平面向量线性运算的坐标表示PPT演示文稿

合集下载

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

设正方形的边长为
1


→ AM
= 1,12

→ BN

-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,

平面向量的坐标表示ppt课件

平面向量的坐标表示ppt课件
成 xi 与 y j 。由向量加法的平行四边形法则可
知,
OP OM ON
即:
OP xi y j
事实上, 平面直角坐标系中任一向量都可以唯一 地表示成 a xi y j 的形式。
7
我们把 a xi y j 叫做向量 a 的坐标形式, 把 xi 叫做向量 a 在x轴上的分向量,把 y j叫做 向量 a 在y轴上的分向量。把有序数对(x,y)叫 做向量 a 在直角坐标系中的坐标,记
求a + b , a – b .
(2)已知a =(x1 , y1)和实数 , 求 a的坐标 .
16
平面向量的坐标运算
借助向量的坐标表示,可以把向量的加法、 减法和数乘运算转化为坐标之间的代数运算 。
设 a (x1, y1),b (x2, y2) ,则
那么
a b (x1 x2, y1 y2) a b (x1 x2, y1 y2 )
(1) a // b ;
(2) a 与 b 方向相同?
解:(1)a // b x x 41 0 x 2;
(2)当x=2时,a 与 b 方向相同。
23
问题解决:
写出以M (x1, y1)为起点, N(x2, y2 ) 为终点的向量 MN的坐标.
MN ON OM
求出 MN 的模。
平方向和竖直方向取两个单位向量 e1、e2,导
弹的飞行速度用向量 a 表示,若以点O为起点,
作向量
OP, 过a 点P(x,y)分别向水平方向、
竖直方向作垂线,垂足分别为M和N。
(1)分别用单位向量e1、e2表示向量 OM ,ON (2)用向量 OM ,ON 表示向量 OP ;

【】《平面向量的坐标表示》-完整版PPT课件

【】《平面向量的坐标表示》-完整版PPT课件
1、平面向量的坐标表示与平面向量分解定理的关系。 2、平面向量的坐标是如何定义的? 3、平面向量的运算有何特点?
类似地,由平面向量的分解定理,对于平面上的
任意向量 →a ,均可以分解为不共线的两个向量 λ1→a 1 和 λ2→a2 使得→a =λ1→a 1 +λ2→a2
在平面上,如果选取互相垂直的向量作为 基底时,会为我们研究问题带来方便。
(-1,3)、(3,4),求顶个定点A、B、C的坐 标分别为(-2,1)、(-1,3)、(3,4),求顶 点D的坐标
平行四边形ABCD的对角线交于点O,且知道 AD=(3,7), AB=(-2,1),求OB坐标。
∴ a=(2,3)
同理,b=-2i+3j=(-2,3) c=-2i-3j=(-2,-3)
c
d=2i-3j=(2,-3)
d
已知
→a=(x1
,y1
),

b=(x 2
,y2
)
你能得出 →a+→b ,→a -→b ,λ→a
的坐标吗?
已知,a=(x1,y1),b=(x2,y2),则 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j
B(x2,y2) x
= (x2,y2) - (x1,y1)
= (x2-x1,y2-y1)
你能在图中标出坐标为(x2 - x1,y2 - y1)的P
点吗?
y A(x1,y1)
O
B(x2,y2)
x
P
例1 已知a=(2,1),b=(-3,4),求a+b, a-b,3a+4b
例2 已知平行四边形ABCD的三个定点A、B、C的坐 标分别为(-2,1)、

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

T 拓思维· 培能力
拓展提伸 提高能力
易混易错系列 忽视平面向量基本定理的使用条件致误 【典例】 → → → → → 已知OA=a,OB=b,OC=c,OD=d,OE=e,
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
Y 研考点· 知规律
探究悟道 点拨技法
题型一
平面向量基本定理的应用
【例 1】 如图所示,在平行四边形 ABCD 中,M,N 分别为 → → → → DC,BC 的中点,已知AM=c,AN=d,试用 c,d 表示AB,AD.
基 础 自 评 → → → 1.若向量BA=(2,3),CA=(4,7),则BC=( A.(-2,-4) C.(6,10) B.(2,4) D.(-6,-10) )
解析
→ → → BC=BA+AC=(2,3)+(-4,-7)=(-2,-4).
答案 A
2.若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=( A.3a+b C.-a+3b B.3a-b D.a+3b
(3)设向量 d 坐标为(x, y), 则 d-c=(x-4, y-1), a+b=(2,4).
4x-4-2y-1=0, 由题意,知 2 2 x-4 +y-1 =5, x=3, ∴ y=-1, x=5, 或 y=3.
∴向量 d 的坐标为(3,-1)或(5,3).
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3

