热力学与统计力学【英文】 Thermodynamics and Statistical Mechanics

合集下载

热力学专业英语作文

热力学专业英语作文

热力学专业英语作文Title: Thermodynamics in EnglishThermodynamics is the branch of physics that deals with the relationships between heat, work, energy, and temperature.It is one of the fundamental sciences that help us understand and predict the behavior of systems.In this essay, we will explore some key concepts and terms related to thermodynamics in English.Firstly, let"s talk about the laws of thermodynamics.There are four laws of thermodynamics, but the first and second laws are the most fundamental.The first law of thermodynamics, also known as the law of conservation of energy, states that energy cannot be created or destroyed, only transformed from one form to another.The second law of thermodynamics states that in a closed system, the total entropy always tends to increase over time, meaning that processes tend to become more disordered.ext, let"s discuss some common units of measurement in thermodynamics.The joule (J) is the unit of energy in the International System of Units (SI), while the calorie (cal) is a non-SI unit of energy commonly used in nutrition.The watt (W) is the unit of power, which is the rate at which work is done or energy is transferred.The kilowatt-hour (kWh) is a common unit of energy consumption, often used in the context of electricity usage.Thermodynamic properties are characteristics of a system that can be used to describe its state and predict its behavior.Some common thermodynamic properties include temperature, pressure, volume, and internal energy.Temperature is a measure of the average kinetic energy of the particles in a system, while pressure is a measure of the force exerted by the particles on the walls of the container.Volume is the amount of space occupied by the system, and internal energy is the total energy of the system, including both kinetic and potential energy.ow, let"s talk about some thermodynamic processes.An isothermal process is a process in which the temperature of the system remains constant.A reversible process is one that can be undone by a small change in the system"s state, while an irreversible process is not reversible and may involve a large change in the system"s state.An adiabatic process is one in which there is no heat transfer between the system and its surroundings, while a diabatic process involves heat transfer.In conclusion, thermodynamics is a fundamental science that helps us understand the behavior of systems.By studying the laws of thermodynamics, units of measurement, thermodynamic properties, and processes, we can gain a deeper understanding of how energy and heat are transformed and transferred.With this knowledge, we can apply thermodynamics to various fields, such as engineering, physics, andchemistry, to solve real-world problems and improve our lives.。

热力学与统计物理

热力学与统计物理

《热力学与统计物理》课程教学大纲课程英文名称:Thermodynamics and Statistical Physics课程编号:0312043002课程计划学时:48学分:3课程简介:《热力学与统计物理》课是物理专业学生的专业基础课,与理论力学、量子力学、电动力学共同构成物理专业重要的四门必修课,通常称为物理专业的四大力学课。

热力学和统计物理的任务是研究热运动的规律,研究与热运动有关的物性及宏观物质系统的演化。

本课程的作用是使学生掌握热力学与统计物理的基本原理和处理具体问题的一些重要方法,并初步具有用这些方法解决较简单问题的能力。

一、课程教学内容及教学基本要求第一章热力学的基本规律本章重点:热力学的基本规律,热力学的三个定律,掌握热力学函数内能、焓、熵、自由能、吉布斯函数的物理意义.难点:熵增加原理的应用及卡诺循环及其效率。

