《信号与系统》学习笔记

合集下载

信号与系统知识点整理

信号与系统知识点整理

第一章1.什么是信号?是信息的载体,即信息的表现形式。

通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。

2.什么是系统?系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

3.信号作用于系统产生什么反应?系统依赖于信号来表现,而系统对信号有选择做出的反应。

4.通常把信号分为五种:✓连续信号与离散信号✓偶信号和奇信号✓周期信号与非周期信号✓确定信号与随机信号✓能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。

6.离散信号:只在某些离散的时刻或位置才有定义的信号。

通常考虑自变量取等间隔的离散值的情况。

7.确定信号:任何时候都有确定值的信号。

8.随机信号:出现之前具有不确定性的信号。

可以看作若干信号的集合,信号集中每一个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。

9.能量信号的平均功率为零,功率信号的能量为无穷大。

因此信号只能在能量信号与功率信号间取其一。

10.自变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做自变量线性变换会产生信息的丢失!11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力。

(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极大的实际信号的数学近似。

对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。

13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大;另一个位于t=0+处,强度负无穷大。

要求:冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。

15.系统具有六个方面的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与非时变性6、线性性16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级
6.共轭及共轭对称 将一个周期信号 x(t)叏它的复数共轭,在它的傅里叶级数系数上就会有复数共轭幵迚行 时间反转的结果。即若

(1)弼 x(t)为实函数时,由亍 x(t)=x*(t),傅里叶级数系数一定是共轭对称的,即
(2)若 x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数。 (3)若 x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。 7.连续时间周期信号的帕斯瓦尔定理 (1)连续时间周期信号的帕斯瓦尔定理:
8.连续时间傅里叶级数性质列表 表 3-1 连续时间傅里叶级数性质
/ 106
圣才电子书 十万种考研考证电子书、题库规频学习平台

1.成谐波关系的复指数信号的线性组合 一般的周期序列的线性组合就有如下:
序列φk[n]只在 k 的 N 个相继值的匙间上是丌同的,因此上式的求和仅仅需要包括 N 项。 因此将求和限表示成 k=(N),即离散时间傅里叶级数为
三、傅里叶级数的收敛 连续时间信号的傅里叶级数收敛的条件——狄里赫利条件: 1.条件 1 在仸何周期内,x(t)必须绝对可积,即
这一条件保证了每一系数 ak 都是有限值。 2.条件 2 在仸意有限匙间内,x(t)具有有限个起伏发化;也就是说,在仸何单个周期内,x(t)的
最大值和最小值的数目有限。 3.条件 3 在 x(t)的仸何有限匙间内,只有有限个丌连续点,而丏在这些丌连续点上,函数是有限

(1)施加亍连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的时间反 转。
(2)若 x(t)为偶函数,则其傅里叶级数系数也为偶,若 x(t)为奇函数,则其傅里叶级 数系数也为奇。
4.时域尺度发换 时间尺度运算是直接加在 x(t)的每一次谐波分量上的,傅里叶系数仍是相同的。 x(αt)的傅里叶级数表示:

(完整版)信号与系统知识要点

(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。

信号与系统知识点整理

信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。

下面是信号与系统的知识点整理。

1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。

-离散信号:在时间上是离散的信号,如数字音频、数字图像等。

-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。

-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。

2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。

-冲击信号:在其中一时刻瞬间出现并消失的信号。

-正弦信号:以正弦函数表示的周期信号。

-方波信号:由高电平和低电平构成的周期信号。

3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。

-线性系统:满足叠加性质的系统。

-因果系统:输出仅依赖于当前和过去的输入的系统。

-稳定系统:有界的输入产生有界的输出的系统。

4.线性时不变系统的特性:-线性性质:满足叠加性质。

-时不变性:系统的输出只取决于输入信号的当前和过去的值。

-冲激响应:线性时不变系统对单位冲激信号的响应。

5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。

-传输函数:用传输函数表示系统的输入和输出之间的关系。

6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。

-序列的频率表示:幅度谱、相位谱和角频率。

7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。

-传递函数:用传递函数表示系统的输入和输出之间的关系。

8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。

-傅里叶变换:将连续时间非周期信号从时域变换到频域。

9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。

-图像处理:对图像进行滤波、增强、压缩等处理。

-音频处理:对音频信号进行降噪、消除回声、变声等处理。

-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平

1

C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。

信号与系统笔记pdf

信号与系统笔记pdf

信号与系统笔记一、基本概念信号:信号是运载信息的物理量,是消息的表现形式与传送载体。

它可以随时间或空间而变化。

常见的信号有:模拟信号和数字信号。

系统:系统是由一个或若干个相互关联的单元组成的具有特定功能的整体。

系统处理的内容可以是信号,也可以是信号的处理与变换。

二、信号的分类常见分类方式:按时间是否连续,信号可分为连续时间信号和离散时间信号;按幅度是否变化,信号可分为确知信号和随机信号。

信号的能量与功率:能量是指信号的幅度平方的积分,表示信号的总能量;功率是指单位时间内信号的能量,表示信号的平均功率。

三、基本信号变化线性变化:如果一个信号经过系统后,其输出仍然是输入的线性组合,则称该系统为线性系统。

线性系统具有叠加性和均匀性。

奇偶变化:如果一个信号在时间上关于原点对称,则称为奇对称信号;如果一个信号在时间上关于其最大或最小值点对称,则称为偶对称信号。

信号的运算:信号的加、减、乘运算对应于时间域的相加、相减、相乘运算。

此外,还包括信号的平移、反转、尺度变换等运算。

四、指数信号与正弦信号周期复指数信号:形如ejwt的信号,其中w为角频率,t为时间。

它是复数指数函数在时间域的表示。

一般的复指数信号:形如a*ejwt的信号,其中a为幅度,w为角频率,t为时间。

它是复数指数函数在时间域的表示。

五、系统分析方法时不变性:系统的行为不随时间而变,即系统的冲激响应不变。

线性时不变系统:满足叠加性和均匀性的系统。

其冲激响应h(t)和输入信号x(t)的卷积就是输出信号y(t)。

线性时不变系统的输出由输入和系统的冲激响应共同决定。

信号与系统知识点详细总结

信号与系统知识点详细总结

信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。

连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。

系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。

线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。

时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。

2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。

3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。

信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。

时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。

冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。

4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。

频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。

傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。

傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。

信号与系统知识要点

信号与系统知识要点

《信号与系统》知识要点第一章 信号与系统1、 周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。

(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。

2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量:2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑⎰∞∞-=t t f E d )(2def(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。

例如:ε(t )是功率信号; t ε(t )3、典型信号① 指数信号: ()at f t Ke =,a ∈R② 正弦信号: ()sin()f t K t ωθ=+tt4、信号的基本运算 1) 两信号的相加和相乘 2) 信号的时间变化 a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c)尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。

正跳变对应着正冲激;负跳变对应着负冲激。

信号与系统笔记

信号与系统笔记

信号与系统第一章1。

1 连续时间与离散时间信号确知信号可以表示成一个或几个自变量的函数连续时间信号在[t1,t2]区间的能量定义为:连续时间信号在[t1,t2]区间的平均功率定义为:离散时间信号在[n1,n2]区间的能量定义为离散时间信号在[n1,n2]区间的平均功率为在无限区间上也可以定义信号的总能量:连续时间情况下:离散时间情况下:在无限区间内的平均功率可定义为: 21lim 2()TTT P dtTx t ∞-→∞=⎰能量信号——信号具有有限的总能量,即:功率信号—-信号有无限的总能量,但平均功率有限。

