第八章 内压薄壁容器的应力

合集下载

8.1 回转薄壳的薄膜应力理论

8.1  回转薄壳的薄膜应力理论
0 rm
cos
dr dl
rm
Q 2 prdr
0

Q力的大小只取决于截面处的横截面面积与气体 压强p,而与截取壳体承压的内表面形状与尺寸 无关
《化工设备设计基础》
20
8.1.3 回转薄壳的薄膜应力理论
1. 经向应力计算公式
N Q
2 2 rm sin prm
《化工设备设计基础》
2
第八章 内压薄壁容器的应力理论
薄壳 壳体厚度δ与其中面曲率半径R的比值
( δ /R)max≤1/10。
《化工设备设计基础》
3
8.1 回转薄壳的薄膜应力理论
圆柱壳
薄壁圆柱壳或薄壁圆筒
外直径与内直径的比值 (Do/Di)max≤1.1~1.2 外直径与内直径的比值 (Do/Di)max> 1.1~1.2
R1 , R2 D
2
2
⑵过渡段的B点;
C点的主曲率半径;
R1 r , R 2 D
Dc r Dc 2 R1 r , R 2 r ⑴过渡段的C点; sin 2 cos
⑵锥壳上的C点;Biblioteka R1 , R 2 《化工设备设计基础》
Dc 2 cos
35
8.1.3 回转薄壳的薄膜应力理论
2. 周向应力计算公式-续6
pR2 2


R1


R2

p

薄膜应力理论基本方程式
只要回转壳体任一点的R1、R2以及壳体壁厚为 已知,则该点由介质内压力p产生的经向应力和 周向应力就可求出

两个应力方程式的导出都以应力沿壁厚均匀分 布为前提,而这种情况只有在壳壁较薄以及离 两个不同形状的壳体联接区稍远处才是正确的

8 内压薄壁容器设计基础

8 内压薄壁容器设计基础

储存液体的回转薄壳
圆筒形壳体 球形壳体
21
8 内压薄壁容器设计基础(续)
1、 受内压的圆筒形壳体 已知圆筒平均直径为 D,厚度为δ,试求圆筒上
任一点 A 处的经向应力和环向应力。
22
8 内压薄壁容器设计基础(续)
薄壁圆筒中各点的第一曲率半径和第二曲率半径
分别为 R1=∞;R2=R
将R1、R2代入薄膜应力理论计算公式得经向应力 与环向应力:
a/b<2 时,σθ>0 a/b =2 时,σθ=0 a/b >2 时,σθ<0 σθ<0,表明σθ为压应力;a/b值越大,即封头成型越浅,x=a 处的压应力越大。
31
8 内压薄壁容器设计基础(续)
32
8 内压薄壁容器设计基础(续)
(4)当a/b=2时,为标准型式的椭圆形封头。
在x=0处,
m
pa
椭圆曲线方程
x2 a2
y2 b2
1
27
8 内压薄壁容器设计基础(续)
推导思路:
椭圆曲线方程
式(8-1)(8-2)
R1和R2
, m
m
pR2
2
p
2
a4
x2 (a2
b2 )
1 2
b
(8-9)
(8-10)
p
2
a4
x2 (a2 b
b2 )
1 2
2
a4
a4 x2 (a2
b2
)
又称胡金伯格方程
② 壳体的边界处不受横向剪力、弯矩和转矩作用。
③ 壳体的边界处的约束沿经线的切线方向,不得限制边界处 的转角与挠度。
对很多实际问题:无力矩理论求解 ╬ 有力矩理论修正
20

