柯西不等式优质课ppt课件
合集下载
柯西不等式(优质课)
应用
在概率论、统计学、信号处理等领域有广泛应用,特别是在估计概率分布、优化 信号传输等方面。
柯西不等式的变体
积分柯西不等式
对于任意的非负函数$f(x)$和$g(x)$, 有$int f(x)g(x)dx leq left(int f^2(x)dxright)^{frac{1}{2}} left(int g^2(x)dxright)^{frac{1}{2}}$。
应用
在向量分析、线性代数、数学物理等领域有广泛应用,特别是在解决优化问题、不等式 证明等方面。
广义柯西不等式
广义柯西不等式
对于任意的非负实数$a_1, a_2, ldots, a_n$和$b_1, b_2, ldots, b_n$,有$(a_1b_1 + a_2b_2 + ldots + a_nb_n)^2 leq (a_1^2 + a_2^2 + ldots + a_n^2)(b_1^2 + b_2^2 + ldots + b_n^2)$。
• 然后应用柯西不等式得到左边 ≤abc[1^2+(1ቤተ መጻሕፍቲ ባይዱb)^2+(1/c)^2+(1/a)^2]=abc。
答案与解析
3. 证明
(x+y)^2≤2(1+xy)
解析
首先展开左边得到(x+y)^2=x^2+y^2+2xy。
答案与解析
然后应用柯西不等式得到左边≤2[(x^2+y^2)/2]^2+2xy=2(1+xy)。
解析几何应用
在解析几何中,柯西不等 式可用于研究平面或空间 中的点、线、面的性质和 关系。
在物理领域的应用
在概率论、统计学、信号处理等领域有广泛应用,特别是在估计概率分布、优化 信号传输等方面。
柯西不等式的变体
积分柯西不等式
对于任意的非负函数$f(x)$和$g(x)$, 有$int f(x)g(x)dx leq left(int f^2(x)dxright)^{frac{1}{2}} left(int g^2(x)dxright)^{frac{1}{2}}$。
应用
在向量分析、线性代数、数学物理等领域有广泛应用,特别是在解决优化问题、不等式 证明等方面。
广义柯西不等式
广义柯西不等式
对于任意的非负实数$a_1, a_2, ldots, a_n$和$b_1, b_2, ldots, b_n$,有$(a_1b_1 + a_2b_2 + ldots + a_nb_n)^2 leq (a_1^2 + a_2^2 + ldots + a_n^2)(b_1^2 + b_2^2 + ldots + b_n^2)$。
• 然后应用柯西不等式得到左边 ≤abc[1^2+(1ቤተ መጻሕፍቲ ባይዱb)^2+(1/c)^2+(1/a)^2]=abc。
答案与解析
3. 证明
(x+y)^2≤2(1+xy)
解析
首先展开左边得到(x+y)^2=x^2+y^2+2xy。
答案与解析
然后应用柯西不等式得到左边≤2[(x^2+y^2)/2]^2+2xy=2(1+xy)。
解析几何应用
在解析几何中,柯西不等 式可用于研究平面或空间 中的点、线、面的性质和 关系。
在物理领域的应用
柯西不等式(优质课)PPT课件
-
2
由 a2 b2 ≥ 2ab 两个实数的平方和与乘积 的大小关系,类比考虑与下面式子有关的有什 么不等关系:
设 a, b, c, d 为任意实数.
(a2b2)(c2d2)
联想
-
3
研究一下(a2+b2)(c2+d2)的不等关系
(a2 b2)(c2 d2) a2c2 b2d2 a2d2 b2c2 (ac bd)2 (ad bc)2 (ac bd)2
(a 1 2 a 2 2 a n 2 )(b 1 2 b 2 2b n 2 )
-
27
定理 1(二维形式的柯西不等式)
若 x1, y1, x2, y2 都是实数,则(x12 y12)(x22 y22)≥(x1x2 y1 y2)2 .
当且仅当
x1 y2
x2
y1
时,等
-
号成立.
