新人教版九年级数学旋转课件

合集下载

人教版初中数学九年级上册 图形的旋转(第1课时)课件PPT

人教版初中数学九年级上册  图形的旋转(第1课时)课件PPT
第二十三章
旋 转
第二十三章
23、1
旋 转
图形的旋转
第1课时 旋转的概念与性质
学习目标
1 了解旋转的概念,理解图形旋转的三要素“旋转中心、旋转
方向和旋转角”、(重点)
2 理解旋转的性质,并会运用其解决简单的旋转问题、(重点)
游乐园里的摩天轮、旋转木马、海
盗船的运动有什么共同点?
知识讲解
旋转的性质:
旋转前后的图形全等;
(旋转不改变图形的大小和形状)
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等于旋转角、
知识讲解
例3、 △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的、
已知∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′
1
1
∴ AO=CO= AB= ×6=3,∴ OD1=DC﹣CO=7﹣3=4,
2
2
在Rt△AD1O中,由勾股定理得,AD1= 2 + 12 = 32 + 42 = 5 、
(2)点B在△D2CE2的内部、
理由如下:设直线CB与D2E2相交于点P,
∵ △D1CE1绕着点C顺时针再旋转30°,∴ ∠PCE2=15°+30°=45°,
3 ,OA ′ = 5 ,旋转角= 44 ° 、
=
13
知识讲解
例4、把一副三角板按如图①放置,其中∠ACB=∠DEC=90°,∠A=45°,
∠D=30°,斜边AB=6 cm,DC=7 cm、把三角板DCE绕点C顺时针旋转
15°得到△D1CE1(如图②)、这时AB与CD1相交于点O、与D1E1相交
于点F、
(1)求线段AD1的长;

最新人教版初中九年级上册数学【旋转作图与坐标系中的旋转变换】教学课件

最新人教版初中九年级上册数学【旋转作图与坐标系中的旋转变换】教学课件

A
D
A
D
E
E
B
C
E′ B
C
④E点的对应点E′,还有别的方法作出来吗?
以AB为一边向正方形外
A
D
部作∠BAM,使∠BAM
E
=∠DAE,在AM上截取
AE′=AE即可.(答案不唯 E′ B
C
一)
M
观察课本上图案的变换过程,它们分别是 改变旋转中的哪些要素旋转而成的?
βБайду номын сангаас
αO
O
O1 O2
a.旋转中心不变,旋转角改变,产生不同的旋转效果. b.旋转角不变,旋转中心改变,产生不同的旋转效果.
23.1 图形的旋转 第2课时 旋转作图与坐标系中的旋转变 换
新课导入
如图,O是六个正三角形的 A
公共顶点,正六边形ABCDEF能 否看做是由某条线段绕O点旋转 B
若干次所形成的图形?
C
F OE
D
(1)能按要求作出简单平面图形旋转后的图形. (2)能通过图形的旋转设计图案.
推进新课
知识点1 用旋转的知识画图
任意画一个△ABC,以A为中心,把 这个三角形逆时针旋转40°;
任意画一个△ABC,以AC中点为中 心,把这个三角形旋转180°.
你能总结出旋转作图的一般步骤吗?
(1)分析图形,找出构成图形的关键点; (2)确定三要素,即旋转中心、旋转角、旋转方向; (3)将关键点分别与旋转中心连接后旋转,找到关
A.
B.
C.
D.
2. 数学课上,老师让同学们观察如图所示的图形,
问:它绕着圆心O旋转多少度后和它自身重合?
甲同学说:45°;乙同学说:60°;
丙同学说:90°;丁同学说:135°.