本章学时:16学时教学形式:讲授教具:黑板,粉笔第一节热力学系统的平衡状态及其描述本节要求:掌握:系统、外界、子系统,系统的分类,热力学平衡态及其描述。

1系统、外界、子系统(①掌握:系统与外界概念。

②了解:界面的分类。

③了解:系统与子系统的相对性)2系统的分类(掌握:孤立系、闭系、开系的概念。

)3热力学平衡态及其描述(①掌握:热力学平衡态概念。

②掌握:状态参量的描述及引入。

)第二节热平衡定律和温度本节要求:掌握:热接触与热平衡,热平衡定律、温度、热平衡的传递性,存在态函数温度的数学论证,温度的测量(考核概率50%)。

1热接触与热平衡(①掌握:系统间没有热接触时系统状态参量的变化。

②掌握:系统间热接触时系统状态参量的变化。

)2热平衡定律、温度、热平衡的传递性(①掌握:热平衡定律。

②掌握:温度的数学论证,温标的确定及分类)(重点)第三节物态方程本节要求:理解:广延量与强度量。

掌握:物态方程的得出,实验系数及由实验系数k 、、βα 求物态方程。

(重点,难点)(考核概率100%) 1物态方程(①掌握:独立参量的选择与态函数的相对性。

热力学与统计物理教学大纲

热力学与统计物理教学大纲

《热力学与统计物理》教学大纲(54学时)(理论课程)一课程说明(一)课程概况课程名称:《热力学与统计物理》英文名称:Thermodynamics and Statistical Physics课程编号:3910252118开课学院:理学院适用专业/开课学期:物理学/第六学期学分/周学时:3/3《热力学与统计物理》课是物理学专业专业发展课程的专业方向核心必修课程,与《理论力学》、《量子力学》、《电动力学》共同构成物理专业重要的四大力学。

该课程的任务是研究热运动的规律,研究与热运动有关的物性及宏观物质系统的演化。

本课程的作用是使学生掌握热力学与统计物理的基本原理和处理具体问题的一些重要方法,并初步具有用这些方法解决较简单问题的能力。

该课程在第六学期开设,学习该课程的先修课程是基础物理的各门课程和《理论力学》以及《高等数学》,这门课程又是《量子力学》、《固体物理》等课程的基础。

(二)课程目标本门课程系统讲授平衡态热力学和统计物理的基本理论和基本方法。

根据高等师范院校的特点,着重让学生了解热运动对于物质宏观性质的影响,掌握热运动的基本规律以及运用热力学方法和统计物理的方法研究解决物质热现象问题的基本的思想方法,学会基本的计算方法,获得运用热力学统计物理分析和处理问题的能力,提高学生的科学素养。

使学生运用科学的学习方法,真正达到从学会到会学,掌握该课程的知识体系与研究方法。

培养学生有较强的独立思考能力和创造能力。

对于与本课程相关领域的发展,可作适当介绍,为学生了解相关前沿打开一些窗口。

同时该课程是学生考研考得较多的课程之一,应该在保证基本内容的前提下,适当予以拓宽与加深,以兼顾考研学生的需要。

(三)学时分配二 教学方法和手段以讲授为主,讨论课和多媒体教学为辅的教学法。

《热力学与统计物理学》是一门理论性很强的学科,在整个知识结构体系中包含了许多难度很大的理论课。

在教学过程中由于其理论性强,结构体系庞大,内容本身抽象,因此教学难度很大。

热力学·统计物理

热力学·统计物理

热力学和统计物理是研究宏观和微观系统热力学性质的两个相关领域。

下面对热力学和统计物理进行简要介绍:
热力学(Thermodynamics):热力学是研究能量转换和热力学性质的科学。

它研究宏观系统的状态、过程和相互作用,关注能量的转移、转换和守恒,以及系统热平衡和热力学定律。

热力学研究的重要概念包括热力学系统、态函数、热力学过程、功和热量等。

热力学定律包括零th定律、第一定律(能量守恒定律)、第二定律(熵增加定律)和第三定律(绝对零度不可达性原理)。

统计物理(Statistical Physics):统计物理是研究宏观系统的微观基础的物理学分支。

它将微观粒子的运动和相互作用描述为统计性质,通过统计方法研究宏观系统的性质。

统计物理关注系统的热力学行为、平衡态和非平衡态,以及概率分布、热力学势和热力学极限等。

统计物理中的重要概念包括分子动力学、玻尔兹曼分布、配分函数、熵和热力学关系等。

热力学和统计物理之间有着密切的关系。

热力学提供了描述宏观系统行为的规律和定律,而统计物理通过微观粒子的统计性质,解释了这些宏观规律的来源和基础。

统计物理的理论和方法可用于研究多粒子系统、相变、热力学系统的非平衡态行为等问题。

热力学和统计物理是研究能量转换和宏观系统热力学性质的重要学科,它们为我们理解和解释物质世界中的热力学现象提供了理论框架和实用工具。

物理学专业《热力学与统计物理》教学大纲

物理学专业《热力学与统计物理》教学大纲

黄淮学院《热力学与统计物理》课程教学大纲一、课程编码及课程名称课程编码:3321320514课程名称:热力学与统计物理Thermodynamics and Statistical Physics二、学时及学分总学时数:72,其中,讲授学时:72。