24
定理3:(二维形式的三角不等式)
设 x 1 , y 1 , x 2 , y 2 R 则 x 1 2 y , 1 2 x 2 2 y 2 2 ( x 1 x 2 ) 2 ( y 1 y 2 ) 2
adbcac bd
acbdad bc
-
15
例 3 . 设 x 0 ,y 0 ,且 x y 2 , x 2 y 2的 最 小 值 。 2 x2 y
灵活对调前后项
-
16
变 式 1 : 若 2 x 3 y 1 ,求 4 x 2 9 y 2 的 最 小 值 .
解 :由 柯 西 不 等 式 (4 x 2 9 y 2 )(12 12 ) (2 x 3 y ) 2 1,
-
7
柯西不等式的几何意义
– 证明思路2:(构造向量法)
设 (a ,b ), (c,d ),则 a2 b2, c2 d 2,
柯西不等式(一)教学课件
2 2
例 3、已知 x、y R 且 3x2 2 y 2 „ 6 ,求证: 2 x y „ 11.
证明:由柯西不等式可得
a c b d
证法四、 (全量不小于部分) 由于 (a2 b2 )(c2 d 2 ) (ac bd )2 (ad bc)2 所以 (a2 b2 )(c2 d 2 ) …(ac bd )2 .
当且仅当 ad bc 即 时,等号成立
a c b d
定理 1 对任意实数 a,b,c,d ,有 (a2 b2 )(c2 d 2 ) …(ac bd )2 . 当向量 (a, b) 与 (c, d ) 共线,即 时,等号成立.
两
边
平
方
a
得
b
A
a 2 b 2 c 2 d 2 卆 ac bd
即 (a b )(c d ) …(ac bd )
2 2 2 2
2
a
c
当且仅当 OB OA 即
a c
b 时,等号成立. d
定理 1 对任意实数 a,b,c,d ,有 (a2 b2 )(c2 d 2 ) …(ac bd )2 . 当向量 (a, b) 与 (c, d ) 共线,即 时,等号成立.
若 a、b 不全为 0,构造函数
f ( x) (a2 b2 ) x2 2(ac bd ) x (c2 d 2 )
由 f ( x) (ax c)2 (bx d )2 …0 对任意 x R 恒成立 所以 4(ac bd )2 4(a2 b2 )(c2 d 2 ) „ 0 即 (a2 b2 )(c2 d 2 ) …(ac bd )2
注: (1)该不等式称为(二维)柯西不等式;
例 3、已知 x、y R 且 3x2 2 y 2 „ 6 ,求证: 2 x y „ 11.
证明:由柯西不等式可得
a c b d
证法四、 (全量不小于部分) 由于 (a2 b2 )(c2 d 2 ) (ac bd )2 (ad bc)2 所以 (a2 b2 )(c2 d 2 ) …(ac bd )2 .
当且仅当 ad bc 即 时,等号成立
a c b d
定理 1 对任意实数 a,b,c,d ,有 (a2 b2 )(c2 d 2 ) …(ac bd )2 . 当向量 (a, b) 与 (c, d ) 共线,即 时,等号成立.
两
边
平
方
a
得
b
A
a 2 b 2 c 2 d 2 卆 ac bd
即 (a b )(c d ) …(ac bd )
2 2 2 2
2
a
c
当且仅当 OB OA 即
a c
b 时,等号成立. d
定理 1 对任意实数 a,b,c,d ,有 (a2 b2 )(c2 d 2 ) …(ac bd )2 . 当向量 (a, b) 与 (c, d ) 共线,即 时,等号成立.
若 a、b 不全为 0,构造函数
f ( x) (a2 b2 ) x2 2(ac bd ) x (c2 d 2 )
由 f ( x) (ax c)2 (bx d )2 …0 对任意 x R 恒成立 所以 4(ac bd )2 4(a2 b2 )(c2 d 2 ) „ 0 即 (a2 b2 )(c2 d 2 ) …(ac bd )2
注: (1)该不等式称为(二维)柯西不等式;
简单形式的柯西不等式ppt课件
2
思考:
由 a2 b2 ≥ 2ab 反映出的两个实数的平方 和与乘积的大小关系,类比它的推导过程考虑 与下面式子(涉及到四个实数,并且形式上也 与平方和有关)有关的有什么不等关系:
设 a,b,c, d为任意实数.
