机电传动控制_第一章
(完整版)机电传动控制(第5版)-1
4
8
6V
SB1 SB3 SA2
11
SA1 0
5
79
FR1
FR2
1U 1V1W
2U 2V2W
3U 3V3W
SB2 KM1
103
KM1
3MM~
3MM~
MM
13U~
202
6
10
PE
7.5KW
90W
250W
HL EL KM1 KA2 KA1 QF
1450r/min 3000r/min 1360r/min
3 10 X 6 X 5 X
KM1
11 14 17
31 32
KM5 KM4
103
18
26
19 FR2
HL1 HL2 EL KM1 KT1 KM2 KM3 KM4
3 8 X 12 12 4 X 11 4 X 11 5 X 12
310 X 13 4 X 4 X 5 X
3
445
KM5 KT2 KT3 YA1
5 X 12 1212 12 5 X 14 12 5
PE
4KW
1.5KW
1440r/min 1400r/min
FR2
3U 3V 3W
3MM~3
4U 4V 4W
MM4
31U~
0.75KW 1390r/min
90W 2760r/min
TC 1 FU3 2
3
110V 101 FU4
SB1 FR1 4
SB5
SQ4 SB6 SB7
KT3
KT2
SB4
7 12 20
27 30
SQ5 33
24V
102
201 FU5 6V 202
【机电传动控制】机电传动控制1-2
JZ
JM
J1 j2
1
JL jL2
v2 m M2
折算到电机轴上的总飞轮转矩:
GDZ 2
GM DM2
G1D12
/
j12
GL DL2
/
jL2
365
Gv2 nM2
Ek
=
1 2
m
2
机电传动控制
2.2.2 转动惯量和飞轮转矩的折算
当速比较大时,中间传动机构的转动惯量或飞轮转矩
折算后在整个系统中所占比重不大,实际工程中可通过增
+ n
2. 运动方程式
根据动力学定义,旋转运动系统的动力学方程表示为:
MM
T合
J
d
dt
对单轴拖动系统,受到电机输出转矩 TM及负载转矩TL的作用:
T T J d
M
L
dt
系统转动惯量
J mr2 1 mD2 1 GD2
4
4g
+TM
++TTLL
实际中一般用飞轮矩GD2代替转动惯量J,GD2=4gJ;角速度一般用转速 表示,即ω=2πn/60。可得到运动方程式的实用形式:
解:(1)
TL
TLL c M
TL
c j
470.4 34.1N m 0.92 3 5
机电传动控制
解:(2)飞轮惯量的计算
GDZ2
(GDM2
GD12 ) (GD22
GD32 )
1 j12
(GD42
GDL2 )
1 jL2
(294
29.4)
启动时
机电传动1第一章 绪论
前期基础课程
• 理论力学 • 电工学 • 电子技术
第一章 绪论
• 机电系统的组成 • 机电传动控制的目的和任务 • 机电传动控制的发展状况 • 课程的性质和任务 • 课程气控 制系统
机电传动 系统
(电动机)
机电传动控制
机械运 动部件
1.2 机电传动控制的目的和任务
机电传动发展 成组拖动:一台电机拖动一根天轴,由天轴通过传动装置(皮带轮和皮
带)拖动多个生产机械。 优缺点:生产效率低,劳动条件差,电机发生故障会造成成组生产机械
停车。
机电传动发展 单电动机拖动:用一台电机拖动一台生产机械。 优缺点:当一台生产机械运动部件较多时,机械传动机构非常复杂。
机电传动发展
多电动机拖动:一台生产机械的每一个运动部件分别由一台专门的电动机拖动。 如数控机床、加工中心。 优缺点:控制灵活。
控制系统的发展状况
① 简单的接触器-继电器控制(速度慢,精度差); ② 电机放大机控制(控制系统由断续控制发展到连续
控制); ③ 大功率可控整流元件晶闸管控制(可控硅);方便
成绩评定方式
• 总课时:46,其中授课40(4时/周×10周),实验6;
• 平时成绩:作业+考勤
• 实验成绩:三个试验(直流电机、交流电机 、
PLC)
• 试卷成绩(80% ,闭卷 )
1.4 课程的性质和任务
• 技术的高水平,产品的高质量 • 机、电、液、计算机综合控制技术的掌握 • 强电控制技术系统化
1.5 本课程的学习内容
一、机电传动的动力学基础 二、电动机:直流电机,交流电机,控制电机; 三、 控制电器及控制系统:继电器—接触器控制,PLC; 四、电力电子学 五、 直流、交流调速控制系统。
机电传动第01~03章机电传动控制概述(江苏大学)
根据运动方程式可知,运动系统有两张不同 的运动状态:
1. 稳态(TM=TL时)
Td
Jd0,即d0
dt
dt
为常数,传动系统以恒速运动
2. 动态(TM≠TL时)
TMTL时 , TdJd d t 0,即 d d t 0, 传 动 系 统 加 速 运 动 TMTL时 , TdJd d t 0,即 d d t 0, 传 动 系 统 减 速 运 动
TL
a点: TM -TL =0
当负载由TL突然增加到T‘L时,由 于机械惯性,速度n和电动机的输
出转矩不能突变,此时有TMT‘L<0。由拖动系统的运动方程式 可知:系统要减速,即n要下降。
当n下降到n ‘ 时,系统在新的平
