第三节 中性点不接地的三相系统
低压配电网有三种中性点运行方式IT系统、TT系统和TN系统
![低压配电网有三种中性点运行方式IT系统、TT系统和TN系统](https://img.taocdn.com/s3/m/23674357bf1e650e52ea551810a6f524ccbfcb2d.png)
低压配电网有三种中性点运行方式IT系统、TT系统和TN系统低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。
其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。
中性点接地系统有三种:IT系统,TT系统和TN系统。
这三种接地分别为:TT系统:电源中性点直接接地IT系统:电源中性点不直接接地TN系统:电源中性点直接接地(与TT系统的区别是该接地线与电气设备的金属外壳相连接)国际电工委员会(IEC)对系统接地的文字符号的意义规定如下:第一个字母表示电力系统的对地关系:T--一点直接接地;I--所有带电部分与地绝缘,或一点经阻抗接地。
第二个字母表示装置的外露可导电部分的对地关系:T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关;N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。
后面还有字母时,这些字母表示中性线与保护线的组合:S--中性线和保护线是分开的;O--中性线和保护线是合一的。
(1)IT系统:IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。
即:过去称三相三线制供电系统的保护接地。
其工作原理是:若设备外壳没有接地,在发生单相碰壳故障时,设备外壳带上了相电压,若此时人触摸外壳,就会有相当危险的电流流经人身与电网和大地之间的分布电容所构成的回路。
而设备的金属外壳有了保护接地后,由于人体电阻远比接地装置的接地电阻大,在发生单相碰壳时,大部分的接地电流被接地装置分流,流经人体的电流很小,从而对人身安全起了保护作用。
IT系统适用于环境条件不良,易发生单相接地故障的场所,以及易燃、易爆的场所。
(2)TT系统:TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。
一起6kV不接地系统三相电压不平衡故障处理与分析
![一起6kV不接地系统三相电压不平衡故障处理与分析](https://img.taocdn.com/s3/m/84b1883f0166f5335a8102d276a20029bd646328.png)
一起 6kV不接地系统三相电压不平衡故障处理与分析【摘要】某厂6kV变电所6kVⅡ段发生三相对地电压不平衡故障,如果不能得到尽快处理,可能诱发严重电气事故,通过逐个瞬停负荷方式排查故障回路,最终发现故障点在一台中压电机开关C相未断开,导致系统三相容抗严重不平衡,引起中性点电压偏移,继而引发系统三相对地电压不平衡。
本文详细介绍了故障处理过程,分析计算了不同工况下三相电容不平衡对三相电压的影响差异,为排除和分析类似三相电压不平衡故障提供了有益的解决思路和理论支撑,并提出了相应的防范措施。
关键词:不接地系统;三相电压不平衡;电容不平衡1.系统运行方式与带载情况某厂6kV变电所有2段6kV母线,单母分段运行,中性点不接地系统。
6kVⅡ段带有负载有1组3000kVar电容器、3台1600kVA变压器、3台2000kW循环风机、3台900kW磨煤机、1台1600kW溢流型磨煤机、1台1250kW循环风机、1台500kW球磨机、1台400kW球磨机风机、1台280kW胶带输送机等共15个回路。
2.故障现象某日17:10分,该变电所运行人员巡检发现6kVⅡ段母线PT柜微机消谐装置显示电压频率为50Hz,开口电压值14V(正常为0-2V左右),同时检查发现母线三相对地电压不平衡:A相3.945kV,B相3.941kV,C相3.169kV(正常时三相对地电压均为 3.6kV)。
此时电压无波动及谐振现象,三相线电压平衡,均为6.3kV。
3.故障处理过程运行人员立即汇报技术主管,并协助处理故障。
17:30分,运行人员测量PT二次电压,其值分别为:A相65.7V,B相65.7V,C相52.8V,与表计显示一次侧三相对地电压相符。
线电压均为105V。
由此证明PT二次系统正常,系统电压不平衡确实存在于一次系统。
17:45分,运行人员联系工艺将6kVⅡ段负荷切换至6kVⅠ段运行,退出6kVⅡ段PT,此时系统三相对地电压依然不平衡,A相3.7kV,B相3.7kV,C相3.4kV。
中性点不接地运行方式
![中性点不接地运行方式](https://img.taocdn.com/s3/m/6f10f604844769eae009edc9.png)
任务3 中性点不接地的三相系统
一、正常运行情况
二、单相接地故障
三、中性点不接地系统适用范围
一、正常运行情况
各相导线间电容及所引起的电容电流较小,不考虑,各相 导线对地电容用集中的等效电容Cu、Cv、Cw代替。
1、电源电压UU、UV、UW对称;
2、Cu、Cv、Cw看成以地为中点的一组星形负荷;
3、设Un 为电源中性点对地间电压,则:
I C 3I CU 3CU X
结论:单相接地电流等于正常运行 时一相对地电容电流的三倍。
• IC的值与电压、频率、对地电容有关,而C
又与线路结构和长度有关。
• 实用公式: UL IC • 架空线: 350 • 电缆 : UL
IC 10
式中: U—网络线电压(KV) IC—--单位为(A) L—电压为U,具有电 联系的所有线路总长 度(KM)
电压达2.5-3倍相电压,危及电网绝缘。
三、中性点不接地系统适用范围
35KV以下绝缘投资增加不多而可靠性增加多。 1、电压为500V以下三相三线制装置 2、3-10KV IC≤30A 3、20-60KV IC≤10A 4、与发电机有直接电气联系的3-20KV系统,要 求G带内部单相接地故障运行,IC≤5A
3 倍。