最新人教版-数学-九年级上册 第二十三章 旋转教学课件 23.2.2 中心对称图形

最新人教版-数学-九年级上册 第二十三章  旋转教学课件 23.2.2 中心对称图形

3.世界上因为有了圆的图案,万物才显得富有生机,以 下来自现实生活中的图形都有圆,它们看上去是那么美 丽与和谐,这正是因为圆具有轴对称性和中心对称性.
请问以下三个图形中是轴对称图形的有 ①②③,是 中心对称图形的有 ①③ .
一石激起千层浪 ①
汽车方向盘 ②
铜钱 ③
4.如图是3×4正方形网格,其中已有5个小方格涂上 阴影,若再选取标有①,②,③,④中的一个小方 格涂上阴影,使图中所有涂上阴影的小方格组成一 个中心对称图形,则该小方格是 ④ .(填序号)
O
B
C
中心对称图形的定义
把一个图形绕某一个点旋转180°,如果旋转后的图形 能够与原来的图形重合,那么这个图形叫做中心对称图形, 这个点就是它的对称中心.
注意 中心对称图形是指一个图形.
典例精析
例1 下列图形中哪些是中心对称图形?
√(1)
√(2)
√(3)
×(4)
方法总结:
判断一个图形是不是中心对称图形,关键是寻找
方法归纳:由于矩形是中心对称图形, 所以依题意可知△BOF与△DOE关于 点O成中心对称,由此图中阴影部分的 三个三角形就可以转化到直角△ADC 中,易得阴影部分的面积.
当堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( B )
A
B
C
D
2.下列图形中既是轴对称图形又是中心对称图形的是 (C ) A . 锐角 B. 等边三角形 C . 线段 D . 平行四边形
5.如图,在菱形ABCD中,AC、BD为对角线,AC=6, BD=8,则阴影部分的面积为 12 .
6.请你用无刻度的直尺画一条直线把他们分成面积相等 的两部分,你怎样画?

人教版数学九年级上册23.1.2 旋转作图课件(共19张PPT)

人教版数学九年级上册23.1.2  旋转作图课件(共19张PPT)
分析:
①将正方形ABCD绕点C顺时针旋转90°后能与正方形CDFE重合; ②将正方形ABCD绕点D逆时针旋转90°后能与正方形CDFE重合; ③将正方形ABCD绕CD的中点旋转180°后能与正方形CDFE重合,
4.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以 格点(网格线的交点)为端点的线段AB.将线段AB向右平移2个单位长度, 再向下平移1个单位长度,得到线段A1B1;
温馨提示
为了避免作图混乱,应先对一个关键点连、转、截,找到其对应 点后再进行下一个关键点的旋转.
问题2:旋转三要素对游戏有什么影响? 下面有两种情况:
第一组:
B′ A′
A
D
C
B
O C′ D′
A
D
C
B
O
B′
C′
D′
A′
_旋_转__中__心___不变,旋__转__角__改变,产生不同的旋转效果.
第二组:
A2 A1
A3 B1
B2
课堂小结
旋转图形步骤
旋 转 作 图
旋转中心的确定
1.连:连接图形中每一个关键点与旋转中心; 2.转:把连线绕旋转中心按旋转方向旋转相 同的角度(作旋转角); 3.截:把角的另一边上截取与关键点到旋转 中心的距离相等的线段,得到各点的对应点; 4.连:连接所得到的各对应点; 5.写:写出结论,说明作出的图形.
A1 B1
(1)将线段AB绕点B1逆时针旋转90°得到线段A2B2,画出旋转后的线段
A2B2,并说明线段A1B1通过怎样的变化可以得到线段A2B2.
解:如图,线段A2B2即为所
求.线段A1B1绕点B1逆时针旋转
A1
90°,再向下平移2个单位长度,

