第二章 稳态极化曲线的测量和应用教案资料
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浓差极化:由扩散速度决定。气相扩散很自由,主要决定于分子 量和分子直径。液相扩散不自由,但扩散自由能很低。各种物质 的扩散系数小,都在同一数量级,例如水溶液中一般为10-5cm2/s, 气相中一般在10-1cm2/s数量级,温度对扩散系数的影响小,但扩 散层厚度能大幅度地改变扩散速度。一般在快速旋转的电极或溶 液流速很快的情况下,扩散层厚度能比自然对流的扩散层厚度低 一两个数量级。如果扩散途中有多孔隔膜,则隔膜的厚度、孔率 和曲折系数决定了扩散速度。浓差极化到达稳态需要的时间较长, 当i接近id时浓差极化过电位上升很快,极化曲线上表现为电流平 阶,必须用控制电位的方式才能得到相应的极化曲线。
CD段。电极反应受电荷传递和扩散传质共同控制。
扩散控制区。i>0.9il,相当于极化曲线上的DE段。电
极反应受扩散传质控制。
不可逆电极(反应物可溶)的完整稳态极化曲线
2.3 稳态极化曲线的测量方法
按自变量的控制方式分,有恒电流和恒电位法;按自 变量的给定方式分,有阶跃法和慢扫描法。
电阻极化:与i 成正比;能瞬间跟随i的变化。
2.2 稳态极化曲线的基本特征
2.2.1 极化曲线
以电极电位(或过电位)与电流密度(或电流密度的 对数)之间的关系在平面坐标系内绘图,所得曲线即为极 化曲线。
2.2.2 稳态极化曲线
以电极反应达到稳态时的电极电位(或过电位)与电 流密度(或电流密度的对数)之间的关系在平面坐标系内 绘图,所得曲线即为稳态极化曲线。
i
(i≈ilo)
在平衡电位附近(η<<RT/nF)
将(1)式按泰勒级数展开,略去η的高次项和η•i 项,得:
i i0[(1ilio)(1RnTFk)(1iliR)(1RnTFk)]
k
RnFT(ii10
1 ilo
1) ilR
k i(RrRcORcR)
当三种极化不可忽略时,η~i之间的关系曲线如图所示:
第二章 稳态极化曲线的测量和 应用
本章主要内容
2.1 稳态方法特点 2.2 稳态极化曲线的基本特征 2.3 稳态极化曲线的测量方法 2.4 稳态极化曲线的应用 2.5旋转圆盘电极及其应用
2.1 稳态方法的特点
2.1.1 稳态过程
什么是稳态?
稳态是在指定时间范围内,电化学系统的参量 (如电位、电流、浓度分布、电极表面状态等)变化甚 微,基本上可认为不变时的状态。
不可逆电极(i0/il < < 1, 即Ks < < D/σ) 在不同的过电位范围内表现为不同的极化形式。
当η>RT/αnF,逆反应可略
i
i0(1
i
nF
)e RT
ilo
则
RnTFlnii0
RTln ilo
nF iloi
k c
k
RT
nF
c
RT
nF
ln
i i0
(i<<ilo)
ln
i lo i lo
ilo
ilR
可逆电极(i0/il >>1,即Ks>>D/ δ )
过电位完全由浓差极化引起,要想从稳态极化曲线上
研究电化学反应速度不可能,由于一般δ≈ 10-2~
10-3cm ,D≈ 10-5cm2/s,故稳态极化曲线不宜于研究
Ks>10-2cm/s的电化学反应。.