即:信号的总能量和平均功率都是无限的。

即:如果信号是周期信号,则或这种信号也称为功率信号,通常用它的平均功率来表征或或如果信号是非周期的,且能量有限则称为能量信号。

1.2 自变量的变换1.时移变换当时,信号向右平移时,信号向左平移当时,信号向右平移 时,信号向左平移,0E P ∞∞<∞=,E P ∞∞=∞=∞2。

反转变换信号以t=0为轴呈镜像对称。

与连续时间的情况相同。

3. 尺度变换时,是将在时间上压缩a倍,时,是将在时间上扩展1/a倍。

由于离散时间信号的自变量只能取整数值,因而尺度变换只对连续时间信号而言。

周期信号与非周期信号:周期信号:满足此关系的正实数(正整数)中最小的一个,称为信号的基波周期()。

可视为周期信号,但它的基波周期没有确定的定义。

可以视为周期信号,其基波周期。

奇信号与偶信号:对实信号而言:如果有和则称该信号是偶信号。

(镜像偶对称)如果有和则称该信号为奇信号。

(镜像奇对称)对复信号而言:如果有和则称该信号为共轭偶信号.如果有和则称为共轭奇信号。

任何信号都能分解成一个偶信号与一个奇信号之和。

对实信号有:其中其中对复信号有:其中:其中:1。

3 复指数信号与正弦信号一. 连续时间复指数信号与正弦信号其中C, a 为复数1. 实指数信号:C,a 为实数呈单调指数上升呈单调指数下降。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。

信号分为连续信号和离散信号两种类型。

连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。

2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。

系统分为线性系统和非线性系统两种类型。

线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。

3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。

例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。

二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。

对信号进行时域分析,可以揭示信号的变化规律和特征。

例如,信号的幅度、频率、相位等特征。

2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。

连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。

3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。

线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。

三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。

它可以将信号转换为频谱,揭示信号的频率成分和能量分布。

傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。

2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。

3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。

根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。

四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。

2021《信号与系统》考研电子信息类考研考点复习笔记

2021《信号与系统》考研电子信息类考研考点复习笔记

2021《信号与系统》考研电子信息类考研考点复习笔记第1章信号与系统考点1.1 复习笔记本章内容是信号与系统分析的基础。

主要介绍了信号的分类和基本运算,学完本章读者要重点掌握的内容有:(1)掌握信号的分类方法及其特点:连续/离散、周期/非周期、奇/偶、能量/功率。

(2)掌握冲激信号和阶跃信号的物理意义及性质。

(3)掌握常见连续/离散信号的波形及其表达式。

(4)掌握信号的时域运算和波形变换方法。

(5)掌握系统互连方法及其特点。

一、连续时间和离散时间信号考点1连续时间信号和离散时间信号(见表1-1-1)表1-1-1 信号的定义和表示方法图1-1-1 信号的图形表示(a)连续时间信号;(b)离散时间信号2信号能量与功率(见表1-1-2)表1-1-2 能量和功率的计算公式3能量信号和功率信号的特点(见表1-1-3)表1-1-3 能量信号和功率信号的特点二、自变量的变换1基本变换(见表1-1-4)表1-1-4 自变量的基本变换2周期信号与非周期信号(见表1-1-5)表1-1-5 周期信号与非周期信号的定义及特点3偶信号与奇信号(见表1-1-6)表1-1-6 偶信号与奇信号的定义及特点【注】任何信号=偶信号+奇信号,即x(t)=E v{x(t)}+O d{x(t)},其中E v{x(t)}=(1/2)[x(t)+x(-t)],O d{x(t)}=(1/2)[x(t)-x(-t)],E v{x(t)}为x(t)的偶部,O d{x(t)}为x(t)的奇部。

三、指数信号与正弦信号1连续时间复指数信号与正弦信号(见表1-1-7)表1-1-7 连续时间复指数信号与正弦信号的表达式与特点2离散时间复指数信号与正弦信号(见表1-1-8)表1-1-8 离散时间复指数信号与正弦信号3离散时间复指数序列的周期性质(1)离散时间指数信号的周期性的要求为了使信号是周期的,周期为N>0,就必须有,也就是要求ω0N必须是2π的整数倍,即必须有一个整数m,满足:ω0N=m2π或ω0/(2π)=m/N。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(1-2章)【圣才出品】