正常时电容电流有效值:ICU=ICV=ICW=ωCUx W相接地: I CU I CV 3CU X
I CW 0
(CW短接)
三相对地电容电流之和不为零,大地 中有电流,通过接地点构成回路。
I C ( I CU I CV )
I C 超前 U W 900,有效值
U W 0
电力系统的中性点接地方式演示文稿
![电力系统的中性点接地方式演示文稿](https://img.taocdn.com/s3/m/39188286e53a580216fcfe08.png)
二、中性点经消弧线圈接地系统
当一相接地电容超过了上述允许值时,可以用中性点经消弧线 圈接地的方式来解决,即称为中性点经消弧线圈接地系统。
消弧线圈由带气隙的铁芯和套在铁芯上的线圈组成,并被放在 充满变压器油的油箱内。线圈的电阻很小,电抗很大。消弧线 圈的电感,可用改变接入线圈的匝数加以调节。显然,在系统 正常运行状态下,,因系统中性点的三相不对称电压很小,故 通过消弧线圈的电流也很小。
由于电力系统中性点接地问题牵涉的范围很广,所以在选择中性点接 地方式时,必须综合考虑各种因素,才能获得合理的结果。目前我国电力 系统中性点的接地方式,大体是: (1)对于6-10千伏系统,由于设备绝缘水平按线电压考虑,对于设备的 造价影响不大,为了提高供电可靠,一般局均采用中性点不接地或经消弧 线圈接地的方式。 (2)对于110千伏及以上系统,主要考虑降低设备绝缘水平,简化继电保 护装置,一般均采用中性点直接接地方式,并采用送电线路全线架设避雷 线和专设自动重合闸装置等措施,以提高供电可靠性。 (3)20-60千伏的系统,是一种中间情况,一般一相接地时的电容电流不 是很大,网络不很复杂,设备绝缘水平的提高或降低对于造价影响不很显 著,所以一般均采用中性点经消弧线圈接地的方式。 (4)1千伏以下的电网的中性点采用不接地的方式运行。但电压为 380/220的三相四线制电网的中性点,则是为了电气设备取得相电压的需 要而采取中性点直接接地方式。
中性点运行方式
![中性点运行方式](https://img.taocdn.com/s3/m/48af1c262f60ddccdb38a001.png)
电力系统中性点运行方式我国电力系统中常见的中性点运行方式有中性点非有效接地和中性点有效接地两大类。
中性点非有效接地包括:不接地、经消弧线圈接地和经高阻接地,又称为小接地电流系统。
而中性点有效接地包括直接接地和经低阻抗接地,又称为大接地电流系统。
一、中性点不接地的三相系统1、中性点不接地系统的正常运行正常运行时,电力系统三相导线之间和各相导线对地之间,沿导线的全长存在着分布电容,这些分布电容在工作电压的作用下,会产生附加的容性电流。
各相导线间的电容及其所引起的电容电流较小,并且对所分析问题的结论没有影响,故可以不予考虑。
2、单相接地故障当中性点不接地的三相系统中,由于绝缘损坏等原因发生单相接地故障时,情况将会发生显著变化。
假设W相在k点发生完全接地的情况,W相对地电压为零,中性点对地电压上升为相电压,而且与接地相的电源电压反相。
(完全接地,又称为金属性接地,即认为接地处的电阻近似等于零)三相系统的三个线电压仍保持对称而且大小不变。
非故障相电压升高为线电压,非故障相的对地电容电流也就相应的增大到√3倍。
W相对地电容被短接,于是对地电容电流为零。
此时三相对地电容电流的向量和不再为零,大地中有容性电流流过,并通过接地点形成回路。
可见,单相接地故障时流过大地的电容电流,等于正常运行时每相对地电容电流的三倍。
接地电流Ic的大小与系统的电压、频率和对地电容的大小有关,而对地电容又与线路的结构(电缆或架空线)、布置方式和长度有关。
实用计算中可按计算为:对架空线路:I c=UL/350对电缆线路:I c=UL/10式中I c——接地电流,A;U——系统的线电压,Kv;L——与电压同为U,并具有电联系的所有线路的总长度,km。
当系统发生不完全接地,即通过一定的过渡电阻接地时,接地相的对地电压大于零而小于相电压,中性点的对地电压大于零而小于相电压,非接地相对地电压大于相电压而小于线电压,线电压仍保持不变,此时的接地电流要比金属性接地时小一些。
电力系统的中性点运行方式
![电力系统的中性点运行方式](https://img.taocdn.com/s3/m/cac4b4e1d5bbfd0a79567321.png)
主要内容
中性点不接地的三相系统 中性点经消弧线圈接地的三相系统 中性点直接接地的三相系统 中性点经阻抗接地的三相系统
概述
电力系统的中性点是指三相系统作星形连接的变压 器和发电机的中性点。 中性点采用不同的接地方式,会影响到电力系统许 多方面的技术经济问题,如电网的绝缘水平、供 电可靠性、对通信系统的干扰、继电保护的动作 特性等。因此,选择电力系统的中性点运行方式 是一个综合性间题。本章就中性点不同运行方式 的三相系统作一般综合介绍。
一、中性点不接地的三相系统
对架空线路
对电缆线路
IC
IC
UL 350
UL 10
式中IC ——接地电流,A; U ——网络的线电压,kV; L ——与电压为U具有电联系的所有线路的总长 度,km。
一、中性点不接地的三相系统
综上所述,中性点不接地系统发生单相接地故障时产生的影 响可从以下几个方面来分析。 单相接地故障时,由于线电压保持不变,使负荷电流不变, 电力用户能继续工作,提高了供电可靠性。然而要防止由于接 地点的电弧或者过电压引起故障扩大,发展成为多相接地故障。 所以在这种系统中应装设交流绝缘监察装置,当发生单相接地 故障时,立即发出信号通知值班人员及时处理,规程规定:在 中性点不接地的三相系统中发生单相接地时.继续运行的时间 不得超过2h,并要加强监视。
一、中性点不接地的三相系统
各相对地的电压分别为电源各相的相电压。在此对地电 压下,各相对地电容电流 大小相等,相位差为 120°。 如图2-1(c)所示。各相对地电容电流之和为零,所以 没有电容电流流过大地。各相电源电流 应为各相 负荷电流 与对地电容电流 的相量和, 如图2-1(b)所示,图中仅画出U相情况。
电力系统的中性点运行方式有几种?各种接线方式是什么?