平面向量的概念及线性运算(课堂PPT)

平面向量的概念及线性运算(课堂PPT)

3
动脑思考 探索新知
在数学与物理学中,有两种量.只有大小,没有方向的量 做数量(标量) ,例如质量、时间、温度、面积、密度等. 既有大小,又有方向的量叫做向量(矢量), 如力、速度、位移等.
向量的大小叫做向量的模.向量a, A B 的模依次记作 a , A B .
模为零的向量叫做零向量.记作0, 零向量的方向是不确定的.
O A O B O A ( O B ) = O A B O B O O A B A .

O A O BB A . (7.2)
观察图可以得到:起点相同的
a-b
A
两个向量a、 b,其差a − b仍然是一
B
个向量,其起点是减向量b的终点,
b
a
终点是被减向量a的终点.
O
21
巩固知识 典型例题
生活中的一些问题.
作业
32
平行四边形法则不适用于共线向量,可以验证,向量的加法 具有以下的性质:
(1) a+0 = 0+a=a; a+(− a)= 0; (2) a+b = b+a; (3) (a+b)+ c = a +(b+c).
16
巩固知识 典型例题
例3 一艘船以12 km/h的速度航行,方向垂直于河岸,已知水流
速度为5 km/h,求该船的实际航行速度.
模为1的向量叫做单位向量.
B a A
4
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处 朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向 线段表示两架飞机的位移.
解 位移是向量.虽然这两个向量的模相等,但是它们的方向不
同,所以两架飞机的位移不相同.两架飞机位移的有向线段表示分别

平面向量的线性运算课件

平面向量的线性运算课件

A
2b
a
b
b
a
O
[类似题]已知非零向量e1和e2不共线,如果 AB e1 e2 ,
BC 2e1 8e2 ,CD 3 e1 e2 , 证明:ABD三点共线.
2.[逆向使用]已知非零向量e1和e2不共线,欲使ke1 e2和
e1 ke2共线,确定实数k的值.
3.[课本例题 ]如图,平行四边形 ABCD 的两条对角线相交于点 M,且 AB a, AD b,用a, b表示MA, MB, MC , MD.
完毕课本84页练习
平面对量旳线性运算
——向量旳减法运算
预备知识:相反向量
类比实数旳相反数旳概率,定义相反向量:
与a长度相等,方向相反旳向量, 叫做a旳相反向
量,记作-a ; -a与a互为相反向量
要求:零向量旳相反向量仍是零向量
所以: 1、-(-a)=a;2、a+(-a)=(-a)+a=0;
3、
a=-b,b=-a,a+b=0
1.已知a,
b是两个非零向量,下列说法正确的有
概念辨析
_____ .
(1) 2a的方向与5a的方向相反,且 2a的模是5a的模的 2 ; 5
(2)a b与(b a)是一对相反向量;
(3)若a, b不共线,则 a( 0)与b不共线;
2.下列说法正确的个数是 _______
(1)若 a 0,则 0;(2)若 0,则 a 0;
探究:
问题:已知OA和OB不共线,AC t AB(t R), 试用OA和OB表示OC .
特例:对于OC (1 t)OA tOB,当t 1 时,你知道其几何意义 吗? 2
中点公式向量表示法: C为AB中点,则OC OA OB 2