学分:4三、适用专业及开设学期适用专业:物理学(本科)开设学期:第5学期四、课程的性质、目标和任务本课程是高等院校本科物理学专业的一门专业基础课程。

该课程由热力学和统计力学两部分内容组成,两者的任务都是研究热运动的规律,与热现象有关的物理性质和宏观物质系统的演化。

前者关于热现象的宏观理论,后者是微观理论,是联系微观世界与宏观世界的桥梁。

通过本课程的学习,要求学生初步掌握与热现象有关的物质宏观物理性质的唯象理论和统计理论,并对二者的特点与联系有一个较全面的认识。

要求学生掌握热统的基本概念、掌握基本定理、定律、基本公式、基本热力学量及它们相互推导。

通过该课程的学习使学生初步建立分析微观世界的思路和方法,并培养学生分析问题、解决问题、进行创造性思维能力的培养,使理论分析能力得到必要的锻炼,为进一步学习打下牢固的基础。

五、课程教学的基本要求在教学中,要注意培养学生的学习兴趣。

由于本课程理论性较强,内容较抽象,学生在学习进程中容易感觉枯燥,故教学前要多查找资料,努力寻找理论与实际的结合点,并引导学生体验课程知识的系统性,对物理科学的系统性进行深层次认识。

六、课程教学内容第一章热力学的基本规律(共8学时)(一)本章教学目的和要求本章是热力学与统计物理学的基础,以热力学第一定律、热力学第二定律和热力学基本方程、热容量和焓、理想气体的内能为重点讲授内容;将热力学系统的平衡态及其描述、平衡定律和温度、物态方程、准静态功、热力学第一定律、绝热过程、卡诺循环作为课堂自学内容,这些内容在《热学》中都已学过。

(二)教学内容1.1热力学系统的平衡态及其描述;1.2平衡定律和温度;1.3物态方程;1.4功;1.5热力学第一定律;1.6热容量和焓;1.7理想气体的内能;1.8理想气体的绝热过程;1.9理想气体的卡诺循环;1.10热力学第二定律;1.11卡诺定理;1.12热力学温标;1.13克劳修斯等式和不等式1.14熵和热力学基本方程1.15理想气体的熵1.16热力学第二定律的数学表述1.17熵增加原理的简单应用1.18自由能和吉布斯函数(三)重点与难点重点:温度定理、物态方程、准静态过程中的微功、热力学第一定律、热力学过程、卡诺循环、热力学第二定律及其数学表述、不可逆过程、熵、熵增加原理、不可逆过程的熵变、自由能、吉布斯函数。