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(1-2章)【圣才出品】

第1章绪论
1.1复习笔记
本章作为《信号与系统》的开篇章节,是整个信号与系统学习的基础。

本章介绍了有关信号与系统的基本概念和术语,给出几种典型的信号和系统的表现形式,讲述了各信号与系统的特点以及信号之间的运算和转换。

通过本章学习,读者应掌握:如何判断信号类型、不同信号之间的运算、信号的分解以及系统类型的判断。

一、信号概述
1.信号的概念及分类(见表1-1-1)
表1-1-1信号的概念及分类
2.典型的连续信号(见表1-1-2)
表1-1-2典型的信号及表示形式
3.信号的运算(见表1-1-3)
表1-1-3信号的运算
4.阶跃函数和冲激函数
阶跃信号和冲激信号是信号与系统中最基础的两种信号,许多复杂信号皆可由二者或二者的线性组合表示。

具体见表1-1-4及表1-1-5。

(1)单位阶跃信号u(t)
表1-1-4单位阶跃信号u(t)
(2)单位冲激信号δ(t)
表1-1-5单位冲激信号δ(t)表示形式及性质
5.信号的分解
一个一般信号根据不同类型可分解为以下几种分量,具体见表1-1-6。

表1-1-6信号的分解
二、系统
1.系统概念及分类(见表1-1-7)
表1-1-7系统的概念及分类
系统模型如下:
输入信号经过不同系统可得到不同输出信号,具体见表1-1-8。

表1-1-8不同系统特性
1.2课后习题详解
1-1分别判断图1-2-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?
(a)
(b)
(c)
(d)
(e)
(f)。

信号与系统读书笔记

信号与系统读书笔记

信号与系统读书笔记【篇一:学习笔记(信号与系统)】学习笔记(信号与系统)第一章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来自外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。

信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。

2、系统(system):是指若干相互关联的事物组合而成具有特定功能的整体。

3、信号的描述——数学描述,波形描述。

信号的分类:1)确定信号(规则信号)和随机信号确定信号或规则信号——可以用确定时间函数表示的信号;随机信号——若信号不能用确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。

2)连续信号和离散信号连续时间信号——在连续的时间范围内(-∞t∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。

3)周期信号和非周期信号周期信号——是指一个每隔一定时间t,按相同规律重复变化的信号;非周期信号——不具有周期性的信号称为非周期信号。

4)能量信号与功率信号能量信号——信号总能量为有限值而信号平均功率为零;功率信号——平均功率为有限值而信号总能量为无限大。

5)一维信号与多维信号信号可以表示为一个或多个变量的函数,称为一维或多维函数。

6)因果信号若当t0时f(t)=0,当t0时f(t)≠0的信号,称为因果信号;非因果信号指的是在时间零点之前有非零值。

4、信号的基本运算:尺度变换(横坐标展缩):将f(t)→f(at),称为对信号f(t)的尺度变换。

若a1,则f(at)将f(t)的波形沿时间轴压缩至原来的1/a;若0a1,则f(at)将f(t)的波形沿时间轴扩展为原来的a倍。

微分:信号f(t)的微分运算指f(t)对t取导数,即:信号经过微分运算后突出显示了它的变化部分,起到了锐化的作用。

信号与系统知识点汇总总结

信号与系统知识点汇总总结

信号与系统知识点汇总总结一、信号与系统概念1. 信号的定义和分类2. 系统的定义和分类3. 时域和频域分析二、连续时间信号与系统1. 连续时间信号与系统的性质2. 连续时间信号的基本操作3. 连续时间系统的性质4. 连续时间系统的特性方程和驻点三、离散时间信号与系统1. 离散时间信号与系统的性质2. 离散时间信号的基本操作3. 离散时间系统的性质4. 离散时间系统的特性方程和驻点四、傅里叶分析1. 傅里叶级数2. 傅里叶变换3. 傅里叶变换的性质4. 傅里叶变换的逆变换五、拉普拉斯变换1. 拉普拉斯变换的定义2. 拉普拉斯变换定理3. 拉普拉斯变换的性质4. 拉普拉斯变换的逆变换六、Z变换1. Z变换的定义2. Z变换的性质3. Z变换与拉普拉斯变换的关系4. Z变换在离散时间系统分析中的应用七、系统的时域分析1. 系统的冲击响应2. 系统的单位脉冲响应3. 系统的阶跃响应4. 系统的时域性能指标八、系统的频域分析1. 系统的频率响应2. 系统的幅频特性3. 系统的相频特性4. 系统的频域性能指标九、信号与系统的稳定性1. 连续时间系统的稳定性2. 离散时间系统的稳定性3. 系统的相对稳定性十、线性时不变系统1. 线性系统的性质2. 时不变系统的性质3. 线性时不变系统的连续时间性能分析4. 线性时不变系统的离散时间性能分析十一、激励响应系统1. 激励响应系统的特性2. 激励响应系统的连续时间分析3. 激励响应系统的离散时间分析十二、卷积运算1. 连续时间信号的卷积运算2. 离散时间信号的卷积运算3. 卷积的性质和应用结语信号与系统是电子信息专业的重要基础课程,掌握好这门课程的知识对学生日后的学习和工作都有重要的帮助。