衡点a ‘
稳定运行,
T
‘
-
M
T‘L=0
当负载波动消除( T‘L回到TL )时,同样由于机械惯性,速 度n和电动机的输出转矩不能突变,此时有T‘M- TL>0。由拖 动系统的运动方程式可知:系统要加速,即n要上升。当n上
闭环控制:经典控制理 论、现代控制理论、自 适应控制、模糊控制、 智能控制
计算机控制技术和现场 总线技术
第二章:机电传动的动力学基础
学习要点:
❖ 机电传动系统的运动方程式; ❖ 多轴传动系统中转矩折算的基本原则和
方法; ❖ 了解几种典型生产机械的负载特性; ❖ 了解机电传动系统稳定运行的条件以及
TL Cn
直线型机械特性
十三、 恒功率型机械特性
如在车床加工过程中, 粗加工时,切削量大, 负载阻力大,开低速; 精加工时,切削量小, 负载阻力小,开高速。 但在不同转速下,切 削功率基本不变。即 呈现恒功率型机械特 性。
机电传动控制课件-第1章 绪论
Td 动态转矩
Td
TM
TL
GD 2 375
dn dt
转矩平衡方程式: TM TL Td
TM TL Td
系统处于稳态时,电动机输出转矩的大小,仅由电 动机所拖动的负载转矩决定。
2.转矩方向的确定
因为电动机和生产机械以共同的转速旋转,所以,一般
以 n(或 )的转动方向为参考 来确定转矩的正负。
为正。此时,系统的运动方程式为:
为负,TL
2 dn TM TL J 60 dt
当重物下降时,TM 为正,TL 也为正。TM 、TL 、n
的方向如图所示。
2 dn TM TL J 60 dt
TL
TM
J
2 60
dn dt
3.多轴拖动系统的等效折算
TM
TL
GD 2 375
dn dt
负载转矩的折算
电动机的功率、机械 特性以及安装位置可以进 行有针对性的、个性化的 配置,以充分满足生产工 艺的实际需求。
2.电气控制系统的发展 (1)继电器—接触器控制系统
“硬逻辑”
难以实现控制 关系的“随机 应变”
在相对简 单的控制系统 中,仍占据主 导地位
(2)可编程序控制器(PLC)控制系统
微电子和计算机技 术 “软逻辑”
(1)TM的符号与性质
当 TM的实际作用方向与 n 的方向相同时(符号相同), 取与 n 相同的符号,TM 为驱动转矩;
当 TM的实际作用方向与 n 的方向相反时,取与 n 相
反的符号,TM 为制动转矩。
驱动转矩促进运动; 制动转矩阻碍运动。
(2) TL 的符号与性质
GD 2 dn
TM TL 375 dt
n
机电传动与控制
要求:处理速度快,可靠性高,抗干扰能力强。完善的系 自我诊断功能。 智能化,小型化,轻量化,标准化等。
29.07.2020
机电一体化系统或产品和人体功能要素
内脏
能源
五官
头脑
手足
检测
控制
驱动
骨胳 人体五大要素
结构
机电一体化五大功能
为系统提供能量和动力,使系统正常运行。常用 主要能源:电源,气压源和液压源等
29.07.2020
(3)。测试传感部分
对系统运行中所需要的本身和外界环境的各种参数 及状态进行检测,变成可识别的信号。传输到信息处理 单元。经过分析和处理后,产生相应的控制信息。
(4)。驱动机构执行机构
提供动力,驱动各种执行机构,来完成各种动作 和功能。 要求:高效率,快速响应特性。对外部适应性和可靠性。
2。增强功能
采用高新技术,机电一体化产品具备多种复合功能。这 是一个显著特征。
如:加工中心,一次装夹完成多道工序,
29.07.2020
3.提高生产效率,降低生产成本
减少操作人员,减少准备时间和辅助时间,提高产品 的合格率,缩短新产品的开发周期
如:数控机床生产率提高5~6倍 柔性制造系统生产周期缩短40%,成本降低50%
29.07.2020
软件程控和微电子电路的逻辑,有目的信息流向导引下, 相互协调,有机融合和集成。形成物质,能量和信息 的有序规则运动。在高功能,高质量,高可靠性,低 能耗的意义上,实现特定功能价值的系统工程技术。
A.机电一体化技术
它是微电子技术,计算机技术,信息技术与机械 技术相结合的,新兴的综合性的高新技术与微电子技 术的有机结合。
机电传动控制1-3
[ J ] J M J 2 / j2 J 3 / j3 m j (
2 2 j 1
n
vj
M
)
2
忽略中间传动机构的转动惯量 2 [ J ] J M J L / jL
2.2 转矩、转动惯量和飞轮转矩的折算
3. 飞轮转矩的折算 依据转动惯量与飞轮转矩的关系,得到折 算到电机轴上的总的飞轮转矩为:
串励:励磁绕组与电枢绕组串联
复励:一部分并联,一部分串联
3.3 他励直流电动机的机械特性
电压平衡方程:
U E I a Ra E K e n Ra U n Ia K e K e
I a T /( K t )
直流电动机机械特 性的一般表达式
Ra U n T n0 n 2 K e K e K t
第三章 直流电机的工作原理及特性 本 章 重 点: 掌握直流电机的工作原理; 掌握直流电机的机械特性;
掌握直流电机启动、调速、制动的
方法。
3.1 直流电机的基本结构和工作原理
直 流 电 机
交 流 电 机
3.1 直流电机的基本结构和工作原理