cR nF T [ln1(iliR)ln1(iliO)]
总之,稳态电极极化是一个复杂的过程,存在着多种 矛盾,表现为多种极化,其中占主要地位的极化决定着整 个电极的总极化。为了改变极化状况使之有利于生产,必 须进一步弄清各种极化的特点及其影响因素。
电化学极化:由反应速度决定,与电化学反应本质有关。化学反 应的活化能较高,且各种反应的活化能相差比较悬殊,因此反应 速度的差别是以数量级计。影响因素包括温度、催化剂活性、电 极面积、界面电场、表面吸附成相层等。对于i0很小的不可逆电 极,很小的i0值就能引起较大的极化,
如图中锌空电池小电流放电曲线中t1-t2时间段内电 池所处的状态即可以看作为稳态。
V
t1
t2
t
Baidu Nhomakorabea
稳态过程的基本特点
稳态不等于平衡态 平衡态时电极反应的净速度为零,稳态时可存在净
速度。平衡态是一种特殊的稳态。 绝对的稳态不存在 稳态与暂态的划分以参量变化是否明显为标准,且此标
准也是相对的,与仪器的灵敏度有关。 稳态的全部电流都用于电化学反应
电位约在20-70mV 范围内,相当于极化曲线上的AB 段,总极化电流中正逆两方向的电极半反应电流均要 考虑。
强极化区。电极电位偏离平衡电极电位(η〉100/n
mV),但电流尚小,相当于极化曲线上的BC段。当 i0<<il时,此区又称为Tafel区。
混合控制区。0.1il<i<0.9il,相当于极化曲线上的
电化学极化 ηa或ηc,由于电荷传递(电子得失)过程迟缓而造 成。 假设电极反应为简单的电荷传递反应,则电化学极化 过电位与电流关系满足Bultler-Volmer方程
ii0(eR nT F eR nT F )
浓差极化 ηc,由于反应物和产物的扩散过程迟缓造成。~
cR nF T [ln1(iliR)ln1 (iliO)]
欧姆极化 ηΩ,由于电子导体和离子导体的欧姆电阻对电流导通 的阻碍造成,符合欧姆定律。一般情况下,离子导体 即溶液的欧姆电阻Rl远大于电子导体的电阻,故欧姆 极化一般为溶液中的欧姆极化。
Rl •i
电极反应可逆性与极化
电化学极化与浓差极化共存的i-η关系式:
ii0[1 (i)eR nT F(1i)eR nT F)](1)
2.2.3 稳态极化曲线的基本特征
稳态极化曲线按照极化的大小和控制不走的不同,分 为线性极化区、弱极化区、塔菲尔区、混合控制区、扩散 控制区五个区段。
线性极化区。电极过电位很小(η<<50/n mV),电
极反应在平衡电极电位附近进行,相当于极化曲线上 的OA段,电流与过电位成线性关系。
弱极化区。电极电位偏离平衡电极电位不太远,过
双电层充放电电流为零,电极界面处吸脱附电流为零. 电极界面区的扩散层内反应物和产物粒子的浓度与时间
无关,处于稳态扩散状态。 电极表面处的扩散电流为 id = nFD(dC/dx)x=0 = nFD(Co-Cs)/σ il = nFD Co/σ
2.1.2 各种类型的稳态极化及其影响因素
电极过程共有三种类型的极化:电化学极化;浓差极化; 欧姆极化。通电时的电位变化=电化学极化+浓差极化+欧姆极 化。
CD段。电极反应受电荷传递和扩散传质共同控制。
扩散控制区。i>0.9il,相当于极化曲线上的DE段。电
极反应受扩散传质控制。
不可逆电极(反应物可溶)的完整稳态极化曲线
2.3 稳态极化曲线的测量方法
按自变量的控制方式分,有恒电流和恒电位法;按自 变量的给定方式分,有阶跃法和慢扫描法。
电阻极化:与i 成正比;能瞬间跟随i的变化。
2.2 稳态极化曲线的基本特征
2.2.1 极化曲线
以电极电位(或过电位)与电流密度(或电流密度的 对数)之间的关系在平面坐标系内绘图,所得曲线即为极 化曲线。
2.2.2 稳态极化曲线
以电极反应达到稳态时的电极电位(或过电位)与电 流密度(或电流密度的对数)之间的关系在平面坐标系内 绘图,所得曲线即为稳态极化曲线。
i
(i≈ilo)
在平衡电位附近(η<<RT/nF)
将(1)式按泰勒级数展开,略去η的高次项和η•i 项,得:
i i0[(1ilio)(1RnTFk)(1iliR)(1RnTFk)]
k
RnFT(ii10
1 ilo
1) ilR
k i(RrRcORcR)
当三种极化不可忽略时,η~i之间的关系曲线如图所示:
第二章 稳态极化曲线的测量和 应用
本章主要内容
2.1 稳态方法特点 2.2 稳态极化曲线的基本特征 2.3 稳态极化曲线的测量方法 2.4 稳态极化曲线的应用 2.5旋转圆盘电极及其应用
2.1 稳态方法的特点
2.1.1 稳态过程
什么是稳态?