(a2 b2 )(c2 d 2 )
联想
3
展开这个乘积, 得
a2 b2 c2 d 2 a2c2 b2d 2 a2d 2 b2c2.
二维形式的柯西不等式是向量 形式的柯西不等式的坐标表示
如果向量 和 中有零向量,则ad bc 0 ,以上不等 式取等号.如果向量 和 都不是零向 量,则当且仅当| cos | 1,即向量 和
共线时,以上不等式取等号.这时存在非零实数k , 使
k.即 a,b kc, d .故ad bc kcd kcd 0.
1
有些不等式不仅形式优美而且具有重要的应用价值,
人们称它们为经典不等式.
如均值不等式:
a1 a2 n
an ≥ n a1a2
an (ai R , i 1, 2 ,
, n) .
本节,我们来学习数学上一个有名的经典不等式:
柯西不等式,了解它的意义、背景、证明方法及其应用,
感受数学的美妙,提高数学素养.
① 式中每个括号内都是两项式,通过后面的学 习会进一步认识二维形式的含义.
4
① 式反映了4个实数的特定数量关系,不仅排列 形式上规律明显, 具有简洁、对称的美感, 而且
在数学和物理中有重要作用.它是 柯西不等式
Cauchy inequality 的最简形式,即二维或简单形式的
柯西不等式.
从上面的探究过程可以发现,当且仅当ad bc 0时,① 式中的等号成立.于是我们有
《柯西不等式》课件
感谢您的观看
THANKS
应用场景
幂和不等式在数学分析和最优化理论等领域有应用,例如在求解约束优化问题、估计函数 的极值以及分析函数的收敛性等方面。
05
习题与解答
习题一:证明柯西不等式
总结词
通过数学推导证明柯西不等式
详细描述
这道习题要求学生掌握柯西不等式的证明方法,通过数学推导和证明,理解柯西不等式的原理和性质 。
习题二:应用柯西不等式解决问题
总结词
运用柯西不等式解决实际问题
详细描述
这道习题要求学生能够运用柯西不等式解决实际问题,如最大值、最小值问题等,培养学生的数学应用能力。
习题三:探索柯西不等式的变体
总结词
研究柯西不等式的变体形式
详细描述
这道习题要求学生探索柯西不等式的变体形式,理解不同形式的不等式及其应用,培养学生的数学探究能力。
详细描述
平方和不等式是指对于任意非负实数序列a_1, a_2, ..., a_n,有(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2) >= (a_1b_1 + a_2b_2 + ... + a_nb_n)^2。
应用场景
平方和不等式在数学、物理和工程领域有广泛的应用,例如在求解最优 化问题、估计数值稳定性以及分析信号处理中的频率响应等方面。
时。
数学期望
柯西不等式在大数定律的研究中也有应用, 如在研究强大数定律和弱大数定律时。
大数定律
利用柯西不等式,可以推导出一些数学期望 的性质和计算方法。
概率不等式
柯西不等式在概率不等式的证明中也有应用 ,如Chebyshev不等式等。
3.2一般形式的柯西不等式(优秀经典公开课比赛课件)
abc
解析 : a b c 1,
∴ 1 1 1 (a b c)( 1 1 1) ≥
abc
abc
( a 1 b 1 c 1 )2 9
b
c
即a b c 1 时, 1 1 1的最小值为9 3 abc
问题 7: 类比二维、三维空间的柯西不等式,
问题 2:你会用柯西不等式证明下面的两个不等式吗?