1. 基本结构
定子: 主磁极、换向极、 机座、轴承、电刷
2.4 机电传动系统稳定运行的条件
由机电传动系统的运动方程式:
TM TL GD 2 dn 375 dt
知,系统的运动状态取决于电动机与生产机械双 方.为了使系统运行合理.就要使电动机的机械持 性与生产机械的机械特性尽量相配合。特性配合好 的一个起码要求是系统要能稳定运行。
动画
2.4 机电传动系统稳定运行的条件
2.4 机电传动系统稳定运行的条件
讨论: a点:当TL突然增大到TL’时, 因速度不能突变,电机转 矩仍 为 TM ,此时 ,TM<TL’ n减小,TM增大,直到与TL’ 相等,运行于a’点。 当干扰撤销后,TM’>TL, n 增大,TM’减小,直到与TL 相等,即在a点稳定运行。
《机电传动控制》笔记
《机电传动控制》笔记第一章:绪论1.1 简介《机电传动控制》将机械工程与电气工程相结合,通过研究电机、驱动器以及控制系统来实现对机械设备的有效操作。
本课程旨在培养学生理解并掌握机电一体化系统的设计原理和方法,为将来从事相关领域的科研或工程实践打下坚实的基础。
1.2 机电传动控制系统的基本概念•定义:机电传动控制系统是指利用电气、电子及计算机技术来控制机械设备运动的系统。
•组成要素:o执行机构(如电动机):负责产生驱动力。
o传感器:用于监测系统的状态信息。
o控制器:根据设定的目标值与实际反馈进行比较,并据此调整执行机构的动作。
o被控对象:即需要被控制的机械设备。
•工作流程:输入信号 → 控制器处理 → 输出信号 → 执行机构响应 → 反馈至控制器形成闭环回路。
1.3 发展历程与趋势自20世纪初以来,随着电力技术的发展,人们开始尝试用电能替代传统的蒸汽动力来进行工业生产。
到了20世纪中后期,随着微处理器技术和自动控制理论的进步,机电传动控制逐渐从简单的手动调节向自动化方向转变。
近年来,智能化、网络化成为该领域的主要发展方向之一。
未来,预计还将进一步融入物联网(IoT)、大数据分析等先进技术,提高整个系统的效率与可靠性。
第二章:电力拖动基础2.1 电机类型及其工作原理•直流电机o结构:由定子(包括主磁极、换向极)、转子(电枢铁心+绕组)、换向器三部分组成。
o工作原理:当电流通过电枢绕组时,在磁场作用下会产生电磁力矩使转子旋转;改变电压大小可以调节转速。
•交流电机o异步电机(感应电机)▪特点:简单耐用、成本低。
▪分类:单相、三相。
▪工作原理:依靠定子产生的旋转磁场切割转子导条,从而在转子内部形成闭合电路产生感应电流,进而产生转矩。
o同步电机▪特点:适用于高精度场合。
▪工作方式:转子转速严格等于电网频率与极对数之比,可通过改变励磁电流来调整输出功率因数。
2.2 电动机的选择原则选择合适的电动机对于确保整个系统的性能至关重要。
机电传动控制(1)
了解机电传动系统稳定运行的条件以及学 会分析实际系统的稳定性;
一、单轴拖动系统运动方程式
电动机的输出 转矩(N.m)
TM TL
d 2 dn J J dt 60 dt
转矩平衡 方程式
转动惯量 (kg.m2)
角速度 (rad/s)
速度 (r/min)
T M TL Td
负载转矩 (N.m) 动态转矩 (N.m)
M 电动机轴与中间传动轴之间的速度比; 1 jL M 电动机轴与生产机械运动轴之间的速度比; L M 、1、L 分别为电动机轴、中间传动轴、生产机械运动轴的旋转角速度 m运动部件的质量,运动部件速度 2 GD dn M Z (多轴拖动系统的运动方程式) TM TL 375 dt 2 (GDZ 折算到电动机轴上的总飞轮惯量)
L
n增大,TM 减小,直到TM=TL,又回到点a。 T 突然减小,n上升,干扰消除后,T // T ,n下降,回到点a
L M L
九 机电传动系统稳定运行的条件 • 电动机的输出转矩TM和负载转 矩TL大小相等,方向相反,相 互平衡。异步电动机的机械特 性曲线1与生产机械的负载特 性 曲线有交点a,2b。 GD dn TM TL 375 dt
2.3 试列出以下几种情况下系统的运动方程式,并说明系统的运 行状态是加速、减速还是匀速?(图中箭头方向表示转矩的实际 作用方向)
答:a匀速,b减速,c减速,d加速,e减速,f匀速
2.7 如图所示,电动机轴上的转动惯量JM=2.5kg.m2,转速nM= 900r/mim;中间传动轴的转动惯量J1=2kg.m2,转速n1= 300r/mim;生产机械轴的惯量JL=16kg.m2,转速nL=60r/mim。 试求折算到电动机轴上的等效转动惯量。
机电传动控制教案