人教版九年级数学上《第23章旋转》课件

人教版九年级数学上《第23章旋转》课件
正方形.
∴∠B=∠G=90°
由题意知AG=AB,又 AH=AH.
∴Rt△AGH≌Rt△ABH(HL)
∴HG=HB.
证法2:连结BG, ∵四边形ABCD,AEFG都
是正方形.
∴∠ABC=∠AGF=90°
由题意知AG=AB, ∴∠AGB=∠ABG, ∴∠HGB=∠HBG ∴HG=HB.
6。下列图形均可以由“基本图案”通过变换得到。 (1)通过平移变换但不能通过旋转变换得到的图案 是____①_⑤; (2)可以通过旋转变换但不能通过平移变换得到的 图案是____ ②⑥ (3)既可以由平移变换,也可以由旋转变换得到的 图案是_____ ③④
(3)将关键点沿指定的方向旋转指 定的角度; (4)连结各点,得到原图形旋转 后的图形.
例3.把△AOB绕点O逆时针方向旋 转90°,画出旋转后的图形.
错解:旋转时,
把∠AOB′看作
90°进行了旋 转.
正解:
按逆时针方向把 OA旋转到OA′,使 ∠AOA′=90°, 把OB旋转到OB′, 使∠BOB′=90°, 如图.
∵∠EDF=45°, ∴∠FDM=45°. ∴△DEF与△DMF关于DF 成轴对称, ∴EF=FM. △BEF的周长=BE+EF+BF
=BE+(FC+CM)+BF=BE+FC+AE+BF
=(BE+AE)+(FC+BF)=BA+BC=2,
所以△BEF的周长为2.
例11.如图,水渠旁有一大块L形耕 地,要画一条直线为分界线,把耕 地平均分成两块,分别承包给两个
人,BC边是灌溉用的水渠的一岸.每
块土地都要有水渠,怎么平分土地 才能满足每个人的需要?

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
= 3 ,OA ′ =5 ,旋转角等于44 ° .
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.

人教版初中数学23.1 图形的旋转 (第1课时) 课件

人教版初中数学23.1 图形的旋转 (第1课时) 课件

∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCE中, ∠ACD=∠BCE
CD=CE ∴△ACD≌△BCE(SAS).
连接中考
23.1 图形的旋转/
(2)当AD=BF时,求∠BEF的度数.
解:(2)∵∠ACB=90°,AC=BC,
如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点
(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针
方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
解:(1)由题意可知:CD=CE,∠DCE=90°,
人教版 数学 九年级 上册
23.1 图形的旋转/
23.1 图形的旋转 (第1课时)
导入新知
23.1 图形的旋转/
新 疆 的 风 车 田
导入新知
23.1 图形的旋转/
荷 兰 的 大 风 车
导入新知
23.1 图形的旋转/
游 乐 场 的 摩 天 轮
导入新知
23.1 图形的旋转/
卫星 拍摄 到的 台风 “桑 美” 的中 心旋 涡
旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中 “旋转中心,旋转方向,旋转角度”称之为旋转 的三要素;②旋转变换同样属于全等变换.
探究新知
23.1 图形的旋转/
素养考点 2 旋转角度的计算
例2 如图,点A、B、C、D都在方格纸的格点上,若 △AOB绕点O按逆时针方向旋转到△COD的位置,则 旋转的角度为( C )

人教版九年级数学课件-旋转作图

人教版九年级数学课件-旋转作图

ao
o
(2)兩個旋轉中,旋轉角不變,旋__轉__中__心____改變了,產生了
_不__同____的旋轉效果.
2.我們可以借助旋轉可以設計出許多美麗的圖案.
當堂練習
1.如圖,四邊形ABCD繞O點旋轉後,頂點A的對應點為E,試 確定B、C、D對應的點的位置,以及旋轉後的四邊形.
解:(1)連接OA、OB、OC、OD、OE; (2)分別以OB、OC、OD為一邊作∠BOF, ∠COG, ∠DOH,使∠BOF= ∠COG= ∠DOH= ∠AOE; (3)分別在射線OF,OG,OH上,截取OF=OB, OG=OC,OH=OD; (4)連接EF,FG,GH,HE,

還可以用 什麼方法把甲 圖案變成乙圖 案?
可以先將甲圖案繞圖上的
A點旋轉,使得圖案被
B 乙
A
“扶直”,然後,再沿AB
方向將所得圖案平移到B
甲 點位置,即可得到乙圖案
B
A
二、旋轉設計作圖
合作探究
1.選擇不同的___旋__轉__中__心_、不同的_旋__轉__角_旋轉同一個圖案,會出 現不同的效果. (1)兩個旋轉中,旋轉中心不變, 旋__轉__角__ 改變了,產生了 __不__同___的旋轉效果.
∴∠ABE′=∠ADE= 90 ° ,
BE′= DE ,
E′
B
C
因此在CB的延長線上截取點E′,使BE. ′=DE
則△ABE′為旋轉後的圖形.
想一想:
A
D
還有其他方法確定點E的
對應點E′嗎?
E
答:延長CB,以點A為圓心,AE 的
長為半徑畫弧,交CB的延長線於E', B
C
連接AE',則△ABE'為旋轉後的圖形.