《热力学与统计物理(英文)》教学大纲

《热力学与统计物理(英文)》教学大纲

Syllabus of 《Thermodynamics and Statistic Physics》一、课程基本信息英文名称 Thermodynamics and StatisticalPhysics课程代码 PHYS3127课程性质 Degree course 授课对象 Physics (International Class)学 分 3 Credits 学 时 72 Classes 主讲教师 修订日期 Sep. 2021指定教材 S. J. Blundell and K. K. Blundell,《Concepts in thermal physics》,Oxford University Press,2006.二、课程目标(一)总体目标:The objective of this course is to provide third-or fourth year physics students with a solid introduction to the classical and statistical theories of thermodynamics. In this course, students are supposed to achieve a full knowledge about the theoretical framework of the classic thermodynamics, and how the macroscopic phenomenon can be understood with the microscopic properties of the components.(二)课程目标:Objective 1: Understand the macroscopic properties of thermal systems. Have a full knowledge about the general principles and the relations between state functions and state variablesObjective 2:Develop a clear understanding and firm grasp of the basic principles of statistical physics. Develop some necessary skills to work with probability theory.Objective 3:Have a full and clear picture about the historic development of thermodynamics. Develop an intuitive feel about the way to explore and find out the underlying principles of phenomenon. Be able to think and solve scientific problems independently.(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表三、教学内容Introduction :Equilibrium sate and state variables 1.Purpose课程目标 对应课程内容 对应毕业要求(及对应关系说明)Objective 1Ch00 Equilibrium and State variables Ch01 The first law ofThermodynamics and ApplicationsCh02 The Second law ofThermodynamics and Applications Ch03 Thermodynamic potentials Ch04 Real gas and Phase transitionUnderstand the macroscopic properties of thermal systems. Have a full knowledge about thegeneral principles and the relations between state functions and state variablesObjective 2Ch05 Statistical Basis of ThermodynamicsCh06 Ensemble and Thermal average Ch07 Properties of Classical ideal gasCh08 Occupation number of IdealQuantum Gases Ch09 Bose statistics Ch10 Fermi statisticsCh11 Theoretical models of Phase transition Develop a clear understanding and firm grasp of the basic principles of statistical physics. Develop some necessary skills to work with probability theory.Objective 3Ch02 The Second law of Thermodynamics and Applications Ch05 Statistical Basis of ThermodynamicsCh08 Occupation number of IdealQuantum Gases Ch09 Bose statistics Ch10 Fermi statisticsCh11 Theoretical models of Phase transitionHave a full and clear picture about the historic development of thermodynamics. Develop an intuitive feel about the way to explore and find out the underlying principles of phenomenon. Be able to think and solve scientific problems independently.Understand the basic concepts of thermodynamics2.Key points:Equilibrium state; Reversible process3.ContentEquilibrium state;State variables; Work4.Teaching methodTalk and discussion5.EvaluationAssignment.Chapter 1 The Frist law and Applications1.PurposeUnderstand the First law and solve simple problems with it.2.Key points:Mathematical forms of the first law and the limitation for different forms.3.Content3.1 The first lawInternal energy; heat and work.3.2 Isothermal process of ideal gasIdeal gas; isothermal expansion of ideal gas3.3 Adiabatic process of ideal gasAdiabatic equation of ideal gas4.Teaching methodTalk and discussion5.EvaluationAssignment.Chapter 2 The second law and entropy1.PurposeUnderstand properties of Carnot cycle; Develop a full picture of the definition of theefficiency of engine; Understand the different statements of the second law.2.Key points:Statement of the second law; entropy3.Content3.1 Carnot cycleWork and heat in each step of Carnot cycle3.2 The second lawStatements of the second law3.3 Reversible engine;Efficiency of reversible engines3.4 Entropy;Definition of entropy;3.5 Application of the second law;The change of entropy in reversible processes; the entropy of dieal gas4.Teaching methodTalk and discussion5.EvaluationAssignment.Chapter 3 Thermodynamic potentials1.PurposeUnderstand the definitions and their roles of thermodynamic potentials2.Key points:Enthalpy; Free energy; Maxwell relations3.Content3.1 Thermodynamically potentials:Internal energy; entropy; Free energy3.2 Maxwell relations;Derive the Maxwell relations。

《热力学与统计物理学》教学大纲

《热力学与统计物理学》教学大纲

《热力学与统计物理学》教学大纲课程代码:NANA2051课程名称:热力学与统计物理学英文名称:Thermodynamics and statistical physics课程性质:专业必修课程学分/学时: 3.00学分/54学时考核方式:期末+期中+作业开课学期:第4学期适用专业:纳米材料与技术先修课程:高等数学,普通物理后续课程:固体物理,半导体物理开课单位:纳米科学技术学院选用教材:统计和热物理基础一、课程目标通过本课程的理论教学,使学生具备下列能力:1,了解热力学的基本概念,熟悉热力学方程并能够将其用于具体科学问题的计算与分析。

(支撑毕业要求指标点1-1)2,能够推导热力学与统计物理学的基本方程,能够建立物理问题的统计物理学模型。

(支撑毕业要求指标点1-2)3,学生熟悉外部参数之间的微分关系,了解发动机的基本概念,了解不同统计系统的定义及其统计理论。

能够在深入了解热力学与统计物理学基本理论的基础上解决实际物理、化学问题。

(支撑毕业要求指标点2-1)二、教学内容第一章:热力学和统计物理导论持续时间:2周,6讲座内容1、数学知识学习本课程所需的数学知识热力学和统计物理的一般介绍学习简单的统计原理;引入一些外部参数;学习四个热力学定律和一个统计关系。