机电传动控制教案第一章:机电传动控制概述1.1 机电传动控制的概念解释机电传动控制的定义强调机电传动控制在现代工业中的重要性1.2 机电传动系统的组成介绍机电传动系统的常见组成部分,如电动机、传动装置、负载等解释各个部分在系统中的作用和相互关系1.3 机电传动控制系统的分类介绍机电传动控制系统的不同类型,如开环控制、闭环控制等比较各种控制系统的特点和应用场景第二章:电动机及其控制2.1 电动机的分类和特性介绍不同类型的电动机,如交流异步电动机、直流电动机等分析各种电动机的启动、制动和调速特性2.2 电动机的控制方法介绍电动机的常见控制方法,如开关控制、变频调速等分析各种控制方法的工作原理和应用场景2.3 电动机的选择和安装讲解电动机的选择依据,如负载类型、功率需求等介绍电动机的安装要求和注意事项第三章:传动装置及其控制3.1 传动装置的分类和特性介绍常见的传动装置,如齿轮传动、带传动等分析各种传动装置的传动比、传动效率等特性3.2 传动装置的控制方法介绍传动装置的常见控制方法,如机械调速、电子调速等分析各种控制方法的工作原理和应用场景3.3 传动装置的选择和安装讲解传动装置的选择依据,如负载类型、传动比需求等介绍传动装置的安装要求和注意事项第四章:机电传动控制系统的应用4.1 机电传动控制系统在工业自动化中的应用介绍机电传动控制系统在工业自动化中的典型应用案例,如、生产线等分析机电传动控制系统在提高生产效率和产品质量方面的作用4.2 机电传动控制系统在交通运输领域的应用介绍机电传动控制系统在交通运输领域的典型应用案例,如电动汽车、轨道交通等分析机电传动控制系统在提高运输效率和减少能源消耗方面的作用4.3 机电传动控制系统在其他领域的应用介绍机电传动控制系统在其他领域的典型应用案例,如医疗设备、建筑自动化等分析机电传动控制系统在提高生活质量和工作效率方面的作用第五章:机电传动控制系统的维护与故障诊断5.1 机电传动控制系统的维护介绍机电传动控制系统的日常维护内容和注意事项强调定期维护对于系统稳定运行的重要性5.2 机电传动控制系统的故障诊断方法介绍常见的故障诊断方法,如观察法、参数测量法等分析各种故障诊断方法的优缺点和适用场景5.3 机电传动控制系统的故障处理和预防措施讲解故障处理的一般流程和方法介绍预防措施,如使用高质量的元件、避免过载等第六章:传感器与信号处理6.1 传感器的类型与作用介绍各种常用传感器,如温度传感器、压力传感器等分析传感器在机电传动控制系统中的作用和重要性6.2 传感器的选用与安装讲解传感器的选用依据,如测量范围、精度要求等介绍传感器的安装方法和注意事项6.3 信号处理与分析解释信号处理的基本概念和方法分析信号处理在机电传动控制系统中的应用,如滤波、放大等第七章:PLC控制系统7.1 PLC的基本原理与组成介绍PLC的概念、工作原理和组成结构强调PLC在机电传动控制系统中的应用优势7.2 PLC编程与控制讲解PLC编程的基本语言和方法,如梯形图、指令表等分析PLC控制在机电传动系统中的应用案例7.3 PLC系统的维护与故障诊断介绍PLC系统的日常维护内容和注意事项讲解故障诊断的方法和技巧第八章:变频器与电机调速8.1 变频器的基本原理与类型介绍变频器的工作原理和类型,如电压型、电流型等强调变频器在电机调速中的应用优势8.2 变频器控制与应用讲解变频器的控制原理和方法,如矢量控制、直接转矩控制等分析变频器在电机调速中的应用案例8.3 变频器的选用与安装介绍变频器的选用依据,如电机功率、调速范围等讲解变频器的安装方法和注意事项第九章:伺服控制系统9.1 伺服控制系统的基本原理与组成介绍伺服控制系统的工作原理和组成,如伺服电动机、伺服驱动器等强调伺服控制系统在精确控制中的应用优势9.2 伺服控制系统的选用与调试讲解伺服控制系统的选用依据,如控制精度、响应速度等介绍伺服控制系统的调试方法和注意事项9.3 伺服控制系统的应用案例分析伺服控制系统在典型应用场景中的应用案例,如数控机床、等第十章:机电传动控制系统的节能与环保10.1 节能技术的应用介绍节能技术在机电传动控制系统中的应用,如电机变频调速、高效传动装置等分析节能技术在降低能耗和提高经济效益方面的作用10.2 环保技术的应用介绍环保技术在机电传动控制系统中的应用,如废弃物回收、低噪音传动装置等强调环保技术在实现可持续发展和社会责任方面的意义10.3 节能与环保的法规和标准讲解与节能和环保相关的法规和标准,如节能产品认证、环保法规等强调企业和个人在遵循法规和标准方面的责任第十一章:机电传动控制系统的安全与保护11.1 安全防护措施的重要性强调在机电传动控制系统中实施安全防护措施的必要性讨论因缺乏安全防护导致的潜在风险和事故11.2 安全防护技术与设备介绍常见的安全防护技术,如紧急停止按钮、安全门等分析安全防护设备在保障人员和设备安全方面的作用11.3 安全标准与合规性讲解与机电传动控制系统安全相关的国家和行业标准强调遵守安全标准和合规性的重要性第十二章:案例分析与实践12.1 机电传动控制案例分析分析具体的机电传动控制案例,如自动化装配线、升降机等讨论案例中的关键技术、挑战和解决方案12.2 实践操作与技能培训强调实际操作在理解机电传动控制系统中的重要性介绍常见的实践操作活动和技能培训方法12.3 项目设计与实施讲解机电传动控制系统项目设计的基本步骤和方法讨论项目实施过程中的管理、协调和风险控制第十三章:发展趋势与创新13.1 机电传动控制技术的发展趋势探讨机电传动控制技术的发展方向,如智能化、网络化等分析新兴技术如物联网、大数据在机电传动控制系统中的应用潜力13.2 创新设计与研发强调创新在推动机电传动控制系统发展中的重要性介绍创新设计的方法和研发流程13.3 