稳态是在指定时间范围内,电化学系统的参量 (如电位、电流、浓度分布、电极表面状态等)变化甚 微,基本上可认为不变时的状态。
不可逆电极(i0/il < < 1, 即Ks < < D/σ) 在不同的过电位范围内表现为不同的极化形式。
当η>RT/αnF,逆反应可略
i
i0(1
i
nF
)e RT
ilo
则
RnTFlnii0
RTln ilo
nF iloi
k c
k
RT
nF
c
RT
nF
ln
i i0
(i<<ilo)
ln
i lo i lo
ilo
ilR
可逆电极(i0/il >>1,即Ks>>D/ δ )
过电位完全由浓差极化引起,要想从稳态极化曲线上
研究电化学反应速度不可能,由于一般δ≈ 10-2~
10-3cm ,D≈ 10-5cm2/s,故稳态极化曲线不宜于研究
Ks>10-2cm/s的电化学反应。.
cR nF T [ln1(iliR)ln1(iliO)]
总之,稳态电极极化是一个复杂的过程,存在着多种 矛盾,表现为多种极化,其中占主要地位的极化决定着整 个电极的总极化。为了改变极化状况使之有利于生产,必 须进一步弄清各种极化的特点及其影响因素。
电化学极化:由反应速度决定,与电化学反应本质有关。化学反 应的活化能较高,且各种反应的活化能相差比较悬殊,因此反应 速度的差别是以数量级计。影响因素包括温度、催化剂活性、电 极面积、界面电场、表面吸附成相层等。对于i0很小的不可逆电 极,很小的i0值就能引起较大的极化,
如图中锌空电池小电流放电曲线中t1-t2时间段内电 池所处的状态即可以看作为稳态。
V
t1
t2
t
Baidu Nhomakorabea
稳态过程的基本特点
稳态不等于平衡态 平衡态时电极反应的净速度为零,稳态时可存在净
速度。平衡态是一种特殊的稳态。 绝对的稳态不存在 稳态与暂态的划分以参量变化是否明显为标准,且此标
准也是相对的,与仪器的灵敏度有关。 稳态的全部电流都用于电化学反应
电位约在20-70mV 范围内,相当于极化曲线上的AB 段,总极化电流中正逆两方向的电极半反应电流均要 考虑。
强极化区。电极电位偏离平衡电极电位(η〉100/n
mV),但电流尚小,相当于极化曲线上的BC段。当 i0<<il时,此区又称为Tafel区。
混合控制区。0.1il<i<0.9il,相当于极化曲线上的
电化学极化 ηa或ηc,由于电荷传递(电子得失)过程迟缓而造 成。 假设电极反应为简单的电荷传递反应,则电化学极化 过电位与电流关系满足Bultler-Volmer方程
ii0(eR nT F eR nT F )
浓差极化 ηc,由于反应物和产物的扩散过程迟缓造成。~
cR nF T [ln1(iliR)ln1 (iliO)]
欧姆极化 ηΩ,由于电子导体和离子导体的欧姆电阻对电流导通 的阻碍造成,符合欧姆定律。一般情况下,离子导体 即溶液的欧姆电阻Rl远大于电子导体的电阻,故欧姆 极化一般为溶液中的欧姆极化。
Rl •i
电极反应可逆性与极化
电化学极化与浓差极化共存的i-η关系式:
ii0[1 (i)eR nT F(1i)eR nT F)](1)
2.2.3 稳态极化曲线的基本特征
稳态极化曲线按照极化的大小和控制不走的不同,分 为线性极化区、弱极化区、塔菲尔区、混合控制区、扩散 控制区五个区段。
线性极化区。电极过电位很小(η<<50/n mV),电
极反应在平衡电极电位附近进行,相当于极化曲线上 的OA段,电流与过电位成线性关系。
弱极化区。电极电位偏离平衡电极电位不太远,过
双电层充放电电流为零,电极界面处吸脱附电流为零. 电极界面区的扩散层内反应物和产物粒子的浓度与时间
无关,处于稳态扩散状态。 电极表面处的扩散电流为 id = nFD(dC/dx)x=0 = nFD(Co-Cs)/σ il = nFD Co/σ
2.1.2 各种类型的稳态极化及其影响因素
电极过程共有三种类型的极化:电化学极化;浓差极化; 欧姆极化。通电时的电位变化=电化学极化+浓差极化+欧姆极 化。