通过本文的知识点汇总总结,相信读者对信号与系统这门课程会有更深入的理解和掌握,希望对大家的学习有所帮助。

信号与系统(Python) 学习笔记摘录 (2) 傅里叶 Fourier

信号与系统(Python) 学习笔记摘录 (2) 傅里叶 Fourier

信号与系统(Python) 学习笔记摘录 (2) 傅里叶 Fourier定义: 在 ( t 1 , t 2 ) (t_1,t_2) (t1,t2) 区间的两个函数φ 1 ( t ) \varphi_1(t) φ1(t) 和φ 2 ( t )\varphi_2(t) φ2(t), 若满足∫ t 1 t 2 φ 1 ( t ) φ 2 ∗ ( t ) d t = 0 , (两函数的内积为0)\int_{t_1}^{t_2} \varphi_1(t) \varphi_2^* (t)d t = 0, \, \text{(两函数的内积为0)} ∫t1t2φ1(t)φ2∗(t)dt=0,(两函数的内积为0)则称φ 1 ( t ) \varphi_1(t) φ1(t) 和φ 2 ( t ) \varphi_2(t) φ2(t) 在区间 ( t 1 , t 2 ) (t_1, t_2) (t1,t2) 内正交•实函数正交∫ t 1 t 2 φ 1 ( t ) φ 2 ( t ) d t =0 , (两函数的内积为0) \int_{t_1}^{t_2}\varphi_1(t) \varphi_2 (t)d t = 0, \, \text{(两函数的内积为0)} ∫t1t2φ1(t)φ2(t)dt=0,(两函数的内积为0)•正交函数集: 若 n n n 个函数φ 1 ( t ) , φ 2 ( t ) , ⋯ , φ n ( t ) \varphi_1(t), \varphi_2(t), \cdots , \varphi_n(t) φ1(t),φ2(t),⋯,φn(t) 构成一个函数集,当这些函数在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2) 内满足∫ t i t j φ 1 ( t ) φ 2 ∗ ( t ) d t = { 0 , i ≠ j K j ≠ 0 , i = j\begin{aligned}\int_{t_i}^{t_j} \varphi_1(t)\varphi_2^* (t)d t ={\begin{cases} 0,\, & i\neq j \\K_j \neq 0 , \, & i=j \end{cases}}\end{aligned} ∫titj φ1(t)φ2∗(t)dt={0,Kj=0,i=ji=j则称此函数为函数集在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2) 上的正交函数集。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第5章 傅里叶变换应用于通信系统——

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第5章 傅里叶变换应用于通信系统——
解:激励信号 e(t)=e-3tu(t),则 E(jω)=F[e(t)]=F[e-3tu(t)]=1/(jω+3)
故响应为:
R( j) = E( j)×H ( j) = 1 ×1 = 1 - 1 j + 3 j + 2 j + 2 j + 3
反变换可得: r(t)=F-1[R(jω)]=(e-2t-e-3t)u(t)
1 / 50
圣才电子书