![电力系统的中性点运行方式有几种?各种接线方式是什么?](https://img.taocdn.com/s3/m/cb22bc5414791711cc791777.png)
电力系统的中性点运行方式在三相电力系统中,发电机和变压器的中性点有三种运行方式:即中性点不接地系统;中性点经阻抗接地系统;中性点直接接地系统。
前两种合称小接地电流系统,后一种称大接地电流系统。
1. 中性点不接地的三相系统中性点不接地的电力系统2. 中性点经消弧线圈接地系统中性点经消弧线圈接地的电力系统3. 中性点直接接地系统中性点直接接地的电力系统。
当发生单相接地时,故障相由接地点通过大地形成单相短路,单相短路电流很大,故又称其为大接地电流系统。
在低压配电系统中,我国广泛采用中性点直接接地的运行方式,从系统中引出中性线(N)、保护线(PE)或保护中性线(PEN)。
低压配电系统按保护接地形式分为TN系统、TT系统和IT系统。
其中TN系统又分为:TN—C系统、TN—S系统和TN—C—S系统。
《供配电系统设计规范》(GB 50052—2009)中规定:TN系统—在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过PE线与该点连接。
TN—S系统—在TN系统中,整个系统的中性线与保护线是分开的。
TN—C—S系统—在TN 系统中,系统中有一部分中性线与保护线是合一的。
TN—C系统—在TN系统中,整个系统的中性线与保护线是合一的。
在TN—C、TN—S和TN—C—S系统中,为确保PE线或PEN线安全可靠,除电源中性点直接接地外,对PE线和PEN线还必须设置重复接地。
低压配电TN系统如图9-6所示。
三、电力系统的中性点运行方式1.中性点不接地的三相系统2.中性点经消弧线圈接地系统3.中性点直接接地系统4.低压配电系统的接地形式a.TN—C系统b.TN—S系统c. TN—C—S系统。
第三节 中性点不接地的三相系统
![第三节 中性点不接地的三相系统](https://img.taocdn.com/s3/m/703efaf56294dd88d1d26b0e.png)
一、中性点不接地系统
正常运行情况
电力系统正常运行时,一般
•
•
UU U V UW 0
认为三相系统是对称的,若三 相导线经过完全换位,则各相
•
•
•
IUC IVC IWC 0
的对地电容相等,则有:
•
UN 0
各相导线对地的电容相等并等于C,正常时各相对地电容电流的
有效值也相等
对称电压的作用下,各相的对地电 容电流大小相等,相位相差120°,如 图(c)所示。
电流变得很小或等于零,从而消除了接地处
的电弧以及由电弧所产生的危害,消弧线圈
也正是由此得名。 通过消弧线圈的电感电流:
IL
U ph
L
消弧线圈的补偿方式
1.完全补偿 完全中补性偿点是经使电消感弧电线流圈等接于接地地系电统容发电生流,单接相地接处地电故流为障零时。,在
正 允常许运运行行时不的某超些过条两件小下时,可,能如形在成这串段联谐时振间,内产无生法谐振消过除电接压地, 危 点及,系应统将的接绝缘地。的部分线路停电,停电范围越小越好。
线圈接地和中性点经高电阻接地的系统,当发生单相 接地时,接地电流被限制到较小数值,故又称为小接 地电流系统;
中性点有效接地包括中性点直接接地和中性点经小阻 抗接地的系统,因发生单相接地时接地电流很大,故 又称为大接地电流系统。
(1)3-66KV系统由于设备绝缘水平按线电压考 虑对设备造价影响太大,为提高供电可靠性,一 般采用中性点不接地运行方式,如果单相接地电 流大于一定数值时,则应采用中性点经消弧绕组 接地运行方式。
四、中性点经小电阻接地系统 以电缆为主体的35kV、10kV城市电网,可采用经
小电阻接地方式,
中性点不接地系统C相完全接地
![中性点不接地系统C相完全接地](https://img.taocdn.com/s3/m/398050e04afe04a1b071dedc.png)
中性点不接地系统C相完全接地
2010-12-09 10:04 zxd861113|分类:工程技术科学|浏览3306次
1,图中串个电容再接地有什么用?