第二章:宏观热力学的简单应用持续时间:5周,15讲座内容1、麦克斯韦关系学习麦克斯韦关系以及如何推导它们2、绝热膨胀和节流过程学习两种冷却技术和它们的计算:绝热膨胀和节流过程3、热机学习实用热机的定义;为什么理想的热机达不到;计算卡诺热机的效率第三章:统计物理概论持续时间:3周,9讲座内容1、统计系统的基本概念和例子:学习如何描述实际系统使用一般坐标和一般动量。

2、计算态密度学习如何计算一维,二维和三维盒子里的粒子的状态密度。

玻尔兹曼,玻色和费米系统学习这三个系统的定义;计算三个系统可以达到的状态数;学习如何计算这三个系统的分布。

第四章:玻尔兹曼系统的统计物理持续时间:5周,15讲座内容1、配分函数介绍了玻尔兹曼系统的配分函数;介绍如何使用配分函数计算外部参数2、麦克斯韦速度分布计算麦克斯韦速度定律;计算最可能的速度和平均速度能量均分热证明能量均分定理;利用能量均分热计算一些实际系统的比热容。

热力学与统计物理(英)

热力学与统计物理(英)

Thermodynamics and Statistical PhysicsCourse Code: 83034000Course Name: Thermodynamics and Statistical PhysicsCourse Credit: 4 Course Duration: The 8th semesterTeaching Object: All Undergraduate Students in the School of Space Science & PhysicsPre-course: Quatum, Mechanics, Thermology , Theoretical MechanicsCourse Director: Guan Li professorCourse Introduction:Thermodynamics and Statistical Physics is an element course in the scientific disciplines of physics, material physics and space science etc. The course includes two main parts, thermodynamics and statistical mechanics. Thermodynamics——Introduces the characters and fundamental conception of thermodynamic functions of the internal energy, entropy, free energy, Gibbs function etc. Introduces the thermodynamics fundamental equation, fundamental rule and method, to lead the students to master the analysis applications of the thermal equilibrium and phase transition equilibrium etc. Statistical Mechanics——Introduces the state describe of the particle and the thermodynamic system in quantum statistical mechanics method or classical mechanics method. Introduces the Boltzmann distribution law, Bose -Einstein distribution law, Fermi-Dirac distribution law. Introduces the statistical expressions of thermodynamic quantity. Brief introduction the statistical ensemble theory. To lead the students to master the statistical computing of various thermodynamic systems.Course Examination:Students’ Final Scores = Scores of Ordinary Tests ⨯ 20% + Scores of the Final Exam⨯ 80%Scores of ordinary tests vary according to students’ performance in attendance and homework.The final examination will be an closed-book examination.Appointed Teaching Materials:(1)Wang Zhicheng. Thermodynamics & Statistical Physics(Third Edition). Beijing: Higher Education Press,2003Bibliography:(1)Zhang Qiren. Statistical Mechanics. Beijing: Science Press ,2002(2)W. Greiner, L.Neise,hong, Zhong Yunxiao(translate). Thermodynamics & Statistical Mechanic. Beijing: BeijingUniversity Press, 2001。

热力学统计物理学课程教学大纲

热力学统计物理学课程教学大纲

热力学统计物理学课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;热力学统计物理【Thermodynamics and Statistical Physics】,兰州大学物理科学与技术学院物理学专业专业基础课,4学分。

(二)课程简介、目标与任务;《热力学统计物理》从宏观及微观角度理解大量粒子组成的物理系统的基本性质及其微观基础,该课程的任务是让学生掌握热力学和统计物理的基本原理和研究方法。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程要求:高等数学、普通物理(包括力学、热学、光学、电磁学及原子物理)、理论力学。