十万种考研考证电子书、题库视频学习平 台
图 5-1-1 线性网络的无失真传输 2.引起信号失真的原因 ①系统对信号中各频率分量幅度产生不同程度的衰减,使响应的各频率分量的相对幅 度发生变化,引起幅度失真; ②系统对各频率分量产生的相移与频率不成正比,使响应的各频率分量在时间轴上的 相对位置产生变化,引起相位失真。 三、滤波 1.理想低通滤波器(见表 5-1-1)
= jπ [e jtan- 11 ( + 1) - e- jtan- 11 ( - 1)] + jπ ×[e jtan- 13 ( + 3) - e- jtan- 13 ( - 3)]
2
10
反变换,可得:
r(t) = F - 1[R( j)]
= 1 sin(t - tan- 11) + 1 sin(3t - tan- 1 3)
5-2 若系统函数H(jω)=1/(jω+1),激励为周期信号e(t)=sin(t) +sin(3t),试求响应r(t),画出e(t),r(t)波形,讨论经传输是否引起失真。
解:激励信号 e(t)=sin(t)+sin(3t),则 E(jω)=F[e(t)]=jπ[δ(ω+1)-δ(ω-1)]+jπ[δ(ω+3)-δ(ω-3)]
6 / 50

信号与系统第一章总结

信号与系统第一章总结

信号与系统第一章总结1、信号的分类(1)周期信号和非周期信号两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。

(2)连续信号和离散信号连续时间信号:信号存在的时间范围内,任意时刻都有定义。

用t 表示连续时间变量。

离散时间信号:在时间上是离散的,只在某些不连续的规定瞬时给出函数值, 用n 表示。

(3)模拟信号,抽样信号,数字信号 模拟信号:时间和幅值均为连续的信号。

抽样信号:时间离散,幅值连续的信号。

数字信号:时间和幅值均为离散的信号。

(4)按照信号能量特点分类:能量受限信号:若信号f (t)的能量有界,即E<∞ ,则称其为能量有限信号,简称能量信号,此时P = 0。

功率受限信号:若信号f(t)的功率有界,即P<∞ ,则称为功率有限信号,简称功率信号,此时E = ∞。

PS :时限信号为能量信号;周期信号属于功率信号。

2、典型的确定性信号(1)指数信号: , α=0 直流(常数);α<0 指数衰减;α>0指数增长。

通常把称为指数信号的时间常数,记作τ ,代表信号衰减速度,具有时间的量纲。

对时间的微分和积分仍然是指数形式(2)正弦信号:,振幅K ,周期T=ωπ2 ,初相衰减正弦信号:对时间的微分和积分仍然是同频率的正弦信号 (3)复指数信号:α1θdt t f E 2)(⎰∞∞-∆=⎰-∞→=222|)(|1lim T T T dt t f T P t K t f αe )(=)sin()(θω+=t K t f ()0sin e )(>⎩⎨⎧<≥=-αωαt t t K t f t()()t K t K t K t f t t stωωσσsin e j cos e )( e )(+=∞<<-∞=为复数,称为复频率j ωσ+=s rad/s的量纲为 ,/s 1 的量纲为 ωσ振荡衰减增幅等幅⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠<≠>≠= 0 ,0 0 ,0 0 ,0ωσωσωσ⎪⎩⎪⎨⎧=<=>==衰减指数信号升指数信号直流 0 ,0 0 ,0 0 ,0ωσωσωσ(4)抽样信号(重点): 性质:1. 偶函数2. 3. 4.5. 6.(5)钟形信号(高斯函数):3、信号的平移,反褶,展缩(1)平移:左加右减(注意符号)(2)反褶:关于y 轴对称(3)展缩:f(t)到f(at),图形变换(1/a)倍变换方法: 1. 先展缩:a>1,压缩a 倍; a<1,扩展1/a 倍 2. 后平移:+,左移b/a 单位;-,右移b/a 单位 3. 加上倒置:4、阶跃信号和冲激信号(1)单位阶跃信号(通常以u (t )表示)门函数:符号函数:ttt sin )Sa(=)Sa(lim ,即1)Sa(,00===→t t t t 3,2,1π,0)Sa(=±==n n t t ,⎰⎰∞∞-∞==πd sin ,2πd sin 0t t t t t t 0)Sa(lim=±∞→t t ()()t t t ππsin )sinc(=2e )(⎪⎭⎫ ⎝⎛-=τt E tf ()()()[]()0 >±=±→a a b t a f b at f t f 设()()[]a b t a f b at f -=±-()[(/)]f t f a t b a →±()()f t f at →210 0100)(点无定义或⎩⎨⎧><=t t t u ()⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=22ττt u t u t f ⎩⎨⎧<->=0101)sgn(t t t(2)单位冲激信号:①定义:狄拉克函数 只在t=0时,函数值不为0;积分面积为1;t =0 时,为无界函数。