2,A B C三相不是接地了吗?怎么C相又接地?什么意思啊?
3,三个线圈啥意思?
为什么叫等效电容?它们三个为什么接地啊?怎么短路的啊?
向左转|向右转
提问者采纳
1 图中的电容是线路对地分散电容,为了计算方便分析和计算便用等效电容代替;
2 正常运行时候线路三相通过电容接地,电容阻抗很大,所以实际上A、B、C
正常时没有接地的。
只有因为特殊原因(比如架空线碰到树枝,或施工挖破电缆等导致对地绝缘被破坏),才是我们常规说的接地故障发生了,比如上图的C
相就表示发生了接地故障。
3 三个圈圈是电机的三相绕组,表示电源系统。
等效电容含义:你要知道线路一通电之后,线路每一个微小部分对地都有电容存在,当然电容可能很小很小,但因为线路很长,所有的电容加起来那可能就比较大了,等效电容就是把全部长度对地的电容加起来后的和,用这样一个电容来代替无处不在的微小电容。
ok?。
(完整word版)中性点不接地系统运行方式
![(完整word版)中性点不接地系统运行方式](https://img.taocdn.com/s3/m/812de70bf705cc17542709f5.png)
(一)中性点不接地的电力系统 1、正常运行 (1)电压情况:如三相导线经过完善换位,各相对地电容相等,即:C 1=C 2=C 3=C ,则Y 1=Y 2=Y 3=Y 。
所以:注意以上公式都是向量公式。
图1 正常运行时中性点不接地的电力系统(a ) 电路图; (b ) 相量图可见正常运行中,电源中性点对地电压为零,即中性点对地电位相等。
各相对地电压为: 第1相:11,1U U U U n••••=+=;第2相: 22,2U U U U n••••=+=;第3相:33,3U UU U n••••=+=;03321=++-=••••U U U U nY Y Y YU Y UY U Un321332211++++-=••••结论:正常运行时,各向对地电压为相电压,中性点对地电压为零.(2)电流情况:由于各相对地电压为电源各相的相电压。
所以电容电流大小I C1、I C2、I C3相等,相位差为1200。
它们之和仍为零I 3=I C1+I C2+I C3=0,所以没有电容电流流过大地.当各相对地电容不等时,不为零,发生中性点位移现象。
在中性点不接地系统中,正常运行时中性点所产生的位移电压较小,可忽略。
2、发生单相接地故障时 (1)电压情况:图2为第3相发生完全接地的情况,完全接地即是金属性接地,接地电阻很小,容易看出,这时中性点对地的电压:3U U n-=。
各相对地电压为: 第1相:131'1U U U U n ••••=+=; 第2相: 232'2U U U U n ••••=+=; 第3相:0'3=•U;图2生单相接地故障时的中性点不接地系统n U •结论:故障相对地电压为零,中性点对地电压为相电压,非故障相对地电压升高为线电压.因此,这类系统设备的对地的绝缘要按线电压来考虑. (2)电流情况:由于输电线路和电机电器的导电部分对地存在分布电容,所以发生单相接地故障时,故障点存在接地电容电流。
电力系统中性点接地
![电力系统中性点接地](https://img.taocdn.com/s3/m/cec51903866fb84ae45c8dc0.png)
.
.
教 教 学 内
学 容
Hale Waihona Puke 过 板程 书2、不完全接地:即故障点经过一定的电阻接地。 1)接地相对地电压大于零而小于相电压,未接地相对地电压大于相电压而 小于线电压。 2)中性点电压大于零而小于相电压,线电压仍保持不变。 3)接地电流比完全接地时要小一些。 由此可见: 1)非故障两相的对地电压数值升高 3 倍,即变为线电压;三相系统的线电 压大小不变,相位差仍和正常运行时一样,不影响线电压电力用户的工作。 2)相对他的电容电流也相应增大 3 倍;而 W 相已接地,该相对地电容电 流为零,三相对地电容电流之和不再为零,大地中有电流流过。 Ic=3ωCUph 式中 Uph——电源的相电压,V; w ——频率,rad/s; C——相对地电容,F. 中性点不接地系统中,单相接地电流等于正常运行时相对地电容电流的三 倍。其值与网络的电压、频率和相对地电容的大小有关,而相对地电容又与线路 的结构(电线或架空线)和长度有关。实用计算中按下式计算 对架空线路 对电缆线路 式中 U——电网的线电压,kV; L——相同电压等级的具有电联系的所有线路的总长度,km。 2、不完全接地:即故障点经过一定的电阻接地。 (三)适用范围 1、电压在 500V 以下的三相三线装置 2、3~10kV 系统当接地电流 c ≤30A
教 学 过 程 内 容 及 板 书 提问:电力网的额定电压的确定 复习内容:电力系统额定电压、额定电流、额定容量 引入: 课题一 电力系统中性点的接地方式
电力系统的中性点:是指星形连接的变压器或发电机的中性点。 常见接地方式有三种:中性点不接地系统 中性点经消弧线圈接地系统 中性点直接接地系统 c 一、中性点不接地系统 (-)中性点不接地系统的正常工作 如图所示,为简化的中性点不接地三相系统正常运行情况的示意图,图中断路 器 QF 正常运行时处于合闸状态。正常运行时,三相电源的相电压分别为 Uu、 Uv、Uw,并且三相对称,中性点的电位 U
电力系统中性点运行方式
![电力系统中性点运行方式](https://img.taocdn.com/s3/m/c28e0b725901020207409c98.png)
19
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小电说力欣系赏•统(配中人性教点版运)◆行方式
单相接地故障时的中性点直接接地的电力系统
20
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小电说力欣系赏•统(配中人性教点版运)◆行方式
• 分析 • 单相接地时 (C相) • 1、电压情况
调线圈匝数,使I地=0
∵IL与IC方向相反 ∴IL起到抵消IC的作用。
16
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小电说力欣系赏•统(配中人性教点版运)◆行方式
电压变化特点: ➢ 故障相对地电压变为零 ➢ 非故障相对地电压升高 3 倍 ➢ 系统各相对地的绝缘水平也按线电压考虑
小电流接地系统发生单相接地故障时,接地点将通过接地
26
金品质•高追求 我们让你更放心!