知识产权保护与技术转移讲解知识产权在技术创新中的作用和保护方法讨论技术转移和产业化的途径和挑战第十四章:经济效益与投资分析14.1 经济效益评估介绍经济效益评估的方法和指标分析机电传动控制系统投资的经济效益14.2 投资决策与风险分析讲解投资决策的基本原则和方法分析机电传动控制系统投资的风险因素和应对策略14.3 财务分析与投资回报介绍财务分析的方法,如现金流量分析、净现值分析等讨论投资回报的计算和评估方法第十五章:综合测试与评价15.1 测试方法与设备介绍机电传动控制系统综合测试的方法和设备强调测试在确保系统性能和可靠性中的重要性15.2 性能评价与优化讲解机电传动控制系统的性能评价指标和方法讨论系统性能优化的策略和技术15.3 持续改进与寿命周期管理强调持续改进在提高机电传动控制系统性能和寿命中的作用介绍寿命周期管理的方法和实践重点和难点解析本文主要介绍了机电传动控制的相关概念、系统组成、控制方法、应用领域、维护与故障诊断等方面的内容。
教案机电传动控制
教案机电传动控制第一章:机电传动控制概述1.1 机电传动控制的概念介绍机电传动控制的定义和特点解释机电传动控制在现代工业中的应用1.2 机电传动控制系统的组成讨论机电传动控制系统的常见组成部分说明各组成部分的功能和相互关系1.3 机电传动控制系统的分类列举机电传动控制系统的不同类型分析各类系统的应用场景和优缺点第二章:机电传动控制的基本原理2.1 机电传动控制的基本原理介绍机电传动控制的基本原理和核心技术解释机电传动控制信号的传递和处理过程2.2 机电传动控制系统的建模说明机电传动控制系统的建模方法探讨建模过程中所需考虑的因素和注意事项2.3 机电传动控制系统的稳定性分析分析机电传动控制系统的稳定性条件介绍稳定性分析的方法和工具第三章:机电传动控制系统的传感器与执行器3.1 传感器在机电传动控制系统中的应用讨论传感器的作用和分类解释传感器在机电传动控制系统中的重要性和选择原则3.2 常见传感器的原理与使用介绍几种常见的传感器类型及其原理说明传感器的使用方法和注意事项3.3 执行器在机电传动控制系统中的应用讨论执行器的作用和分类解释执行器在机电传动控制系统中的重要性和选择原则第四章:机电传动控制系统的常用控制算法4.1 概述常用控制算法介绍机电传动控制系统中常用的控制算法解释各种控制算法的特点和适用范围4.2 比例-积分-微分控制算法详细讲解比例-积分-微分控制算法的工作原理分析比例-积分-微分控制算法的优点和局限性4.3 模糊控制算法介绍模糊控制算法的基本概念和原理讨论模糊控制算法在机电传动控制系统中的应用和优势第五章:机电传动控制系统的调试与维护5.1 机电传动控制系统的调试说明机电传动控制系统调试的目的和重要性介绍调试过程中所需进行的步骤和方法5.2 机电传动控制系统的维护讨论机电传动控制系统维护的内容和方法强调维护对系统稳定运行的重要性第六章:机电传动控制系统的故障诊断与容错控制6.1 机电传动控制系统的故障诊断介绍机电传动控制系统故障诊断的定义和目的讨论故障诊断的方法和技术6.2 常见故障诊断算法讲解几种常见的故障诊断算法及其原理分析各种故障诊断算法的优缺点和适用场景6.3 容错控制技术在机电传动控制系统中的应用解释容错控制的概念和重要性介绍容错控制技术在机电传动控制系统中的应用和方法第七章:机电传动控制系统的节能与环保7.1 节能控制技术在机电传动控制系统中的应用讨论节能控制技术的重要性介绍节能控制技术在机电传动控制系统中的应用和方法7.2 环保控制技术在机电传动控制系统中的应用解释环保控制技术的概念和重要性讲述环保控制技术在机电传动控制系统中的应用和实例7.3 节能与环保在机电传动控制系统中的综合考虑强调节能与环保在机电传动控制系统中的重要性讨论在机电传动控制系统中实现节能与环保的综合考虑的方法和策略第八章:现代机电传动控制技术的发展趋势8.1 概述现代机电传动控制技术的发展趋势介绍现代机电传动控制技术的发展趋势分析现代机电传动控制技术发展的驱动因素8.2 智能控制技术在机电传动控制系统中的应用讲解智能控制技术的概念和原理讨论智能控制技术在机电传动控制系统中的应用和前景8.3 网络化控制技术在机电传动控制系统中的应用解释网络化控制的概念和原理讲述网络化控制技术在机电传动控制系统中的应用和前景第九章:案例分析与实践9.1 机电传动控制系统的实际案例分析分析具体的机电传动控制系统案例总结案例中的成功经验和存在的问题9.2 机电传动控制系统的实验与实践介绍机电传动控制系统的实验目的和内容讲述实验方法和步骤以及实验中所需注意事项9.3 综合练习与讨论提供综合练习题目供学生练习组织学生进行讨论,加深对机电传动控制的理解第十章:总结与展望10.1 总结回顾整个教案的主要内容和知识点强调机电传动控制的重要性和应用前景10.2 展望探讨机电传动控制技术的未来发展趋势激发学生对机电传动控制研究的兴趣和热情重点和难点解析一、机电传动控制的概念与特点:理解机电传动控制的基本定义及其在现代工业中的应用场景,区分其与其他控制系统的不同之处。
机电传动控制】第一章 绪论
• 3.程宪平主编.机电传动与控制(第二版).武汉: 华中科技大学出版社.2003年9月.
