π / 2
高斯光束参数间的关系
光束尺寸 波面半径 可以得到
W (z)
=
W0[1+
(
z z0
)2 ]1/ 2
= W0[1+
λz
(
πW0
2
)2 ]1/ 2
R(z) = z[1+ ( z0 )2 ] = z[1+ (πW02 )2 ]
q(z)
2q(z)
当 ξ 为复数时上式仍然是亥姆霍兹方程的解,但具有非常不同的特性,
称为高斯光束,上式表示高斯光束的复数包络。
当 ξ = −iz0, z0 为实数时,我们把 q(z) 表示为如下形式 1 = 1 −i λ
q(z) R(z) πW 2(z)
R(z), W (z) 为实数。
可以得到 u(r, z) = U (r, z)eikz
发散角(半角)为
θ
(z)
=
dw(z) dz
=
λ2z πW0

2W04
+
z2λ 2 )−1/ 2
重要的情况是 z → ∞, 即远场的发散角为
θ0
=
limθ (z)
z→∞
=
λ π w0
光腰尺寸越大,发散角越小,越接近准直光。
准直距离
当 z = 0 时,θ = 0, 发散角随z的增大而增大, 当 z = π w02 / λ 时,θ (z) = λ /( 2π w0 ) = θ0 / 2, 所以称 2z0 = 2π w02 / λ 为“准直距离”或“焦深”或“共焦参数”。
Δx 为信号的空间宽度
θ / λ 为信号的空间谱宽度
根据测不准原理
2Δxi 2θ λ
2Δxi
2θ λ

4
π
又称信号的空间带宽积
当光束的直径和发散角不大时,就称为旁轴光波或近轴光波。
高斯信号具有最小的空间带宽积
2Δxi2θ = 4 . λπ
2. 波动方程的近轴解和高斯光束的特性
在凹面反射镜构成的谐振腔中产生的激光束既不是均匀、无限扩 展的平面波,也不是球面波,而是结构特殊的高斯光束。本节我们从 波动方程出发,导出高斯光束解,并讨论它的特性。
z→0
此时,波阵面变成平面,即xy平面
W (0) = W0
U
(r,
0)
=
A0
exp(−
r2 W02
)
I
(r,
0)
=
I0
exp(−
2r 2 w02
)
称该平面为高斯光束的光腰,在光腰附近,高斯光束接近平面波。
当z足够大时,高斯光束趋近于球面波。z<0 的分布与z>0的分布关
于z=0对称。
发散度
光斑尺寸W(z)随z的增大而增大,表示光束是发散的,定义
第四章 高斯光束光学
1. 引言 2. 波动方程的近轴解和高斯光束的特性 3. 高斯光束通过透镜系统的变换
1. 光束的概念
在几何光学中,用“光线”来描述光在自由空间中的传播。 如果光波能量被约束在相对较小的“管道”空间中传播,该管道
半径为 Δx, 发散角为 θ , 就称为“细光束”,简称“光束”。 细光束当 Δx 和 θ 都趋于0的极限情形就是光线。
光强分布
I
(r,
z)
=
I 0[WW(0z ) ]2
exp[−
2r 2 W 2(z)
]
在垂直于z轴的任何一个平面上的光强都呈高斯分布,在光轴 上强度最大。
z=0平面上的性质
u(r,
z)
=
A0
W0 W (z)
exp[− r2 ]exp[ikz W 2(z)
+
ik
r2 2R(z)
+
iφ ]
lim R(z) = ∞
相移和波前
高斯光束的相位函数可表示为 ϕ(z) = kz + kr2 + φ(z)
2R(z)
第一部分kz对应于平面波的线性相移
由于 R(z) 和 φ(z) 是z的缓变函数,
第二部分近似是球面波对于平面波的修正,
第三项 φ(z) 是高斯光束的进一步修正。
φ
= arctan
z z0
=
λz arctan πW02
φ = arctan z = arctan zλ
z0
πW02
W0
=
( λ z0 π
)1/ 2
高斯光束的“光腰尺寸”
z0 为光束的瑞利范围(Rayleigh range)。
高斯光束的特性
u(r,
z)
=
A0
W0 W (z)
exp[− r2 ]exp[ikz W 2(z)
+
ik
r2 2R(z)
+
iφ ]
z
λz
πW 2(z) = λz λR(z) πW02
光腰位置选为原点z=0,有 R ∼ ∞, W = W0
一般情况下光腰位置不在原点,可以由给定位置的光束尺寸和 波面半径计算得到光腰尺寸和光腰位置的公式。
W02
=
W
2 (z)[1+
(πW 2(z))2] λR(z)
z
=
R(z)[1+
λR(z)
(
πW
缓慢变化的函数。
代入亥姆霍兹方程,得到U满足的方程:
∂2U [( ∂x2
+
∂2U ∂y2
+
∂2U ∂z2
)
+
2ik
∂U ∂z
]eikz
=
0
近轴近似下:
∂2U ∂x2
+
∂2U ∂y2
+ 2ik
∂U ∂z
=0
考虑旋转对称情况,近轴亥姆霍兹方程的一个解为
代表一个波面为旋转抛物面的波。
U = A0 exp(ik r2 )
z
2z
当x和y都不大时,(x, y
非常接近。
z) 它的波面和球面波 U = A0 exp(ikr) r
如果将z换成函数 q = z − ξ 得到近轴亥姆霍兹方程的另一个解,
波动中心位于 z = ξ
U = A0 exp[ik r2 ], q = z −ξ
q(z)
2q(z)
U = −ξ A0 exp[ik r2 ], q = z −ξ
2
(
z)
)2
]−1
当 R > 0 有 z > 0 表示光腰在波面左方,为一个沿传播方向发散的
高斯波
当 R < 0 有 z < 0 表示光腰在波面右方,为一个沿传播方向会聚
的高斯波
光束的质量评价
高斯光束作为典型的细光束,最接近于光线,在等同的光束截面
相关文档
最新文档