(1) a2 b2 ≥ 2ab (2) a2 b2 ≥ 1 (a b)2
2
(1)证明: ∵(a2 b2 )(b2 a2 ) ≥ (ab ba)2 (2ab)2, ∴(a2 b2 )2 ≥ (2ab)2
∴a2 b2 ≥ 2ab ≥2ab,
猜一猜 n 维空间的柯西不等式,即一般式.
定理 4:(一般形式的柯西不等式):
设 n 为大于 1 的自然数, xi , yi R(i 1, 2,3, , n) ,则:
(x12 x22 xn2 )( y12 y22 yn2 ) (x1 y1 x2 y2 xn yn )2
是二次函数,因为对任意的实数 xi , yi (i 1, 2, 3, , n) ,
都有 f (x) ≥ 0 成立,∴△≤0
n
n
n
∴△ 4( xi yi )2 4( xi2 )( yi2 ) 0 ,
i 1
i 1
i 1
∴(x12 x22 xn2 )( y12 y22 yn2 ) (x1 y1 x2 y2 xn yn )2
(x12 x22 x32 )( y12 y22 y32 ) ≥ (x1 y1 x2 y2 x3 y3 )2
解析 : a b c 1,
∴ 1 1 1 (a b c)( 1 1 1) ≥
abc
abc
( a 1 b 1 c 1 )2 9
b
c
即a b c 1 时, 1 1 1的最小值为9 3 abc
问题 7: 类比二维、三维空间的柯西不等式,
问题 2:你会用柯西不等式证明下面的两个不等式吗?
(1) a2 b2 ≥ 2ab (2) a2 b2 ≥ 1 (a b)2
2
(1)证明: ∵(a2 b2 )(b2 a2 ) ≥ (ab ba)2 (2ab)2, ∴(a2 b2 )2 ≥ (2ab)2
∴a2 b2 ≥ 2ab ≥2ab,
猜一猜 n 维空间的柯西不等式,即一般式.
定理 4:(一般形式的柯西不等式):
设 n 为大于 1 的自然数, xi , yi R(i 1, 2,3, , n) ,则:
(x12 x22 xn2 )( y12 y22 yn2 ) (x1 y1 x2 y2 xn yn )2
是二次函数,因为对任意的实数 xi , yi (i 1, 2, 3, , n) ,
都有 f (x) ≥ 0 成立,∴△≤0
n
n
n
∴△ 4( xi yi )2 4( xi2 )( yi2 ) 0 ,
i 1
i 1
i 1
∴(x12 x22 xn2 )( y12 y22 yn2 ) (x1 y1 x2 y2 xn yn )2
(x12 x22 x32 )( y12 y22 y32 ) ≥ (x1 y1 x2 y2 x3 y3 )2
人教A版选修4-5 第三章 一 二维形式的柯西不等式 课件(29张)
【解】 (1)设 m=coas θ,sinb θ,n=(cos θ,sin θ),
则|a+b|=coas
θ·cos
θ+sinb
θ·sin
θ
=|m·n|≤|m||n|
=
a cos
θ2+sinb
θ2·
1
= coas22θ+sibn22θ,
所以(a+b)2≤coas22θ+sibn22θ.
栏目 导引
第三讲 柯西不等式与排序不等式
利用柯西不等式求最值 (1)先变形凑成柯西不等式的结构特征,是利用柯西不等式求解 的先决条件; (2)有些最值问题从表面上看不能利用柯西不等式,但只要适当 添加上常数项或和为常数的各项,就可以应用柯西不等式来解, 这也是运用柯西不等式解题的技巧; (3)有些最值问题的解决需要反复利用柯西不等式才能达到目 的,但在运用过程中,每运用一次前后等号成立的条件必须一 致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不 等式的方法也是常用技巧之一.
栏目 导引
第三讲 柯西不等式与排序不等式
已知 a,b∈R+,且 a+b=1,求证:(ax+by)2 ≤ax2+by2. 证明:设 m=( ax, by),n=( a, b), 则|ax+by|=|m·n|≤|m||n| = ( ax)2+( by)2· ( a)2+( b)2 = ax2+by2· a+b = ax2+by2, 所以(ax+by)2≤ax2+by2.