返回
补偿方式及选用
1、全补偿
接地点电流为零(不采用)
缺点:由XL=XC,网络容易因不对称形成 串联谐振过电压
2、欠补偿 接地点为容性电流(少采用) 缺点:易发展成为全补偿方式
3、过金补品偿质•高追求
18
我们让你更放心!
返回
◆语文•选修\中国小电说力欣系赏•统(配中人性教点版运)◆行方式
课题三 中性点直接接地的三相系统
课题一 中性点不接地的三相系统 课题二 中性点经消弧线圈接地的三相系统 课题三 中性点直接接地的三相系统
2
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小电说欣力赏系•统(配中人性教点版运)◆行方式
• 1、电力系统的中性点:发电机、变压器Y形接线的中性点
中性点不接地系统
![中性点不接地系统](https://img.taocdn.com/s3/m/1227c86158fafab069dc024d.png)
中性点不接地系统的缺点
(-)绝缘水平要求高
单相接地时,非故障相对地电压升高√3倍.所以,在这种电网中的设备绝 缘水平高和费用大。 (二)存在弧光接地过电压的危险 单相接地电流不大时,电流流过零值时的电弧将自行熄灭,故障消失;单 相接地电流大于30安时, 产生稳定电弧,将形成持续性弧光接地,将会损坏 设备并导致两相甚至三相短路;当接地电流大于10安小于30安时,有可能产 生一种不稳定的间歇性电弧,随之将出现弧光过电压,幅值可达2.5至3倍相 电压,足以危及整个电网的绝缘。在变压器的中性点装设消弧线圈形成的电 感电流与电容电流相补偿,将使接地电流限止,甚至近于零,从而消除了接 地处的电弧以及由它产生和危害。 (三)接地继电保护的选择困难 因而要实现灵敏的有选择性的保护就比较困难, 特别是经消弧线圈接地的电力网更困难. (四)断线可能引起谐振过电压 导线的开断、开关不同期切合和熔断器不同期 熔断将引起铁磁谐振过电压。 由断线引起的谐振过电压可能导致避雷器爆炸,负载变压器的相序反倾和电 气设备绝缘闪络等现象。
中性点不接地的三相系统
在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相 的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地 的绝缘水平应根据线电压来设计பைடு நூலகம்二是各相间的电压大小和相位仍然 不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这 是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供 电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行 时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘 监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅 速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最 长不得超过2h。三是接地点通过的电流为电容性的,其大小为原来相 对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引 起弧光解析,周期性的熄灭和重新发生电弧。弧光接地的持续间歇性 电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设 备或发展成相间短路。故在这种系统中,若接地电流大于5A时,发电 机、变压器和电动机都应装设动作于跳闸的接地保护装置。。
电力系统的中性点运行方式
![电力系统的中性点运行方式](https://img.taocdn.com/s3/m/274e2b1990c69ec3d4bb7515.png)
电力系统的中性点运行方式电力系统的中性点(实际上是指电力系统中发电机、变压器的中性点)接地或不接地是一个综合性的问题,中性点接地方式对于电力系统的运行,特别是对发生故障后的系统运行,有多方面的影响,所以在选择中性点接地方式时,必须考虑许多因素。
电力系统中性点的接地有中性点直接接地、经电阻接地和经消弧线圈接地三大类。
其中经电阻接地又分经高电阻接地、经中电阻接地和经低电阻接地三种。
中性点直接接地、经中电阻接地和经低电阻接地称为大接地电流系统;中性点不接地、经消弧线圈接地和经高电阻接地称为小接地电流系统。
一、中性点不接地系统电力系统的每一相对地都有电容,它们分布在输电线路全长上和电气设备中,为了使讨论简化,设三相系统是完全对称的,并将分布的相对地电容用集中在线路中央的电容C 来代替,如图1-2。
因为在中性点不接地系统中发生一相接地时,电力系统相间电压并不改变,因而相间电容所引起的电容电流也不会改变,所以可以不予讨论。
在正常工作状态下,电网各相对地的电压U A 、U B 、UC 是对称的,并且在数值上等于电网的相电压,电源各相中的电流I A 、I B 、I C 分别等于负荷电流I fA 、I fB 、I fC 和各相对地的电容电流0A I 、0B I 、0C I 的相量和,见图1-2(a )、(b )。