向量线性运算的坐标表示PPT课件

向量线性运算的坐标表示PPT课件
x1y2 x2 y1 0 由此得到,对非零向量a、 b,设 a (x1, y1),b (x2, y2 ),
当 0 时,有
a ∥ b x1y2 x2 y1 0. (7.9)
交叉相乘差为零
巩固知识 典型例题
例4 设 a (1,3),b (2,,6)判断向量a、 b是否共线.
创设情境 兴趣导入
前面我们学习了公式(7.4),知道对于非零向量a、b,当
0 时,有
a ∥b a b
如何用向量的坐标来判断两个向量是否共线呢?
动脑思考 探索新知
设 a (x1, y1),b (x2, y2 ), 由 a b ,有 x1 x2 , y1 y2 , 于是 x1 y2 x2 y1 ,即
当 0时,有
a ∥ b x1y2 x2 y1 0.
运用知பைடு நூலகம் 强化练习
已知向量a, b的坐标,求a+b、 a-b、−2 a+3 b的坐标. (1) a=(−2,3), b=(1,1); (2) a=(1,0), b=(−4,−3); (3) a=(−1,2), b=(3,0).
(1)a+b=(-1,4)、 a-b=(-3,2)、−2 a+3 b=(7,-3) (2)a+b=(-3,-3)、 a-b=(5,3)、−2 a+3 b=(-14,-9) (3)a+b=(2,2)、 a-b=(-4,2)、−2 a+3 b=(11,-4)
巩固知识 典型例题
例3 设a=(1, −2), b=(−2,3),求下列向量的坐标:
(1) a+b , (2) -3 a,
(3) 3 a-2 b .
解 (1) a+b=(1, −2)+(−2,3)=(−1,1)
(2) −3 a=−3 (1, −2)=(−3,6)

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

( B)
A.-6
B.6
C.9
D.12
2.[必修4·P101·A组T7改编]已知点A(0,1),B(3,2),向量
→ AC
=(-4,-3),则向
量B→C=( A )
A.(-7,-4)
B.(7,4)
C.(-1,4)
D.(1,4)
3.[必修4·P96·例2改编]若向量a=(2,1),b=(-1,2),c= 0,52 ,则c可用向量
1.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),( 2 ,0),(0,-2),O
为坐标原点,动点P满足|C→P|=1,则|O→A+O→B+O→P|的最小值是( A )
A. 3-1
B. 11-1
C. 3+1
D. 11+1
2.已知M(3,-2),N(-5,-1),且M→P=12M→N,则P点的坐标为( B )
A.(-8,1)
B.-1,-32
C.1,32
D.(8,-1)
[解析]
设P(x,y),则
→ MP
=(x-3,y+2),而
1 2
→ MN

1 2
(-8,1)=
-4,12
,所以
x-3=-4, y+2=12,
x=-1, 解得y=-32,
所以P-1,-32.
3.已知正△ABC的边长为2
3
,平面ABC内的动点P,M满足|
知识点二 平面向量的坐标表示 在直角坐标系内,分别取与__x_轴__、__y_轴__正__方__向__相__同____的两个单位向量i,j作为基 底,对任一向量a,有唯一一对实数x,y,使得:a=xi+yj,__(_x_,__y_) _叫做向量a的 直角坐标,记作a=(x,y),显然i=__(1_,_0_)___,j=__(_0_,1_)_____,0=__(_0_,0_)___.

平面向量线性运算的坐标表示_课件

平面向量线性运算的坐标表示_课件

(2)试确定实数 k,使 ka+b 和 a+kb 共线. 解:∵ka+b 与 a+kb 共线, ∴存在实数λ,使 ka+b=λ(a+kb), 即 ka+b=λa+λkb. ∴(k-λ)a=(λk-1)b. ∵a,b 是不共线的两个非零向量, ∴k-λ=λk-1=0, ∴k2-1=0.∴k=±1.
[类题通法]
(2)由题意
uuur DE

uuur DB

uuur BE
=12
uuur AB
+23
uuur BC
=12
uuur AB
+23
(
uuur BA+
uuur AC
)=-16 uAuBur +23
uuur AC

[所答以案λ]1=(1-)D16,λ(22=)1223,即 λ1+λ2=12.
注意三角形法 则的应用!
平面向量的概念及其线性运算
1.向量的有关概念
名称
定义
向量 零向量
既有 大小 又有 方向的量叫做向量,向量的大小叫 做向量的 长度(或称 模 )
长度为零的向量叫做零向量,其方向是 任意的,零 向量记作_0__
单位向量 长度等于 1 个单位的向量
表示两个向量的有向线段所在的直线 平行 或_重__合_, 平行向量 则这两个向量叫做平行向量,平行向量又叫 共线向
λ(μ a)=
(λμ) a;
(λ+μ)a=
λa+μa ;
λ(a+b)=
_λ_a_+__λ_b____
3.共线向量定理
向量 a(a≠0)与 b 共线的充要条件是存在唯一一个实数
λ,使得 b=λa .
易误点
1.作两个向量的差时,要注意向量的方向是指向被减向量