栏目 导引
第三讲 柯西不等式与排序不等式
已知 a,b 都是正实数,且 ab=2, 求证:(1+2a)(1+b)≥9. 证明:因为 a,b 都是正实数, 所以由柯西不等式可知(1+2a)(1+b) =[12+( 2a)2][12+( b)2]≥(1+ 2ab)2, 当且仅当 a=1,b=2 时取等号. 因为 ab=2, 所以(1+ 2ab)2=9, 所以(1+2a)(1+b)≥9.
《二 一般形式的柯西不等式》课件1-优质公开课-人教A版选修4-5精品
二 一般形式的柯西不等式
问题导学 当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
一、利用柯西不等式证明不等式
活动与探究 怎样巧用柯西不等式? 提示:在一个问题的众多解法中,利用柯西不等式来解往往是最优
的.因此,正确地理解柯西不等式,掌握它的结构特征,碰到棘手的问题,
思路分析:将已知等式变形,直接应用柯西不等式.
解:由柯西不等式,得 120=3[(2x+1)+(3y+4)+(5z+6)]
≥(1× 2������ + 1+1× 3������ + 4+1× 5������ + 6)2,
故 2������ + 1 + 3������ + 4 + 5������ + 6≤2 30.
当且仅当 2x+1=3y+4=5z+6,即 x=367,y=298,z=2125时,等号成立,此时 umax=2 30.
二 一般形式的柯西不等式
问题导学 当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
迁移与应用 把一根长为 12m 的细绳截成三段,各围成三个正方形.问:怎样截法, 才能使围成的三个正方形面积之和 S 最小,并求此最小值.
问题导学 当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
(5)因式的巧嵌
有时为了运用柯西不等式,我们需要设法嵌入一个因式.
人教版选修A4-5数学课件:3.2一般形式的柯西不等式(共22张PPT)
������ · √������ √������
������2 ������ ������ + (a+b+c)= + + ������ √������ √������ 2 ������ ������ + · ������ + · ������ =(a+b+c)2 √ √ √������ √������ ������2 ,又因为 a,b,c 为正实数 ,所以 ������
-4-
二 一般形式的柯西不等式
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIANCE
思考辨析 判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画 “×”. ������ ������ ������ (1)在三维形式的柯西不等式中,等号成立的条件是 1 = 2 = 3 .
二
一般形式的柯西不等式
-1-
二 一般形式的柯西不等式
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIANCE
学 习 目 标 思 维 脉 络 1.掌握 三维形式和一 般形式的柯西不等式. 2.能够利用柯西不等 式解决相关问题.
-2-
二 一般形式的柯西不等式
+
-6-
二 一般形式的柯西不等式
探究一 探究二 思维辨析
首页
X 新知导学 D答疑解惑
INZHIDAOXUE
AYIJIEHUO
D当堂检测
ANGTANGJIANCE
反思感悟应用柯西不等式证明不等式的方法与技巧 应用柯西不等式证明不等式的关键是首先根据待证不等式的结 构特点,构造符合柯西不等式的形式及特点,然后利用柯西不等式 进行证明.构造符合柯西不等式的形式时,可以有以下几种方法,(1) 巧拆常数;(2)重新安排各项的次序;(3)改变式子的结构;(4)添项等.