8.1 回转薄壳的薄膜应力理论解析

8.1  回转薄壳的薄膜应力理论解析

《化工设备设计基础》
22
8.1.3 回转薄壳的薄膜应力理论
2. 周向应力计算公式-续1

bc和ad上作用有经向应力σφ
N 2 rm sin
《化工设备设计基础》
19
8.1.3 回转薄壳的薄膜应力理论
1. 经向应力计算公式

作用在分离体上的外力(内压)在轴线方向的合力
dQ p 2 r dl cos
dQ p 2 rdr
2 Q 2 p rdr prm
N



力的方向
经线
所在面的法向
a.
b.
《化工设备设计基础》
c.
16
8.1.2 回转薄壳的无力矩与有力矩理论(续)
由中面的拉伸、压缩、剪 切变形而产生 薄膜内力 内力 10个 4个 弯曲内力 无力矩理论或
Nφ、Nθ、Nφθ=Nθφ
横向剪力
薄膜理论(静定)
有力矩理论或
Q φ、 Q θ Mφ、Mθ、 Mφθ、Mθφ
第八章 内压薄壁容器的应力理论 8.1 回转薄壳的薄膜应力理论 8.2 薄膜应力理论的应用 8.3 边缘应力及其特点
《化工设备设计基础》
1
第八章 内压薄壁容器的应力理论
壳体
以两个曲面为界,且曲面之间的距离远比其它 方向尺寸小得多的构件。
壳体中面 与壳体两个曲面等距离的点所组成的曲面。 轴对称 壳体的几何形状、约束条件和所受的外力都 对称于回转轴。化工容器就其整体而言,通 常都属于轴对称问题
2. 母线:形成中面的平面曲线或直线
3. 经线平面:通过经线和回转轴的平面 4. 经线:经线平面与中面的交线。
经线
《化工设备设计基础》

设备实验

设备实验

实验四 内压薄壁容器应力测定实验一、 实验目的1、 了解电阻应变片测量压力容器应力的基本原理与测试技术;2、 测定内压薄壁容器筒体及各种封头上的应力大小;3、 比较实测应力与理论计算应力,分析它们产生差异的原因。

二、 实验设备和仪器1、 HJSO2型内压容器应力测试实验台如图1,装置测试压力为0~15kgf / cm 2 ;图 1 应力测试实验台1、电源信号灯2、电机开关按钮3、容器(5)进出口节流阀4、左压力表5、球形、椭圆形容器6、油泵压力表7、锥形与平盖容器8、右压力表9、容器(7)进出口节流阀 10溢流阀 11、电源控制箱 12、电机油泵油箱装置主要参数如图2、3,筒体及封头使用材料: Q235钢封头形式:锥形封头、平盖、半球封头、标准椭圆封头 材料弹性模量: E =2.06×105Mpa 泊松比:μ=0.3 锥形封头的锥顶角:2α=60°±1°图 3图 22、YJ-33型静态电阻应变仪和YZ-22型转换箱YJ-33型静态电阻应变仪使用前开机预热30分钟,对“灵敏系数”、“通道选择”、“检测通道”、“通讯方式”等参数进行设定,然后进行仪器的“标定”。

YZ-22型转换箱的面板见图2。

“序号拨盘开关(1)”可将序号在00~99之间任意设定,每台转换箱都有两个该开关,无论使用单台或是多台转换箱,序号都不得重复。

本实验的应变片采用半桥接线,所以将“全桥、半桥选择开关(2)”拨至半桥。

应变片与转化箱连接方式见图3。

图 2 YZ-22转换箱面板1、序号拨盘开关2、全桥、半桥选择开关3、测定点指示器4、接线柱5、接线柱6、接地7、控制讯号连接插座8、桥压讯号输出插座图 3 半桥单片(公共补偿)应变仪与转换箱的连接方式见图4图 4 应变仪与转换箱连接示意图3、 其它实验用具应变片、502快干胶、电烙铁、活性锡丝、松香、万用表、螺丝刀、绝缘胶布、丙酮、脱脂棉、镊子、玻璃纸、钢尺、蜡烛、剪刀、纱布。

化工设备设计基础第8章内压薄壁圆筒与封头的强度设计

化工设备设计基础第8章内压薄壁圆筒与封头的强度设计

Sc pcDi
2[]t- pc
计算壁厚公式
考虑腐蚀裕量C2,得到圆筒的设计壁厚
Sd 2[p]ctD-i pc C2
设计壁厚公式
设计壁厚加上钢板厚度负偏差C1,再根据钢板标准规格向上圆整确定 选用钢板的厚度,即名义壁厚(Sn),即为图纸上标注厚度。
一、强度计算公式
1.圆筒强度计算公式的推导 1.2 无缝钢管作筒体(外径DO为基准)
内径为基准 外径为基准
内径为基准 外径为基准
一、强度计算公式
3.球形容器厚度计算及校核计算公式
3.1厚度计算公式
Sc
pcDi
4[]t -
p
计算壁厚
Sd 4[p]ctD i-pc C2
设计壁厚
3.2校核计算公式
t pcDi Se[]t
4S e
[pw]
4[]tSe
Di Se
已有设备强度校核
确定最大允许工作压 力
常温容器 中温容器 高温容器
[]
minnss
,b
nb
[]t
minnsst
,bt
nb
[]t
minnsst
, D t , nt
nD nn
二、设计参数的确定
3.许用应力和安全系数
3.2安全系数
安全系数的影响因素: ①计算方法的准确性、可靠性和受力分析的的精确程度; ②材料的质量和制造的技术水平; ③ 容器的工作条件以及容器在生产中的重要性和危险性。

0
n
[]
二、强度理论及其相应的强度条件
复杂应力状态的强度条件,要解决两方面的问题: 一是根据应力状态确定主应力; 二是确定材料的许用应力。
内压薄壁容器的主应力:

化工机械基础-第08章 内压薄壁容器设计基础

化工机械基础-第08章 内压薄壁容器设计基础

化工设备机械 基础
例8-2回转壳体薄膜应力分析例题
例:有一圆筒形容器,两端为椭圆形封头, 已知圆筒的平均直径为D=2000mm厚度为 20mm,设计压力为2MPa,试确定:
(1)筒身上的经向应力和环向应力? (2)如果椭圆封头的a/b分别为2、1.414和3, 封头厚度为20mm,分别确定封头的最大经向 应力和最大环向应力所在的位置。
d1
2
2 dl1
d2
2
0
pdl1dl2
m dl1dl2
1 R1
dl1dl2
1 R2
0
m p R1 R2
化工设备机械 基础
经推导,可得环向应力计算公式为:
m p R1 R2
R1: 该点的第一曲率半径,m
:环向应力,MPa
Page16
化工设备机械 基础
薄膜理论适用范围
• 除了要求壳体较薄,还要满足如下条件: • 回转体轴对称,壁面厚度无突变。曲率半径连
n
锥截面
中间面
M
横截面
壁厚在那个截面量取?
Page5
化工设备机械 基础
➢ 三个曲率半径
1) 第一曲率半径:中间面上任一点经线 的曲率半径。R1=MK1(K1点在法线上)
2) 第二曲率半径:通过经线上M点的法 线作垂直于经线的平面,其与中间面相 交得到一平面曲线EM,此曲线在M点 处的曲率半径.R2=MK2(K2点是法线与 回转轴的交点)
1) 直法线假设:壳体在变形前垂直于中间面的直 线段,在变形后仍保持直线段并垂直于变形后的 中间面,且直线段长度不变。
2) 互不挤压假设:壳体各层纤维变形后均互不挤 压。
忽略弯矩作用,对于薄壁壳体,计算结果足够精 确。(无力矩理论)

内压薄壁球壳容器讲解

内压薄壁球壳容器讲解

D Di 1500 30 1530 mm
z

PD
4

4 1530 4 30

51MPa
t

PD
2

4 1530 2 30
102MPa
【例题】:
解: (2)计算圆球形壳体截面的应力
D Di 3000 30 3030 mm PD 4 3030 101MPa 4 4 30
4
计算壁厚:


pc Di
4[ ]t
pc
(二)内压薄壁球壳容器的强度条件与壁厚计算
考虑腐蚀裕量,则设计厚度为:
d

C2

pc Di
4[ ]t
pc
C2
考虑钢板供货的厚度负偏差,将其向上圆 整至相应的钢板标准厚度,名义厚度为:
n d c1
(三) 内压薄壁球壳的校核计算
职业教育应用化工技术专业教学资源库《化工设备认知与制图》课程
内压薄壁球壳容器
吉林工业职业பைடு நூலகம்术学院
内压薄壁球壳容器
(一)内压薄壁球壳容器的应力 内压薄壁球壳σt=σz
pD 4
(二)内压薄壁球壳容器的强度条件与壁厚计算 内压薄壁球壳的强度条件:
pc (Di ) t
设计温度下球壳的最大允许工作压力[pw]为
pw
4e t
Di e
设计温度下球壳的计算应力为
t pc Di e t
4 e
e 为有效厚度, e n c2 c1
结论:
❖ 对比内压薄壁球壳与圆筒壁厚的强度公 式可知,当条件相同时,球壳的强度比圆筒 的强度高一倍。球壳的壁厚约为圆筒壁厚的 一半。而且球体表面积比圆筒体表面积小, 保温层费用就较少。

薄壁容器内压应力测定(平板封头、锥形封头)

薄壁容器内压应力测定(平板封头、锥形封头)

薄壁容器内压应力测定(平板封头、锥形封头)一、实验目的1.测定薄壁容器承受内压作用时,筒体及封头(平板封头、锥形封头)上的应力分布。

2.比较实测应力与理论计算应力,分析它们产生差异的原因。

3.了解“应变电测法”测定容器应力的基本原理和掌握实验操作技能。

二、原理说明由中低容器设计的薄壳理论分析可知,薄壁回转容器在承受内压作用时,圆筒壁上任一点将产生两个方向的应力,经向应力m 和环向应力。

在实际工程中,不少结构由于形状与受力较复杂,进行理论分析时,困难较大;或是对于一些重要结构在进行理论分析的同时,还需对模型或实际结构进行应力测定,以验证理论分析的可靠性和设计的精确性;所以,实验应力分析在压力容器的应力分析和强度设计中有十分重要的作用。