此时三相电容电流0A I 、0B I 、0C I的相量和等于零,流经地中的电流为零。
中性点对地电压0U =0。
因此,这种电网,在正常运行时,中性点接地与否,对系统运行无任何影响。
但如果发生一相接地,情况将发生明显的变化。
(a ) (b )图1-2 中性点不接地的三相系统(正常工作状态)(a )电流分布; (b )A 相电流、电压相量关系图1-3表示当C 相在d 点发生金属性接地时的情况。
接地后故障点d 的电压为零,即Cd U=0。
这时,按故障相条件,可以写出电压方程式00==+Cd C U U U (1-1)式中 U C ——C 相电源电压;U 0——中性点对地电压 所以 C U U -=0 (1-2)图1-3 中性点不接地的三相系统(C 相接地)(a )电流分布;(b )相量关系上式表明,当发生C 相金属性接地时,中性点的对地电位不再为零,而是-UC 。
中性点不接地系统 课件
![中性点不接地系统 课件](https://img.taocdn.com/s3/m/127116b7e87101f69e3195e0.png)
•
•
•
•
U wd U w U n U w
各相导线对地的电容相等并等于C,正常时各 相对地电容电流的有效值也相等,且有
ICU=ICV=ICW=ωCUph
中性点不接地的三相系统 一、正常运行情况
《发电厂变电所电气设备》 电力系统中性点运行方式
对称电压的作用下,各相的对地电容电 流大小相等,相位相差120°,如图(c)所示。
首页
中性点不接地的三相系统 一、正常运行情况
《发电厂变电所电气设备》 电力系统中性点运行方式
电力系统正常运行时,一般认为三相系统是对
称的,若三相导线经过完全换位,则各相的对地电
容相等, CU=CV=CW=C
相对地电压分别为:
•
•
•
•
U ud U u U n U u
•
•
•
•
U vd U v U n U v
接地电流系统。
中性点不接地的三相系统 引言
《发电厂变电所电气设备》 电力系统中性点运行方式
我国电力系统广泛采用的中性点接地方式主要 有不接地、经消弧线圈接地及直接接地三种。
中性点不接地的三相系统 教学内容
《发电厂变电所电气设备》 电力系统中性点运行方式
中性点不接地的三相系统
本节教学内容
一、正常运行情况 二、单相接地故障 三、适用范围
(4)变压器的二次线圈(副线圈)相当于一个供 电电源,它的空载额定电压要比其所在电网的额定 电压高10%。但在3、6、10kV电压时,由于这时相 应的配电线路距离不长,二次线圈的额定电压仅高 出电网电压5%。
中性点不接地的三相系统 复习旧课
《发电厂变电所电气设备》 电力系统中性点运行方式
二、额定电流IN:是指在一定的基准环境温度和条件 下,允许长期通过设备的最大电流值,此时设备的 绝缘和载流部分的长期发热温度不超过规定的允许 值。
中性点不接地系统
![中性点不接地系统](https://img.taocdn.com/s3/m/d3d335018e9951e79a892712.png)
中性点不接地系统的缺点
五)电磁式电压互感器的谐振过电压 由于电网参数不对称,出现中性点位移,常会引起铁磁谐振过电压,使电
磁式电压互感器的高压保险丝频繁熔断,或造成互感器本身的烧毁。限制和 消除铁磁谐振过电压的措施: 1.选用励磁特性较好的电压互感器或改用电容式互感器。 2.在电磁式电压互感器的开口三角形绕组中加装阻尼电阻,可消除各种谐振 现象。 3.在母线上加装一定的对地电容,使Xc0≤0.01XT,谐板就不能发生。 4.采用临时的倒闸措施,如投入消弧线圈,将变压器中性点临时接地以及投 入事先规定的些某线路或设备等。 (end) 。
中性点不接地系统
中性点不接地的三相系统
各相对地电容电流的数值相等而相位相差120°,其向量和等于零, 地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一 致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中 性点不接地系统的各相对地电容不相等时,即使在正常运行状态下, 中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点 不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而 又换位不完全的缘故造成高 单相接地时,非故障相对地电压升高√3倍.所以,在这种电网中的设备绝
缘水平高和费用大。 (二)存在弧光接地过电压的危险
单相接地电流不大时,电流流过零值时的电弧将自行熄灭,故障消失;单 相接地电流大于30安时, 产生稳定电弧,将形成持续性弧光接地,将会损坏 设备并导致两相甚至三相短路;当接地电流大于10安小于30安时,有可能产 生一种不稳定的间歇性电弧,随之将出现弧光过电压,幅值可达2.5至3倍相 电压,足以危及整个电网的绝缘。在变压器的中性点装设消弧线圈形成的电 感电流与电容电流相补偿,将使接地电流限止,甚至近于零,从而消除了接 地处的电弧以及由它产生和危害。 (三)接地继电保护的选择困难 因而要实现灵敏的有选择性的保护就比较困难, 特别是经消弧线圈接地的电力网更困难. (四)断线可能引起谐振过电压
中性点不接地系统三相电压不平衡分析