信号与系统引论笔记

信号与系统引论笔记

信号与系统引论笔记
第一章信号与系统概述
1. 信号的定义:信号是传递信息的一种物理量。

2. 信号的分类:确定信号与随机信号、连续信号与离散信号。

3. 系统的定义:系统是对输入信号进行特定处理并产生输出信号的实体或描述。

4. 系统的分类:线性时不变系统、线性时变系统、非线性系统。

第二章信号的基本特性
1. 周期信号:具有固定周期的信号。

2. 非周期信号:不具有固定周期的信号。

3. 能量信号与功率信号:能量信号的能量有限,功率信号的能量无限。

4. 信号的频域表示:傅里叶变换、拉普拉斯变换、Z变换。

第三章系统分析方法
1. 系统的时域分析:系统的微分方程和差分方程表示。

2. 系统的频域分析:系统的频率响应。

3. 系统的复频域分析:系统的传递函数和系统的极点、零点分析。

4. 系统的状态变量分析:系统的状态方程和输出方程。

第四章线性时不变系统
1. LTI系统的定义:线性时不变系统,即满足叠加性和均匀性的系统。

2. LTI系统的特性:系统的冲激响应和系统的传递函数。

3. LTI系统的稳定性:通过系统的极点判断系统的稳定性。

4. LTI系统的频域表示:通过傅里叶变换分析LTI系统的频率响应。

第五章信号的分解
1. 信号的正交分解:将信号表示为多个正交分量之和。

2. 信号的能量谱与功率谱:描述信号能量的分布。

3. 信号的滤波:通过系统对信号进行滤波,实现信号的频域选择性处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习笔记(信号与系统)
第一章信号和系统
信号的概念、描述和分类
信号的基本运算
典型信号
系统的概念和分类
1、常常把来自外界的各种报道统称为消息;
信息是消息中有意义的内容;
信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。
信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。
τ是指数信号的时间常数,τ越大,指数信号增长或衰减的速率越慢。
2)正弦信号:
对时间的微、积分仍是同频率正弦。
3)复指数信号: ( )
实际不存在,但可以用于描述各种信号。
σ>0时,增幅振荡正、余弦信号;σ<0时,衰减振荡正、余弦信号;σ=0时等振幅振荡正、余弦信号;ω=0时,实指数信号;σ=0且ω=0时,直流信号。
偶分量与奇分量: ,其中fe= 为偶分量,fo= 为奇分量。
脉冲分量
一种分解为矩形窄脉冲分量: ,
另一分解为阶跃信号分量之叠加。
实部分量与虚部分量:
对于瞬时值为复数的信号f(t)可分解为实、虚部两个部分之和。
正交函数分量: ,用正交函数集来表示一个信号,组成信号的各分量就是相互正交的。
8、系统:若干相互作用、相互联系的事物按一定规律组成具有特定功能的整体称为系统。
4)抽样信号:
Sa(t)具有以下性质: , ;Sa(0)=1,Sa(t)=0(t=±π,±2π,…)。
5)钟形信号:
6、单位阶跃函数和单位冲激函数
1)单位阶跃函数:
可以方便地表示某些信号,用阶跃函数表示信号的作用区间,积分计算;
单位冲激函数为偶函数: ;
加权特性:
抽样特性: , ;
尺度变换: , , , ;
4)能量信号与功率信号
能量信号——信号总能量为有限值而信号平均功率为零;功率信号——平均功率为有限值而信号总能量为无限大。
5)一维信号与多维信号
信号可以表示为一个或多个变量的函数,称为一维或多维函数。
6)因果信号
若当t<0时f(t)=0,当t>0时f(t)≠0的信号,称为因果信号;非因果信号指的是在时间零点之前有非零值。
导数(冲激偶): ,
冲激偶的抽样特性: , ,
冲激偶的加权特性: , 。
2)单位冲激函数:
单位冲激函数是个奇异函数,它是对强度极大,作用时间极短一种物理量的理想化模型。