人教版数学九年级上册第23章旋转数学活动课件(17张PPT)

人教版数学九年级上册第23章旋转数学活动课件(17张PPT)

y
6
5 P(0,5)
4 P4(0,5)
3
P3(-5,0)
2 1Leabharlann OP1(5,0)-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 x
-1
-2
-3
-4
-5
-6 P2(0,-5)
把点P(x,y)绕原点分别顺时针旋转90°,180°, 270°, 360°后的对应点的坐标入下表。
y
旋转 的角

对应 点的 坐标
点P在∠α内(不在l1、l2上).小明用下
面的方法作点P的对称点:先以l1为对称
轴作点P关于l1的对称轴点P1,再以l2为
对称轴作P1关于l2的对称点P2,然后再以
l1为对称轴作P2关于l1的对称点P3,以l2
o
为对称轴作P3关于l2的对称点P4,…,如
此继续,得到一系列点P1,P2,…,Pn,
若Pn与P重合,则n的最小值是多少?能
-6
坐标互为相反数 关于原点中心对称
如果点A的坐标是(x,y),点 A与点C也有同样关系吗?你能用 本章知识解释吗?
对于任意点A(x,y),先作A关于 y轴的对称点B,再作B点关于x轴的 对称点C,则A,C两点的坐标关系 是 __坐__标__互__为__相__反__数_____________, 位置关系是___关__于__原__点__对__称________.

90°
对应
点的 坐标
P1(-y,x)
180° 270° P2(-x,-y) P3(y,-x)
360° P4(x,y)
P1(-y,x)
P(x,y) P4(x,y)
O
P2(-x,-y)
P3(y,-x)

人教版数学九年级上册旋转作图完美课件

人教版数学九年级上册旋转作图完美课件

演讲完毕,谢谢观看!
7学习这篇 课文, 应该重 点引导 学生运 用探究 式的学 习方式 ,注意 激发学 生了解 植物知 识、探 究大自 然奥秘 的兴趣 ,把向 书本学 习和向 大自然 学习结 合起来 ,引导 学生养 成留心 身边的 事物、 认真观 察的好 习惯。
∵ △A′B′C′是由△ABC 逆时针旋转60°而来
B’ ∴ OA=OA′,OB=OB′,OC=OC′
C' ∴ ∠AOA′ =∠BOB′=∠COC′=60°
∴ △ABC≌△A′B′C′
人教版数学九年级上册23.1旋转作图 课件
练习
如图,正方形ABCD,E是CD边上一点,以A为中心, 把△ADE顺时针旋转90°,画出旋转后的图形
练习
如图,将△ACD,△AEB都是等腰三角形, ∠CAD=∠EAB=90°,在图中做出△ACE以点A为旋转 中心、逆时针方向旋转90°后的三角形。
EA DB NhomakorabeaC
人教版数学九年级上册23.1旋转作图 课件
人教版数学九年级上册23.1旋转作图 课件
练习
如图,将△OAB绕点O逆时针旋转至△OA′B′。使点B恰 好落在边A′B′上,已知AB=4cm,BB′=1cm,则A′B 的长为
旋转中心
O
旋转方向 旋转角
旋转角度
A
对应点 B 需要上面三个信息来刻画旋转
人教版数学九年级上册23.1旋转作图 课件
将点A绕点O逆时针旋转60°
旋转中心 点O 旋转方向 逆时针 旋转角度 60°
A
先定角度,再定长度
O 60°
A'
人教版数学九年级上册23.1旋转作图 课件
人教版数学九年级上册23.1旋转作图 课件

人教版九年级上册数学 23.1图形的旋转 (共90张PPT)

人教版九年级上册数学 23.1图形的旋转 (共90张PPT)