高二数学课件 柯西不等式
定理 设 a1, a2 , a3,..., an ,b1,b2 ,b3,..., bn 是实数,则
(a12 a22 ... an2 ) (b12 b22 ... bn2 ) (a1b1 a2b2 ... anbn )2
当且仅当 bi 0 (i=1,2,…,n) 或 存在一个
例5 若a>b>c 求证:
11 4 ab bc ac
证明:(a c)( 1 1 ) [(a b) (b c)]( 1 1 )
ab bc
ab bc
(1 1)2 4
∴
11 4 ab bc ac
例6:若 a, b, c R 求证: a b c 3
ab bc ca abc 证明: 2(a b c)( 1 1 1 )
ab bc ca [(a b) (b c) (c a)]( 1 1 1 )
ab bc ca
(1 1 1)2 9
又a、b、c各不相等,故等号不能成立 ∴原不等式成立。
数k使得 ai kbi (i=1,2,…,n) 时等号成立。 以上不等式称为一般形式的柯西不等式。
定理3(二维形式的三角不等式)
设
x1,
y, 1
x
,
2
y 2
R
,那么
x12 y12 x22 y22 (x1 x2 )2 ( y1 y2 )2
一般形式的三角不等式
x12 y12 z12 x22 y22 z22 ( x1 x2 )2 ( y1 y2 )2 ( z1 z2 )2
bc ca ab 2 分析:左端变形 a 1 b 1 c 1
人教A版数学选修4-5《二维形式的柯西不等式》 (共15张PPT)课件
2
+ −
2
.
分析:平方 → 应用柯西不等式
.
2
+ 2
2
+ 2
2
证明:∵
+
= 2 + 2 + 2 2 + 2 • 2 + 2 + 2 + 2
≥ 2 + 2 + 2| + | + 2 + 2
≥ 2 + 2 − 2( + ) + 2 + 2
.
二、讲授新课:
1. 二维形式的柯西不等式:
定理1 (二维形式的柯西不等式
) 若a , b, c , d都是
实数, 则 (a 2 b 2 )(c 2 d 2 ) (ac bd )2
当且仅当ad bc时, 等号成立.
你能简明地写出这个定理的其它证明?
∵(a2+b2)(c2+d2)
当且仅当ad bc时, 等号成立.
( 2) a 2 b 2
c 2 d 2 ac bd
( 3) a 2 b 2
c 2 d 2 ac bd
(4)柯西不等式的向量形式 .当且仅当
是零向量, 或存在实数k , 使 k 时,等号成立.
证明:
= a2c2+b2d2+a2d2+ b2c2
=(ac+bd)2+(ad-bc)2
∵(ad-bc)2≥0,
∴ (a2+b2)(c2+d2)≥(ac+bd)2
(1)
当且仅当ad=bc时,等号成立.
)
二维形式的柯西不等式的变式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二维形式的柯西不等式
二维形式的柯西不等式定理: 若a,b,c,d都是实数,则
(a2+b2)(c2+d2)≥(ac+bd)2 当且仅当ad=bc时,等号成立.
仔细观察上述定理,概括它的特点 平方的和的乘积不小于乘积的和的平方
例1:已知a,b为实数,求证
(a4 b4 )(a2 b2 ) (a3 b3)2
4x2 9 y2的最小值为 1 2
变式2:设a,b R , 2a 3b 6求 2 1的最小值. ab
小结
1、二维形式的柯西不等式 若 a,b,c,d 都是实数,则 (a2 b2)(c2 d 2)≥(ac bd)2 .
当且仅当 ad bc 时,等号成立.
2、二维形式的柯西不等式的变式
当且仅当 ad bc 时,等号成立.
变变形……,可得下面不等式:
若 a,b,c,d 都是实数, 则
(1) (a2 b2 ) (c2 d 2 ) ≥ ac bd .当且仅当 ad bc 时, 等号成立.
(2) (a2 b2 ) (c2 d2 ) ≥ ac bd .当且仅当 ad bc 时, 等号成立.
例2.求函数 y 5 x 1 10 2x 的最大值
ac bd (a2 b2 ) c2 d 2
变形,使之出现常数
练习2 设a 0,b 0,且a b 1,求证:2a 1 b 1 22
32
变形,使之出现
条件中的表达式或表达式的倍数
例3.设x 0, y 0,且x y 2, x2 y2 的最小值。 2x 2 y
由 a2 b2 ≥ 2ab 两个实数的平方和与乘积 的大小关系,类比考虑与下面式子有关的有什 么不等关系:
设 a,b,c, d为任意实数.