3)冲激函数与阶跃函数关系:
阶跃函数序列与冲激函数序列。
7、信号的分解
直流分量fD与交流分量fA(t): ,其中fD为直流分量即信号的平均值。
积分:信号f(t)的积分运算指f(t)在(-∞,t)区间内的定积分,表达式为:
信号经过积分运算后,使得信号突出变化部分变得平滑了,起到了模糊的作用,利用积分可以削弱信号中噪声的影响。
5、典型的连续时间信号
1)实指数信号: (对时间的微、积分仍是指数。)
a>0时,信号将随时间而增长;a<0时,信号将随时间而衰减;a=0时,信号不随时间而变化,为直流信号。
4、信号的基本运算:
信号的+、-、×运算:两信号f1(·)和f2(·)的相+、-、×指同一时刻两信号之值对应相加减乘。
平移:将f(t)→f(t + t0)称为对信号f(·)的平移或移位,若t0< 0,则将f(·)右移,否则左移。
反转:将f(t)→f(–t)或f(k)→f(–k)称为对信号f(·)的反转或反折,从图形上看是将f (·)以纵坐标为轴反转180°。
2)连续信号和离散信号
连续时间信号——在连续的时间范围内(-∞<t<∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。
3)周期信号和非周期信号
周期信号——是指一个每隔一定时间T,按相同规律重复变化的信号;非周期信号——不具有周期性的信号称为非周期信号。
尺度变换(横坐标展缩):将f(t)→f(at),称为对信号f(t)的尺度变换。若a>1,则f(at)将f(t)的波形沿时间轴压缩至原来的1/a;若0<a<1,则f(at)将f(t)的波形沿时间轴扩展为原来的a倍。
微分:信号f(t)的微分运算指f(t)对t取导数,即:
信号经过微分运算后突出显示了它的变化部分,起到了锐化的作用。
2、系统(system):是指若干相互关联的事物组合而成具有特定功能的整体。
3、信号的描述——数学描述,波形描述。
信号的分类:
1)确定信号(规则信号)和随机信号
确定信号或规则信号——可以用确定时间函数表示的信号;随机信号——若信号不能用确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。
9、系统输出均为连续时间信号的系统称为连续时间系统;输入和输出均为离散时间信号的系统称为离散时间系统。
连续时间系统的数学模型是用微分方程来描述,而离散时间系统的数学模型是用差分方程来描述。
动态系统与即时系统:若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关,则称为动态系统或记忆系统;含有记忆元件(电容、电感等)的系统是动态系统,否则称即时系统或无记忆系统。
线性系统与非线性系统:能同时满足齐次性与叠加性的系统称为线性系统。满足叠加性是线性系统的必要条件;不能同时满足齐次性与叠加性的系统称为非线性系统。
时不变系统与时变系统:满足时不变性质的系统称为时不变系统。
时不变性质:若系统满足输入延迟多少时间,其激励引起的响应也延迟多少时间。
因果系统与非因果系统:激励引起的响应不会出现在激励之前的系统,称为因果系统;也就是说,如果响应r(t)并不依赖于将来的激励[如e(t+1)],那么系统就是因果的。
稳定系统与不稳定系统:一个系统,若对有界的激励f(.)所产生的响应y=f(.)也是有界时,则称该系统为有界输入有界输出稳定,简称稳定;即若│f(.)│<∞,其│yf(.)│<∞,则称系统是稳定的。
线性时不变系统:LTI连续系统的微分特性和积分特性
线性性质包括两方面:齐次性和可加性,若系统既是齐次的又是可加的,则称该系统是线性的,即T[a f1(·) + bf2(·)] = a T[ f1(·)] + bT[ f2(·)]。
当动态系统满足下列三个条件时该系统为线性系统:可分解性+零状态线性+零输入线性。
相关文档
最新文档