与理论力学、量子力学、电动力学共同构成物理类专业基础课。

(四)教材与主要参考书。

教材:热力学•统计物理(第五版);作者:汪志诚;高等教育出版社。

参考书目:1)王竹溪,《热力学简程》,高教出版社,19642)王竹溪,《统计物理学导论》,第二版,高教出版社,19653)龚昌德,《热力学与统计物理学》,,高教出版社,19824)苏汝铿,《热力学与统计物理基础》,,复旦大学出版社,19905)Landau L.D. and Lifshitz E.M., Statistical Physics, Pergamon Press, 1958 6)Reif F., Fundamental of Statistical and Thermal Physics, McGraw Hill Book Company, 19657)L.E.雷克著,黄昀等校译,统计物理现代教程,上册,北京大学出版社二、课程内容与安排(一)章节详细内容第一章热力学的基本规律第一节热力学系统的平衡状态及其描述;第二节热平衡定律和温度;第三节物态方程;第四节准静态过程及其功表达式;第五节内能、热量和热力学第一定律;第六节热容量和焓;第七节理想气体的内能;第八节理想气体的绝热过程;第九节理想气体的卡诺循环;第十节热力学第二定律;第十一节卡诺定律;第十二节热力学温标;第十三节克劳修斯等式和不等式;第十四节熵和热力学基本方程;第十五节理想气体的熵;第十六节热力学第二定律的普遍表述;第十七节熵增加原理的简单应用。

热力学书籍

热力学书籍

热力学书籍
热力学是物理学中的一个重要分支,研究热与其他形式的能量之间的相互转换关系。

在学习热力学理论时,需要阅读相关的热力学书籍,以下是一些经典的热力学书籍推荐:
1.《热力学与统计物理学》(Thermodynamics and Statistical Mechanics):作者是 Richard Fitzpatrick,这本书具有较强的教学性质,内容系统全面,适合初学者学习。

2.《热力学及其应用》(Thermodynamics and Its Applications):作者是 Jefferson W. Tester,这本书对热力学基础知识和实际应用都有涉及,尤其对于化工和材料领域的学生非常有用。

3.《热力学和统计物理学:一种简明教程》(Thermodynamics and Statistical Physics: A Short Course):作者是 Richard E. Wilde,这本书采用简明易懂的方式讲解热力学和统计物理学的基本概念和
应用,适合快速入门的读者。

4.《热力学与材料科学》(Thermodynamics and Materials Science):作者是 Richard A. Swalin,这本书探讨了热力学在材料科学中的应用,包括物质的相变、材料的热力学性质等方面,对于材料科学专业的学生非常有用。

总之,热力学是一个广泛应用的学科,对于理工科学生来说是必修的课程之一,选择一本适合自己的热力学书籍进行学习是非常重要的。

- 1 -。

热力学与统计物理(中)

热力学与统计物理(中)

热力学与统计物理
课程代码 : 83034000
课程名称:热力学与统计物理
英文名称:Thermodynamics and Statistical Physics
学分:4 开课学期:第8 学期
授课对象:物理学专业本科生先修课程:热学, 量子力学,理论力学
课程主任: 管立教授
课程简介:
《热力学与统计物理》课程是物理学、材料物理学和空间科学等专业的主干理论课程。

该课程包括热力学与统计力学两部分内容:1.热力学——讲授内能、熵、自由能、吉布斯等热力学函数的概念及特性;热力学方程等基本规律和方法,引导学生解决如:热动平衡及其稳定性的判断;相变及相平衡的分析等应用问题。

2.统计力学——讲授粒子和热力学系统的状态的经典描述和量子描述;玻尔兹曼分布、玻色分布、费米分布;热力学量的统计表达式;简介统计系综理论等量子统计与经典统计的理论方法,引导学生掌握对各类热力学系统及其状态参量等等统计问题的计算。

课程考核:
课程最终成绩=平时成绩⨯20%+期末考试成绩⨯80%;
平时成绩由出勤率、作业的完成等情况决定;
期末考试采取闭卷考试。

指定教材:
(1)汪志诚.《热力学统计物理》. 北京: 高等教育出版社,2003.3, 第三版.
参考书目:
(1)张启仁著.《统计力学》. 北京: 科学出版社,2002.7.
(2)W.顾莱纳等著,钟云霄译. 《热力学与统计力学》. 北京: 北京大学出版社,2001.12.。