• 4.魏炳贵主编.电力拖动基础.北京:机械工业 出版社.2000年8月.
为了提高效率,由数台或十几台设备组成 的生产自动线,要求统一控制或管理。
诸如此类的要求,都要靠电动机及其控 制系统来实现。
1.2 机电传动控制的发展概况
机电传动及其控制系统总是随着社会生产 的发展而发展的。机电传动控制的发展可从机 电传动和控制系统两方面来讨论。 一、机电传动的发展
成组拖动——一台电动机拖动一根天轴(或 地轴),然后再由天轴(或地轴)通过皮带轮 和皮带分别拖动多台生产机械。
2)课程学习任务 掌握继电器-接触器控制系统的工作原理和
元件选择, 掌握PLC的编程方法与应用, 掌握闭环控制系统的工作原理与性能及其应
用场所. 了解电力拖动的一般知识, 了解最新电气控制技术在生产机械上的应用.
阅读书目:
• 1.齐占庆主编.机床电气控制技术(第三版).北 京:机械工业出版社.2004年6月.
机械制造自动化高级阶段是走向设计、 制造一体化,即利用计算机辅助设计(CAD) 与计算机辅助制造(CAM)形成产品设计和 制造过程的完整系统,对产品构思和设计直 到装配、试验和质量管理这一全过程实现自 动化。
柔性制造系统(FMS) —由数控机床、 工业机器人、自动搬运车等组成的统一由中 心计算机控制的机械加工自动线,它是实现 自动化车间和自动化工厂的重要组成部分。
三、机电传动控制的目的
从广义上讲,机电传动控制的目的就是 要使生产设备、生产线、车间乃至整个工厂 都实现自动化。
从狭义上讲,则指控制电动机驱动生产机 械,实现生产产品数量的增加(效率)、质量 的提高(精度)、生产成本的降低、工人劳动 条件的改善以及能量的合理利用等。
机电传动控制_第一章
柔性制造系统(FMS) —由数控机床、工业机器人、自动搬 运车等组成的统一由中心计算机控制的机械加工自动线,它是实现 自动化车间和自动化工厂的重要组成部分。
CIMS包括制造工厂的生产、经 营的全部活动,具有经营管理、工程 设计和加工制造等主要功能。
美国在1977年最早开始研究。
为了提高效率,由数台或十几台设备组成的生产自动线,要求 统一控制或管理。
诸如此类的要求,都要靠电动机及其控制系统来实现。
1.2 机电传动控制的发展
机电传动及其控制系统总是随着社会生产的发展而发展的。机 电传动控制的发展可从机电传动和控制系统两方面来讨论。
一、机电传动的发Biblioteka 成组拖动——一台电动机拖动一根天轴(或地轴),然后再
2.电机放大机控制(30年代):
3.大功率固体可控整流元件——晶闸管: 4.数字控制(CNC) :自动化程度、通用性和加工效率。
课程的性质 本课程是工业电气自动化、机-电一体化等专业的一门专业基 础课。它是将电机学、机电传动、控制电机等课程有机结合而成的 一门课。加强系统性、实用性、学以致用,理论联系实际。
机械制造自动化高级阶段是走向设计、制造一体化,即利用计 算机辅助设计(CAD)与计算机辅助制造(CAM)形成产品设计 和制造过程的完整系统,对产品构思和设计直到装配、试验和质量 管理这一全过程实现自动化。
为了实现制造过程的高效率、高柔性、高质量,研制计算机集 成制造系统(CIMS)是人们现在的任务。
Giddings&Lewis FMC
机电传动控制课件第1章
计算机控制:
微处理器取代模拟电路作为电动机控制 器,可使电路更简单、实现较复杂的控制 、无零点飘移、控制精度高、可提供人机 交互界面、能多机联网工作等
数字伺服控制:
伺服系统:
是使物体的位置、方位、状态等输出被控量能够跟 随输入目标值(或给定值)任意变化的自动控制系统。
当今世界伺服驱动的主流及发展方向是交流伺服系统,采 用嵌入式控制器的电动机数字交流伺服系统的出现,使机电 传动控制技术进入了信息化时代
第1章 概述
传动 ——运动的传递
(1)机械传动 (2〕流体传动
第1章 概述
1.1 基本概念:(什么是机电传动?)