活动二
B´ A C B O


找一找:找出旋转的旋转角,这些角有什么关系? ∠AOA ′ ∠COC′ =′ ∠BOB= 对应点与旋转中心所连线段的夹角等于旋转角。
活动二

A C A´
B
旋转的性质:
转不改变图形的大小和形状)
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等于旋转角.
B
O

看一看:在旋转过程中△ABC的形状大小是否 发生改变?旋转前后的两个三角形有什么关系?
旋转前后的图形全等。 (旋转不改变图形的大小和形状。)
活动二 A
C


B
O

量一量:图中的OC和哪条线段相等?还有没有 类似这样对应相等的线段呢? OC=OC′ OA=OA ′ OB=OB ′
对应点到旋转中心的距离相等。
A D
E′
B
∴点 A 的对应点是它本身. 又∵AD = AB,∠DAB = 90°, E ∴旋转后点 D 与点 B 重合. ∴ △ABE′≌△ADE, ∴点 E 的对应点 E′在 CB 延 C 长线上,且 BE′= DE. 使 BE′= DE,连接 AE′
还有别的方法能 将△ADE旋转为 △ABE′吗?
从生活中来
23.1 图 形 的 旋 转(1)
活动1:自主学习
自学提纲:
自学课本59页练习前的内容,解决问题:
1.什么叫做图形的旋转? 2. 图形旋转的条件是什么? 3. 说一说你知道的我们生产、生活中旋转的 例子.
旋转的概念:
把一个平面图形绕着平面内某一点O 转动一个角度,叫做图形的旋转.
活动三
例:如图,E是正方形ABCD中CD边上 任意一点,以点A为中心,把△ADE顺时针 旋转90°,画出旋转后的图形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题
如图:ABC是等边三角形,D是BC 上一点, ABD经过 旋转后到达ACE的位置。
(1)旋转中心是哪一点? (2)旋转了多少度?
(3)如果M是AB的中点,那么经过上述旋
转后,点M转到了什么位置? 解:(1)旋转中心是A; (2)旋转了60度; B D (3)点M转到了AC的中点位置上.
. M
–旋转的决定因素:
旋转中心和旋转角度(旋转方向)。
练习1
下列现象中属于旋转的有( )个 ①地下水位逐年下降;②传送带的移 动;③方向盘的转动;④水龙头开关
的转动;⑤钟摆的运动;⑥荡秋千运
动.ABiblioteka 2B.3C.4D.5
练习2.
香港特别行政区区旗中央的紫 荆花图案由5个相同的花瓣组成, 它是由其中一瓣经过几次旋转得 到的?

E C
练习4. 如图:P是等边ABC内的一点,把 ABP按不同的方向通过旋转得到BQC和 ACR, (1)指出旋转中心、旋转方向和旋转角度? (2) ACR是否可以直接通过把BQC旋转 得到? A R P B Q C
练习5.
如图,如果正方形CDEF 旋转后能与正方形ABCD重合,那 么图形所在的平面上可以作为旋转 中心的点共有______个.
图形的旋转
在平面内,将一个图形绕一个定点旋转一 定的角度,这样的图形运动叫做图形的旋转. 这个定点叫旋转中心.旋转的角度称为旋转角. • 旋转的决定因素: 图形的旋转 不改变图形的形状、 旋转中心和旋转角度(旋转方向)。
大小,只改变图形的位置 . 说说这些旋转现象有什么共同特征?
动手做一做
将等边△ABC绕着点C按某个方向 旋转900后得到△A/B/C A B/ A/ B
A D E
B
C
F
练习 6.已知,如图正方形EFOG 绕与之边长相等的正方形ABCD的中心O 旋转任意角度,求图中阴影部分的面 G 积. D A
O E B C F
C
将等边△ABC绕着点o按某个方向旋转900后得 到△A/B/C
B/
A
C/
A/
B
.0
C
旋转的基本特征
◆旋转前、后的图形大小和形
状不改变。
(旋转前、后的图形全等)
旋转的基本性质
◆图形上每一个点都绕着旋转中心 沿着相同的方向转过了相同的角度.
◆每一对对应点与旋转中心的连线 所成的夹角为旋转角. ◆每一对对应点到旋转中心的距 离相等.
相关文档
最新文档