热力学统计物理第一章 2

热力学统计物理第一章 2

3, 平衡态
一个孤立系统,在经过足够长的时间后, 系统的各种宏观性质在长时间内不发生任何变化。 这样的状态称为热力学平衡态。 几点说明:
• 系统从初始态到平衡态所经历的时间称为弛豫时间。
•是动态平衡
•系统宏观物理量的数值仍会发生涨落。对于宏观系统,涨落极其微小。 可忽略。
•平衡状态的概念不限于孤立系统。
Cp ( H )p T
4,焓
焓的定义为H =U +pV ,其物理意义由:
Q H Cp ( )p ( )p T T
得到:
H (Q) p
即等压过程中系统从外界吸收的热量等于系统焓的增量 焓的性质: ①是系统状态函数
②单位是焦耳(J)
③是广延量 返回
§1-7 理想气体的内能
热容量
CV
0 P(V2-V1)
vRT ln
CV (T2 T1 )
C p (T2 T1 )
vRT ln V2 V1 V2 V1
CV (T2 T1 )
CV (T2 T1 )
0
C p (CV vR)
∞ 0
pV=常量 pV
γ=常量
p1V1 p2V2 1
0
CV (T2 T1 )
(2)按该量是否具有可加性分类 广延量: 强度量:
具有可加性的量(如体积、质量) 不具有可加性的量(如压强、温度、质量密度等)
V=V1 + V2 M=M 1+M2 (广延量)
V1、M1 P1、T1、ρ1
V2、M2 P2、T2、ρ2 图 1.1.1
P≠p1 + p2
Ρ≠ρ1 + ρ2
(强度量)
§1-2 热平衡定律与温度(p7-11)

热力学与统计物理II大纲

热力学与统计物理II大纲

热力学·统计物理(Thermodynamics & Statistical Physics)(Ⅱ)周学时:3 学分:3课程性质:物理系理论物理选修课程预修课程:热力学·统计物理(Ⅰ)参考教材:1. 汪志诚,《热力学·统计物理》(第三版),高等教育出版社,2003年;2. 苏如铿,《统计物理学》(第二版),高等教育出版社,2004年;3. P. K. Pathria,Statistical Mechanics(Second Edition),Elsevier(Singapore)Pte. Ltd.,2003.4. L. P. Kadanoff,Statistical Mechanics,World Scientific,2000.教学内容:(共48学时)第一章 系综(Ensemble)理论基础§1.相空间和运动方程§2.Liouville定理及其意义§3.微正则系综(Microcanonical ensemble)§4.微正则分布与热力学公式§5.应用第二章 正则系综(Canonical ensemble)§1.系统与热库(Heat reservoir)的平衡§2.正则系综§3.配分函数(Partition function)和热力学量§4.正则系综与微正则系综之间的关系§5.能量均分(Equipartition)定理和Virial定理§6.集团展式(Cluster expansion)§7.固体热容量§8.顺磁性、负温度§9.铁磁相变第三章 巨正则系综(Grandcanonical ensemble)§1.系统与粒子库(Particle reservoir)的平衡§2.巨正则系综§3.巨配分函数(Grand partition function)和热力学量§4.应用§5.粒子数起伏第四章 涨落(Fluctuation)和关联(Correlation)§1.涨落的准热力学理论§2.临界点附近的涨落和关联§3.布朗运动(Brownian motion)理论§4.时间关联函数、涨落耗散(Fluctuation-dissipation)定理§5.应用第五章 临界现象§1.连续相变§2.举例和模型§3.临界指数§4.Landau平均场理论*§5.标度定律*§6.重正化群方法第六章 非平衡态统计基础§1.Boltzmann积分微分方程§2.H定理§3.细致平衡原理§4.应用。