生产机械组成: 工作机构、传动机构、 原动机、控制系统。
机电传动:原动机为电 动机时,由电动机通过 传动机构带动工作机构 进行工作。
机电传动系统
“机电传动”部分
包括电动机、电动机和运动部件相互联系的传 动机构及电气控制电路
课程的性质与任务
• 机电一体化技术的主要课程,是以驱动 系统为主导,以控制为主线,将元、器 件与控制系统有机结合的综合性课程。
• 通过本门课程的学习,希望同学们掌握 机电传动系统中主要运用到得元、器件 原理,了解机电传动系统的设计,尤其 是其控制电路设计的主要思路。
(1)成组拖动(初期):一台电动机拖动一根 天轴,由天轴通过皮带轮和皮带分别拖动各生产 机械,一旦电动机出了故障,成组生产机械停车。
(2)单电机拖动:一台电动机拖动一 台生产机械,但当一台生产机械的运动 部件较多时,机械传动机构仍十分复杂。
20世纪40-50年代:老式切削机床 现今:一些中小型通用机床,运动部件较少
“机电传动控制”部分
电梯
机电传动系统的任务
《机电传动控制》教学课件—第1章 绪论
把上述各种参量的关系用方程式表示出来,则有:
TM
TL
J
dω dt
(式1-1)
TM ——电动机的输出转矩(亦称驱动转矩,N·m);
TL ——生产机械的负载转矩(N·m);
J ——机电传动系统的转动惯量(kg·m2);
——机电传动系统的角速度(rad/s);
t ——时间(s)
TM
TL
J
dω dt
成组驱动属于电动机稀缺、昂贵时期的无奈之举,现今 已经被淘汰。
(2)单电机驱动
单电机驱动是指每一 台生产机械,都由一台电 动机单独驱动,较成组驱 动已有很大进步。
但是,当生产机械的 运动部件较多时,则需要设 置分动箱、离合器等机构, 总体结构仍嫌复杂,无法满 足生产工艺的特殊要求。
图1-3 单电机驱动(立式钻床)
程的方法
1.1 机电传动系统
1.1.1机电传动系统与机电传动控制 1. 机电传动系统的组成
机电传动系统一般由电力供应系统、电气控制系统、机 电传动机构及生产机械组成(图1-1)。
图1-1 机电传动系统的组成
2. 机电传动控制
电气控制系统和机电传动机构是机电传动系统的重要组 成部分,也是机电传动控制学科的主要研究内容。
因此,在生产工艺要求复杂多变的场合,可编程序控制 器可以大显身手,并已经成为机电传动控制系统的主流控制 器件。
图1-6 可编程序控制器控制系统
(3)数字控制系统
自1952年美国出现第一台数控铣床,1958年出现加工 中心之后,计算机数字控制(Computerized Numerical Control ,CNC)技术开始逐渐普及。
柔性制造系统FMS与计算机辅助设计(Computer Aided Design ,CAD)、计算机辅助制造(Computer Aided Manufacturing,CAM)相融合,又促使工业生产向计算机 集成制造系统(Computer/contemporary Integrated Manufacturing Systems,CIMS)迈进。
《机电传动控制》课件第1章
自20世纪70年代以来,单片机发展很快。由于单片机的 结构和指令系统都是针对工业控制的要求而设计的,其成本 低、集成度高,可灵活地组成各种智能控制装置,解决从简 单到复杂的各种任务,实现较佳的性能价格比,而且从单片 机芯片的设计制造开始,就考虑了工业控制环境的适应性, 因而它的抗干扰能力较强,特别适合于在机电一体化产品中 应用,在机电传动与控制中也有许多应用。
5. 信息处理与控制装置(控制功能) 机电传动控制系统的核心是信息处理与控制。机电传动 控制系统的各个部分必须以控制论为指导,由控制器(继电器、 可编程控制器、微处理器、单片机、计算机等)实现协调与匹 配,使整体处于最优工况,实现相应的功能。在现代机电一 体化产品中,机电传动系统中控制部分的成本已占总成本的 50%。特别是近年来随着微电子技术、计算机技术的迅速发 展, 越来越多的控制器使用具有微处理器、计算机的控制系 统,输入/
机械制造自动化的高级阶段是实现设计、制造一体化, 即利用计算机辅助设计(CAD)与计算机辅助制造(CAM)形成 产品设计和制造过程的完整系统,对产品构思和设计直至装 配、试验和质量管理这一全过程实现自动化。为了实现制造 过程的高效率、高柔性、高质量,研制计算机集成生产系统
(CIMS)
近些年来,许多工业部门和技术领域对高响应、高精度、 高功率-重量比、大功率和低成本控制系统提出的要求,促使 了液压、气动控制系统的迅速发展。液压、气动控制系统和 电气控制系统一样,由于各自的特点,在不同的行业得到了