高一数学平面向量的概念及线性运算PPT优秀课件

高一数学平面向量的概念及线性运算PPT优秀课件

a+b=λLeabharlann a-b),即(λ-1)a=(1+λ)b,
∴ λ-1=0 1+λ=0
,λ 无解,故假设不成立,即 a+b 与 a-b 不平行,故选 D.
错源二:向量有关概念理解不当
【例2】 如图,由一个正方体的12条棱构成的向量组成了一个集合M,则集合M的元 素个数为________.
错解:正方体共有12条棱,每条棱可以表示两个向量,一共有24个向量.答案是24. 错解分析:方向相同长度相等的向量是相等向量,故AA1―→=BB1―→=CC1―→ = DD1―→ , AB―→ = DC―→ = D1C1―→ = A1B1―→ , AD―→ = BC―→ = B1C1―→=A1D1―→.错解的原因是把相等的向量都当成不同的向量了. 正解:12条棱可以分为三组,共可组成6个不同的向量,答案是6. 答案:6
错解分析:错解一,忽视了 a≠0 这一条件.错解二,忽视了 0 与 0 的区别,AB―→+
BC―→+CA―→=0;错解三,忽视了零向量的特殊性,当 a=0 或 b=0 时,两个等号同时
成立.
正解:∵向量 a 与 b 不共线,
∴a,b,a+b 与 a-b 均不为零向量.
若 a+b 与 a-b 平行,则存在实数 λ,使
∴|AM―→|=12|AD―→|=12|BC―→|=2.故选 C.
【例2】 (2010年安徽师大附中二模)设O在△ABC的内部,且OA―→+OB―→+ 2OC―→=0,则△ABC的面积与△AOC的面积之比为( ) (A)3 (B)4 (C)5 (D)6
解析:由 OC―→=-12(OA―→+OB―→),设 D 为 AB 的中点, 则 OD―→=12(OA―→+OB―→), ∴OD―→=-OC―→,∴O 为 CD 的中点, ∴S△AOC=12S△ADC=14S△ABC,∴SS△△AAOBCC=4.故选 B.

平面向量的坐标表示和运算PPT文档共17页

平面向量的坐标表示和运算PPT文档共17页
(2)求 a 的单位向量a 0 解:因为 2a(6,4),
所以 2 a b 6 1 , 4 2 7 , 6
因为 a=32+( -2) 2
a0=1a=1( 3 , - 2) ( 31 3 , 21 3 )
a 1 3
1 3 1 3
小结
1. 把有序实数对x,y叫做位置向量OA的坐标,记为:
a b (x 1 ,y 1) (x2,y2)(x 1x2,y 1y2)
a (x1,y1)(x1,y1)
• 作业:

基训A组1,2,3
谢谢指导
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
平面向量的坐标表示和运算
y
M(x, y)
O
x上课班级: 授课:
2012.5.22
自由向量的坐标表示:
以 A(为x1,起y1)点, 为B终(x2点, y的2)向量 2 y 1 ) y
|A B | ( x 2 x 1 ) 2 ( y 2 y 1 ) 2
一个向量的坐标等于表示此向量的
A
o 有向线段的终点的坐标减去始点的
坐标.
B
x
例一:已知点P(1,-2),点Q(3,-1)试写 P Q 出向量的坐标, P Q 的大小
解: P Q =(x2 x1,y2 y1)
=31,-1-2=2,1
P Q (x2x1)2(y2y1)2 = 2212 5
练习
例二.如图, 平面上三点A, B, C的坐标分别为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设a=(x1,y1),b=(x2,y2),其中b是 共线向量如何用坐标来表 非零向量 ,呢? a= λb 这个结论如果用坐标表示,可写为 (x1,y1)= λ(x2,y2) 即 x1= λx2 y1= λy2
问题:
消去λ后得
x1y2-x2y1=0
也就是说,a//b(b≠0)的等价表示是
x1y2-x2y1=0
练习:下列向量组中,能作为表示它 们所在平面内所有向量的基底,正确 的有( )
(1)e1=( -1 , 2 ),e2=( 5 , 7 )
(2)e1=( 3 , 5 ),e2=( 6 , 10 ) (3)e1=( 2 , -3 ),e2=( 1/2 , -3/4 )
例5、已知 a=(4,2), b=(6,y), 且 a//b ,求 y 的值。
例6、已知A(-1,-1),B(1,3),C(2, 5),判断A、B、C三点的位置关系。
C B A
我们知道,在平面直角坐标系, 每一个点都可用一对有序实数(即它 的坐标)表示,对直角坐标平面内的 每一个向量,如何表示?
a=xi+yj
y yj
→ → a
j
O → i xi
图 1
我们把(x,y)叫做向量a 的 (直角)坐标,记作 a=(x,y), 其中x叫做a 在x轴上的坐标, x y叫做a在y轴上的坐标,(x ,y) 叫做向量的坐标表示。
a j O i x
点A的坐标(x,y)也就是向量OA
的坐标。因此,在平面直角坐标 系内,每一个平面向量都可以用 一对实数唯一表示。
例1 如图,用基底i,j分别表示向量a、b、c、 d ,并求出它们的坐标。
y b A i d A2 解:由图3可知a=AA1+AA2=2i+3j, ∴ a=(2,3)
a
1、平面向量的坐标表示与平面向量分 解定理的关系。 2、平面向量的坐标是如何定义的? 3、平面向量的运算有何特点?
类似地,由平面向量的分解定理,对于平面上的
任意向量
和 λ→ a
2 2

a1 a ,均可以分解为不共线的两个向量 λ1→

→ → a 使得 a =λ λ + 1 1 2 a2
在平面上,如果选取互相垂直的向量作为 基底时,会为我们研究问题带来方便。
A1 x
同理,b=-2i+3j=(-2,3)
c=-2i-3j=(-2,-3)
j O c
d=2i-3j=(2,-3)
已知

a=(x1 ,y1 ) , b=(x 2 ,y2 )
→ →

你能得出
a+b
,a b
→ →
→ , λ a
的坐标吗?
已知,a=(x1,y1),b=(x2,y2),则 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j 即 a+b=(x1+x2,y1+y2) 同理可得 a-b=(x1-x2,y1-y2)
这就是说,两个向量和与差的坐标分别等 于这两个向量相应坐标的和与差。
结论: 一个向量的坐标等于表示此向量 的有向线段的终点的坐标减去始点的 坐标。
y
A(x1,y1)
如图,已知A(x1,y1),B(x2,y2), 则 AB= OB - OA
B(x2,y2) x
O
= (x2,y2) - (x1,y1) = (x2-x1,y2-y1)
你能在图中标出坐标为 (x2 - x1 ,y2 - y1 ) 的P点吗?
y A(x1,y1) B(x2,y2) O x
P
已知a=(x,y)和实数λ,那么 λ a= λ(x, y) 即 λa=(λx, λy)
这就是说,实数与向量的积的坐
标等用这个实数乘以原来向量的 相应坐标。
例2 已知a=(2,1),b=(-3, 4),求a+b,a-b,3a+4b
例3 已知平行四边形ABCD的三个定点A、 B、C的坐标分别为(-2,1)、 (-1,3)、(3,4),求顶点D的坐标
例4 已知平行四边形ABCD的三个定点A、 B、C的坐标分别为(-2,1)、(-1, 3)、(3,4),求顶点D的坐标
平行四边形ABCD的对角线交于点O,且 知道AD=(3,7), AB=(-2,1),求OB 坐标。
→ →
i= (1,0) j= (0,1) 0= (0,0)
→ → 其中i,j为向量 i,j

y yj a x
j O i xi
图 1
→ → 其中xi为x i,yj为y j
如图,在直角坐标平面内,以原 点O为起点作OA=a,则点A的位 y y A(x,y) 置由a唯一确定。 设OA=xi+yj,则向量OA的坐标 (x,y)就是点A的坐标;反过来, x
相关文档
最新文档