热力学与统计物理英语

热力学与统计物理英语

热力学与统计物理英语Thermodynamics and statistical physics are two important branches of physics that deal with the behavior of matter and energy at different scales. These fields have many applications in engineering, chemistry, and other areas of science. In this article, we will explore some basic English vocabulary and concepts related to thermodynamics and statistical physics.To begin with, let's define some key terms in thermodynamics. Thermodynamics is the study of the relationships between heat, work, and energy. Energy is the capacity to do work, and work is the transfer of energy from one system to another. Heat is the transfer of thermal energy between two bodies at different temperatures. The first lawof thermodynamics is the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred or converted from one form to another.Another important concept in thermodynamics is entropy. Entropy is a measure of the disorder or randomness of a system. The second law of thermodynamics states that the entropy of an isolated system always increases over time. This law is often used to explain why certain processes, such as the combustion of fossil fuels, are irreversible.Moving on to statistical physics, this field deals with the behavior of large numbers of particles or molecules. One key concept in statistical physics is the idea of a probability distribution. A probability distribution describes the likelihood that a particle or molecule willhave a certain energy, velocity, or other property. The Maxwell–Boltzmann distribution is a common probability distribution used in statistical physics.Another important concept in statistical physics is the Boltzmann factor. The Boltzmann factor is a term that appears in many equations in statistical physics and refers to the probability of a given energy state at a certain temperature. The Boltzmann factor is proportional to the energy of the state and inversely proportional to temperature.Lastly, let's briefly touch upon some other important terms in these fields. Some important thermodynamicquantities include enthalpy, free energy, and Gibbs energy. These terms are often used to describe the energy or work involved in processes such as chemical reactions. In statistical physics, other important concepts include the partition function, which describes the distribution of energy states in a system, and the equipartition theorem, which relates the temperature of a system to the average energy per degree of freedom.In summary, thermodynamics and statistical physics are two important branches of physics with many practical applications. Understanding the basic vocabulary and concepts in these fields is essential for anyone interested in pursuing a career in science or engineering. By studying these concepts, we can gain a deeper understanding of how energy and matter behave in the physical world.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Thermodynamics and Statistical Mechanics
Probabilities
Thermo & Stat Mech Spring 2006 Class 16
1
Pair of Dice
For one die, the probability of any face coming up is the same, 1/6. Therefore, it is equally probable that any number from one to six will come up. For two dice, what is the probability that the total will come up 2, 3, 4, etc up to 12?
Thermo & Stat Mech - Spring 2006 Class 16 4
Pair of Dice
Total 7 8 9 10 11 12 Combinations How Many 1+6, 6+1, 2+5, 5+2, 3+4, 4+3 6 2+6, 6+2, 3+5, 5+3, 4+4 5 3+6, 6+3, 4+5, 5+4 4 4+6, 6+4, 5+5 3 5+6, 6+5 2 6+6 1 Sum = 36
Thermo & Stat Mech - Spring 2006 Class 16
10
Example
Paint two faces of a die red. When the die is thrown, what is the probability of a red face coming up?
Thermo & Stat Mech - Spring 2006 Class 16 5
Probabilities for Two Dice
Total 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 5 4 3 2 1 Prob. 36 36 36 36 36 36 36 36 36 36 36 % 2.8 5.6 8.3 11 14 17 14 11 8.3 5.6 2.8
Thermo & Stat Mech - Spring 2006 Class 16 2
Probability
To calculate the probability of a particular outcome, count the number of all possible results. Then count the number that give the desired outcome. The probability of the desired outcome is equal to the number that gives the desired outcome divided by the total number of outcomes. Hence, 1/6 for one die.
1 1 1 p 6 6 3
Thermo & Stat Mech - Spring 2006 Class 16
9
Combining Probabilities
If a given outcome represents the combination of two independent events, whose individual probabilities are pA and pB, then the probability of that outcome is: pA × pB. This is the probability of having both A and B.
Thermo & Stat Mech - Spring 2006 Class 16
6
Probabilities for Two Dice
D ice
0 .2
P r o b a b ilit y
0 .1 5
0 .1
0 .0 5
0 2 3 4 5 6 7 8 9 10 11 12
Nu m b e r
Thermo & Stat Mech - Spring 2006 Class 16
பைடு நூலகம்
7
Microstates and Macrostates
Each possible outcome is called a “microstate”. The combination of all microstates that give the same number of spots is called a “macrostate”. The macrostate that contains the most microstates is the most probable to occur.
Thermo & Stat Mech - Spring 2006 Class 16
8
Combining Probabilities
If a given outcome can be reached in two (or more) mutually exclusive ways whose probabilities are pA and pB, then the probability of that outcome is: pA + pB. This is the probability of having either A or B.
Thermo & Stat Mech - Spring 2006 Class 16 3
Pair of Dice
List all possible outcomes (36) for a pair of dice. Total Combinations How Many 2 1+1 1 3 1+2, 2+1 2 4 1+3, 3+1, 2+2 3 5 1+4, 4+1, 2+3, 3+2 4 6 1+5, 5+1, 2+4, 4+2, 3+3 5
相关文档
最新文档