所谓单电动机拖动,就是用一台电动机拖动一台生产机 械,它虽较成组拖动前进了一步,但当一台生产机械的运动 部件较多时,机械传动机构仍十分复杂。多电动机拖动即一 台生产机械的每一个运动部件分别由一台专门的电动机拖动。 例如,龙门刨床的刨台、左右垂直刀架与侧刀架、横梁及其 夹紧机构,均分别由一台电动机拖动。这种拖动方式不仅大 大简化了生产机械的传动机构,而且控制灵活,为生产机械 的自动化提供了有利的条件。所以,现代化机电传动基本上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
诸如此类的要求,都要靠电动机及其控制系统来实现。
ቤተ መጻሕፍቲ ባይዱ
1.2 机电传动控制的发展
机电传动及其控制系统总是随着社会生产的发展而发展的。机 电传动控制的发展可从机电传动和控制系统两方面来讨论。
一、机电传动的发展 成组拖动——一台电动机拖动一根天轴(或地轴),然后再
机械制造自动化高级阶段是走向设计、制造一体化,即利用计 算机辅助设计(CAD)与计算机辅助制造(CAM)形成产品设计 和制造过程的完整系统,对产品构思和设计直到装配、试验和质量 管理这一全过程实现自动化。
为了实现制造过程的高效率、高柔性、高质量,研制计算机集 成制造系统(CIMS)是人们现在的任务。
第一章 概 述
1.1 机电传动控制的目的与任务 一、机电系统的组成
驱动运动部件的原动机 (这里指的是各种电动机) 之总称
控制电动机的系统
机电系统完成生 产任务的基础
驱动生产机械的电 动机和控制电动机 的一整套电气系统
二、机电传动控制的任务 ➢ 将电能转换为机械能; ➢ 实现生产机械的启动、停止以及速度的调节; ➢ 完成各种生产工艺过程的要求; ➢ 保证生产过程的正常进行。
二.机电传动控制系统的发展 控制系统的发展伴随控制器件的发展而发展。随着功率器件、
放大器件的不断更新,机电传动控制系统的发展日新月异,它主要 经历了四个阶段:
1.继电器—接触器控制:出现在20世纪初,它仅借助于简单 的接触器.器与继电器,实现对控制对象的启动、停车以及有级调 速等控制,它的控制速度慢,控制精度差;
2.电机放大机控制(30年代):
3.大功率固体可控整流元件——晶闸管: 4.数字控制(CNC) :自动化程度、通用性和加工效率。
课程的性质 本课程是工业电气自动化、机-电一体化等专业的一门专业基 础课。它是将电机学、机电传动、控制电机等课程有机结合而成的 一门课。加强系统性、实用性、学以致用,理论联系实际。
重型镗床为保证加工精度和粗糙度,要求在极慢的稳速下进给 ,即要求系统有很宽的调速范围;
轧钢车间的可逆式轧机及其辅助机械,操作频繁,要求在不到 一秒的时间内完成从正转到反转的过程,即要求系统能迅速启动、 制动和反向;
对于电梯和提升机,则要求启动和制动平稳,并能准确地停止 在给定的位置上;
对于冷、热连轧机以及造纸机的个机架或分部,则要求各机架 或各分部的转速保持一定的比例关系进行协调运转;
由天轴(或地轴)通过皮带轮和皮带分别拖动多台生产机械。
特点是生产效率低、劳动条件差、一旦电动机出现故障,将造 成成组的生产机械停车;
单电机拖动——一台电动机拖动一台生产机械的各运动部件。 这种拖动方式较成组拖动前进了一步,但当一台生产机械的运 动部件较多时,其传动机构仍十分复杂;
多电机拖动——一台生产机械的各个运动部件分别由不同的电 动机来拖动。
三、机电传动控制的目的
从广义上讲,机电传动控制的目的就是要使生产设备、生产 线、车间乃至整个工厂都实现自动化。
从狭义上讲,则指控制电动机驱动生产机械,实现生产产品数 量的增加(效率)、质量的提高(精度)、生产成本的降低、工人 劳动条件的改善以及能量的合理利用等。
随着生产工艺的发展,对机电传动控制系统的要求愈来愈高。 一些精密机床要求加工精度百分之几毫米,甚至几微米;
课程的任务 学习通过本课程和机电综合实验的学习,使学生掌交直流电动 机及控制电机的基本结构和工作原理,以及机电传动的运行性能 分析计算、电机与控制系统选择、为后续和今后的工作准备必要的 知识。
柔性制造系统(FMS) —由数控机床、工业机器人、自动搬 运车等组成的统一由中心计算机控制的机械加工自动线,它是实现 自动化车间和自动化工厂的重要组成部分。
Giddings&Lewis FMC
TOYODA 机械手和自动小车
SNK FMS
CIMS的构成
CIMS是一个闭环反馈系统,其 主要输入是产品需求和产品设计,主 要输出是经过组装、检验和准备交付 使用的产品。它利用计算机技术将独 立发展起来的CAD、CAM、FMS、 以及MIS(Management Information System)综合为一个有机的整体,达 到产品订货、设计、制造、管理和销 售过程高度自动化的系统。
CIMS包括制造工厂的生产、经 营的全部活动,具有经营管理、工程 设计和加工制造等主要功能。
美国在1977年最早开始研究。