(a2 b2 )(c2 d 2 )
联想
研究一下(a2+b2)(c2+d2)的不等关系
(a2 b2 )(c2 d 2 ) a2c2 b2d 2 a2d 2 b2c2 (ac bd )2 (ad bc)2 (ac bd )2
ac bd (a2 b2 ) c2 d 2
“=”何时成立
当且仅当是零向量,或存在实数k,使 k 时,等号成立.
定理 2(柯西不等式的向量形式)
若 , 是两个向量,则 ≥ .
当且仅当 是零向量或存在实数 k ,使 k 时,等号成立.
定理 1(二维形式的柯西不等式) 若 a,b,c,d 都是实数,则 (a2 b2)(c2 d 2)≥(ac bd)2 .
分析:如果对不等式左端用柯西不等式,就得不到所 要证明的结论.若把第二个小括号内的前后项对调一 下,情况就不同了.
证明:∵ ax1 bx2 bx1 ax2 =ax1 bx2 ax2 bx1
由柯西不等式可知
2
ax1 bx2 bx1 ax2 ≥ a x1 x2 b x1 x2
= a b2 x1x2 x1x2 .得证
柯西不等式优质课
柯西(Cauchy,Augustin-Louis, 1789-1857)是法国数学家、力学家。 27岁成为巴黎综合工科学校教授, 并当选为法国科学院 院士. 柯西对高等数学的贡献包括:无穷级数的敛散性, 实变和复变函数论,微分方程,行列式,概率和数理方程 等方面的研究. 目前我们所学的极限和连续性的定义,导数的定义, 以及微分、定积分用无穷多个无穷小的和的极限定义, 实质上都是柯西给出的。
不等式(a2 b2 )(d 2 c2 ) (ad bc)2 成立吗?
与不等式(a2 b2 )(c2 d 2 ) (ac bd )2 矛盾吗?它们之间有什么区别?
不等式①: 不等式②:
ad bc a c bd
ac bd a d bc
例3.设x 0, y 0,且x y 2, x2 y2 的最小值。 2x 2 y
分清(找准)a,b,c,d
练习 1:设 a, b R , a b 1, 求证: 1 1 ≥ 4 . ab
证明:由于 a, b R ,根据柯西不等式,得
(a b)( 1 1 )≥ ( a 1 b 1 )2 4
ab
a
b
又 a b 1,∴ 1 1 ≥ 4等式的几何意义
– 证明思路2:(构造向量法)
设 (a,b), (c, d ),则 a2 b2 , c2 d 2 , ac bd, 利用 ,
ac bd (a2 b2 ) c2 d 2
两边平方后得证.
柯西不等式的几何意义
设 (a,b), (c, d ),则
(1) (a2 b2 ) (c2 d 2 ) ≥ ac bd .当且仅当 ad bc 时, 等号成立.
(2) (a2 b2 ) (c2 d2 ) ≥ ac bd .当且仅当 ad bc 时, 等号成立.
(a2 b2 )(c2 d 2 )≥ (ac bd )2
思考
设a1, a2 , a3, , an , b1, b2 , b3, , bn是实数,则
定理 2(柯西不等式的向量形式)
若 , 是两个向量,则 ≥ .
当且仅当 是零向量或存在实数 k ,使 k 时,等号成立.
注:若 ( x1, y1), ( x2, y2 ) ,则
? (a12 a22 a32 )(b12 b22 b32 )≥
(a12 a22 an2 )(b12 b22 bn2 )
例4.若a b c,求证: 1 1 4 ab bc ac
已知 a,b R ,a+b=1, x1 , x2 R ,
求证: ax1 bx2 bx1 ax2 ≥ x1 x2
灵活对调前后项
变式1:若2x 3y 1,求4x2 9y2的最小值.
解 :由柯西不等式(4x2 9 y2 )(12 12 ) (2x 3y)2 1,
4x2 9y2 1 . 2
当且仅当2x 1 3y 1,即2x 3y时取等号.
由22xx
3y 3y
得 1
x y
1 4 1 6