![中性点不接地系统三相电压不平衡分析](https://img.taocdn.com/s3/m/ca6105d6ab00b52acfc789eb172ded630b1c9891.png)
中性点不接地系统三相电压不平衡分析摘要:本文通过对中性点不接地系统三相电压不平衡的原因进行分析,比较不同故障导致电压不平衡时电压幅值、零序电压、接地信号的情况,用于快速发现变电站内的电压不平衡的原因,以便于运行人员快速发现故障,快速处理。
关键词:中性点不接地、电压、三相不平衡0引言变电站内35kV或10kV系统经常出现三相电压不平衡的现象,而35kV或10kV系统中性点一般采用不接地或经消弧线圈接地的模式,就是我们俗称的中性点不接地系统或为小电流接地系统。
因此,对变电站中性点不接地系统的三相电压不平衡原因进行分析,将不同原因导致三相电压不平衡时的表象呈现出来,方便现场运行人员快速判别故障,才能快速处理。
1三相电压不平衡的危害三相电压不平衡会影响变压器等设备的安全运行和正常出力,引起继电保护及安全自动装置的误动作,引起电网损耗的增加。
(1)对变压器危害:变压器在负载不平衡状态运行,一相电压处于满载,其余两相未满载,导致变压器容量无法得到充分的利用,而且变压器在长期负载不平衡运行时,造成其局部过热,降低其使用寿命。
(2)对线路的危害:供电线路在三相不平衡系统中,负序电流的产生带来了附加损耗,增大线损和压降。
(3)可能会造成继电保护误动作。
(4)对于敏感性负荷可能会造成无法正常工作。
(5)负序分量的产生,使电动机定子、转子的铜耗增加,电动机过热并导致绝缘老化加快。
降低其运行寿命。
2电压不平衡的主要原因及表象在变电站内电压不平衡现象常见、特征多样;若认识不足,查找故障点时间过长,会耽误送电。
如判断错误,会影响设备稳定运行,甚至扩大事故。
因此,对不同原因引起三相电压不平衡的现象,进行分析。
引起变电站电压不平衡的主要原因如下图1所示:图1:电压不平衡原因2.1三相电压平衡的条件三相电压平衡是指:电压幅值相等、相角相差120°,其向量关系如下图2所示:图2:三相电压平衡向量2.2电压互感器保险熔断导致的电压不平衡(1)电压互感器高压侧保险熔断以电压互感器高压侧A相保险熔断为例如图3,A相电压降低为零,其余两相(B、C相)为正常电压,三相两两向量角差为120°,因断相造成三相电压不平衡,开口三角形处也会产生不平衡电压,输出零序电压,起动接地装置,发出接地信号。
中性点不接地系统电压不平衡现象分析
![中性点不接地系统电压不平衡现象分析](https://img.taocdn.com/s3/m/33b7f92b82c4bb4cf7ec4afe04a1b0717fd5b363.png)
科技信息SCIENCE&TECHNOLOGY INFORMATION2008年第34期在发电厂电气运行中,常会遇到中性点不接地系统电压表显示不平衡的情况,如果对这方面的认识不足,往往会因为查找时间过长而耽误送电。
本文通过对发电厂110KV及以下中性点不接地系统电压不平衡的几种现象的分析,探讨了产生这些现象的原因,可为及时查找问题、处理问题、预防事故的发生提供参考。
一、电压不平衡现象1.电压不平衡故障的特征(1)发电厂110KV及以下中性点不接地系统电压不平衡时,中央信号装置报警,发出“某千伏某段母线接地”预告信号,还有可能发出“某千伏电压回路断线”预告信号。
(2)发生单相接地时,绝缘检查电压表指示:故障相电压降低(不完全接地)或为零(完全接地),另两相电压升高,接近(不完全接地)或等于线电压(完全接地)。
稳定时电压表指针无摆动,为金属性接地;若电压表指针不停摆动,则为间歇性接地。
(3)系统发生谐振,若为高频谐振,特征是三相电压升高。
单相接地时,故障点产生间歇性电弧,在一定条件下产生串联谐振过电压,其值可达相电压的2.5~3倍。
发生谐振时,电压互感器声响异常,对系统绝缘造成危害。
2.电压不平衡产生的原因2.1接地故障(1)在中性点不接地系统中,当其中一相出现金属接地时,会产生激磁涌流,导致电压互感器铁心磁饱和。
如A相接地,接地相与大地同电位,两正常相的对地电压值上升为线电压,产生严重的中性点位移。
二次侧Uan电压为零,非接地相Ubn、Ucn电压表指示为100V,电压互感器开口三角形两段出线电压为100V(正常时约3V),此电压将启动绝缘检查继电器,发出接地信号,并报警。
(2)当发生非金属性接地短路时,如A相发生接地,Ubn、Ucn电压则大于58V,且小于100V,电压互感器开口三角形两段电压约70V,达到绝缘检查继电器启动值,发出接地信号,并报警。
2.2断线故障(1)10KV(35KV)电压互感器高压侧熔断器熔断的原因如下:电力系统发生单相间隙电弧放电或其他接地等使系统产生铁磁谐振过电压;电压互感器内部出现单相接地或匝间、层间、相间短路故障;电压互感器二次侧发生短路,而二次侧熔断器未熔断,造成高压熔断器熔断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为防当止接由地电于流接不地大点时的,交电流弧电及流伴过随零时产电生弧的将过自电行熄压灭,,引接起地故 障范围故扩障大随之,消在失这,种电系网即统可中恢必复须正装常运设行交;流绝缘监察装置, 当发生当单接相地电接流地超故过障一时定值,时立,即将发会出产生绝稳缘定下的降电的弧,信形号成,持通续 知运行的短值电路班弧,接尤人地其员, 在及高 电时温 机处的 或电 电理弧 器。内可部能发损生坏单设相备接,地甚出至现可电能弧导时致最相危间 电力险系;统的有关规程规定:在中性点不接地的三相系统 中发生接单地相电流接小地于时30,A而允大许于继5~续1运0A行时的,有时可间能不产得生超一种过周2期h性, 并要加熄强灭监与复视燃。的间歇性电弧,将引起过电压,其幅值可达2.5~ 系统3但倍中当的电绝相缘气电存设压在备,薄这和弱个线点过时路电,的压可对对能于地发正绝生常击缘电穿必气而须绝造缘按成来能短说路承应,受能危线承及受电整,压 考虑设个计电,网的从安而全相。应地增加了投资。
性单电此相流时接流三地过相电,对容并地电通电流过容的接电实地流用点之计形和算成不为回再:路等,于接零地,电大流地中:有容
IC
U
(
L135I03•C5L2) (
式• 中:IC• —电网单相接地电容电流,A;
I CU I CUV—) 电网额定电压,kV;
L1—架空线路的总长度,km;
单相接地故障时,流过大地的L2电—容电缆电线流路,的等总于长度正,常k运m。行
线圈接地和中性点经高电阻接地的系统,当发生单相 接地时,接地电流被限制到较小数值,故又称为小接 地电流系统;
中性点有效接地包括中性点直接接地和中性点经小阻 抗接地的系统,因发生单相接地时接地电流很大,故 又称为大接地电流系统。
(1)3-66KV系统由于设备绝缘水平按线电压考 虑对设备造价影响太大,为提高供电可靠性,一 般采用中性点不接地运行方式,如果单相接地电 流大于一定数值时,则应采用中性点经消弧绕组 接地运行方式。
(3)3~10kV电缆线路构成的系统,接地电流IC <30A;
(4)与发电机有直接电气联系的3~20kV系统, 如果要求发电机带内部单相接地故障运行,当接地 电流不超过允许值时。
思考练习
各相对地电容电流的相量和为零, 所以大地中没有电容电流过。
各相电流为各相负荷电流与相应的 对地电容电流的相量和,如图(b)所 示,图中仅画出U相的情况。
单相接地故障
当W相完全接地时,故障相的对地电压为零,即:U• wk 0
•
•
•
则有:U wk U n U w 0
•
•
Un U w
一、中性点不接地系统
正常运行情况
电力系统正常运行时,一般
•
•
UU U V UW 0
认为三相系统是对称的,若三 相导线经过完全换位,则各相
•
•Leabharlann •IUC IVC IWC 0
的对地电容相等,则有:
•
UN 0
各相导线对地的电容相等并等于C,正常时各相对地电容电流的
有效值也相等
对称电压的作用下,各相的对地电 容电流大小相等,相位相差120°,如 图(c)所示。
非故障相U相和V相的对地电 压分别为:
•
•
•
•
•
U uk U u U n U u U w
•
•
•
•
•
U vk U v U n U v U w
非故障相的对地电压升高到线电压,
即升高为相电压的 倍,3各相对地电
压的相量关系如图(b)所示:
系统三相的线电压仍保持对 称且大小不变。因此,对接 于线电压的用电设备的工作 并无影响,无须立即中断对 用户供电。
第三节 电力系统中性点运行方式及低压配电 系统的接地形式
接电电我地力机国,系的电经统中力消中性系弧性点统线点。广圈是泛接三采地相用及绕的直组中接作性接星点地形接三连地种接方。的式变主压要器有和不发 路电系电电力统力流系中系、统性统过中点中电性接性压点地点水与方接平大式地、地(方继间即式电的中与保电性电护气点压和连运等自接行级动方方、装式式单置,)相的称。接配为地置电短等力 有电关力,系直统接中影性响点电的网运的行绝方缘式水,平可、分系为统中供性电点的非可有靠效性接 和地连和续中性性、点主有变效压接器地和两发大电类机。的运行安全以及对通信 系中统性的点干非扰有等效。接地包括中性点不接地、中性点经消弧
时一当相发对生地不电完容全电接流地的时3,倍即,通其过有一效定值的为电:阻接地时,接地
相压的大相于对相地电电压压而大小IC于于零线而电3IC小压U 于, 相中3电性CU压点P,电h 未压接大地于相零的而对小地于电相
电压,线电压仍保持不变,此时的接地电流要比完全接地
时小一些。
单相接地故障
中性点不接地系统发生单相接地故障时产生的影响:
适用范围
(1)3~10kV钢筋混凝土或金属杆塔的架空线路 构成的系统和所有35kV、66kV系统,不直接连接 发电机的系统;当接地电流IC<10A时;
(2)3~10kV非钢筋混凝土或非金属杆塔的架空 线路构成的系统,电压为3kV时,接地电流IC< 30A;电压为6kV时,接地电流IC<20A;
单相接地故障
W接相地接电地流时的,大W小相与对系地统电的容电被压短、接频,率W和相对的地对电地容电值容有电 流关为,零而。对未地接电地容U值、又V与相线的路对的地结电构容(电电流缆的或有架效空值线为、:
有杆无塔避型雷式线和)导、线IC布长U 置度方有IC式关V 、。 相3间C距U离Ph、导线对地高度、
(2)110KV及以上系统主要考虑降低设备绝缘 水平,简化继电保护装置,采用中性点直接接地 运行方式,并采用送电线路全线架设避雷线和装 设自动重合闸装置。
(3)1KV以下电网中性点采用不接地运行方式。 但电压为380/220V三相四线制,电网中性点是 为适应接受电设备取得相电压的需要而直接接地。