现在实验应力分析方法已有十几种,而应用较广泛的有电测法和光弹法,其中前者在压力容器应力分析中广泛采用。

可用于测量实物与模型的表面应变,具有很高的灵敏度和精度;由于它在测量时输出的是电信号,因此易于实现测量数字化和自动化,并可进行无线电遥测;既可用于静态应力测量,也可用于动态应力测量,而且高温、高压、高速旋转等特殊条件下可进行测量。

电测法是通过测定受压容器在指定部位的应变状态,然后根椐弹性理论的虎克定律可得:⎪⎪⎭⎪⎪⎬⎫-=-=E E E Em mm σμσεσμσεθθθ (1)⎪⎪⎭⎪⎪⎬⎫+-=+-=)(1)(122m m m E E μεεμσμεεμσθθθ(2)通过“应变电测法”测定容器中某结构部位的应变,然后根椐以上应力和应变的关系,就可确定这些部位的应力。

而应变m ε、θε的测量是通过粘贴在结构上的电阻应变片来实现的;电阻应变片与结构一起发生变形,并把变形转变成电阻的变化,再通过电阻应变仪直接可测得应变值m ε、θε,然后根椐(2)式可算出容器上测量位置的应力值,利用电阻应仪和预调平衡箱可同时测出容器上多个部位的应力,从而可以了解容器受压时的应力分布情况。

化工设备机械基础 第八章

化工设备机械基础 第八章

M
课本第106页
8.1 回转壳体的几何特性
二. 基本假设
1) 直法线假设:壳体在变形前垂直于中 间面的直线段,在变形后仍保持直线段 并垂直于变形后的中间面,且直线段长 度不变。 2) 互不挤压假设:壳体各层纤维变形后 均互不挤压。
R1=∞ R2= R3=D/2
R1=∞ R2= r/cosα R3=r
课本第107页
8.2
回转壳体的薄膜应力分析
1)经向应力计算公式结果
2)环向应力计算公式
课本第109页
8.2 回转壳体的薄膜应力分析
2.轴对称回转壳体薄膜理论的应用范围
1)回转壳体曲面在几何上是轴对称的、壳体 厚度无突变;曲率半径连续变化,材料均匀 连续且各向同性; 2)载荷在壳体曲面的分布是轴对称和连续的; 3)壳体边界是自由的; 4)壳体在边界上无横向剪何特性
纵截面
横截面
锥截面
一. 基本概念(四线三平面三半径) 1)纵截面:用通过回轴线的平面截得到的壳体截面 2)锥截面:用与壳体正交的圆锥面截取得到的壳体 截面 3)横截面:用与轴线垂直的平面截得到的壳体截面
课本第105页
8.1 回转壳体的几何特性
经线AB ' AB''
第八章
回 转 壳 体 的 几 何 特 性
母线 经线 法线 纬线 纵截面 横截面 锥截面
R1=MK1(K1点在法线上)
R2=MK2(K2点是法线与回转轴的交点) R3=MK3(K3点是平行圆圆心)
第八章
薄 膜 应 力 计 算 公 式
法线n 一. 基本概念(四线三平面三半径) 纬线
1)母线:形成中间面的平面曲线AB。 母线AB 2)经线:通过回转轴作任一纵截面,其与壳体曲 面相交所得到的交线AB',AB'' 。 3)法线:通过经线上任意一点垂直于中间面的直 线n,称为中间面在该点的法线。 4)纬线:过N点作圆锥面与壳体中间面正交,所 得的交线是一个圆,称为回转曲面的纬线。

08 内压薄壁容器设计基础

08 内压薄壁容器设计基础

几何形状不连续
内压圆筒边缘应力的概念
几何形状与载荷不连续
材料不连续
内压圆筒边缘应力的概念
边缘弯曲
边缘应力
内压圆筒边缘应力的概念
概念: 伴随内压容器 各零部件连接 处的弯曲变形 而产生的附加 内力。
内压圆筒边缘应力的概念-特点
• 二、边缘应力的特点
1、局部性
2、自限性
l> 2.5 R 以σs为限
X=a σm
50
σθ
100
σθ
应力 分布
-100 图(a)
1000
707
70.7
70.7
50
0
图(b)
2
3
1000
333
150
150
50
-350
图(c)
第四节 内压圆筒边缘应力的概念
• 一、边缘应力的概念
薄膜应力 的局限性
R
R+△R
(1)圆筒 受内压 时直径 增大。
内压圆筒边缘应力的概念
(2) 连接边缘区的变形与应力
ΣZ = 0 Nz - Pz = 0
∴ σmπDδ·sinθ-πD2p / 4 = 0
(a)
回转壳体薄膜应力分析—σm计算
D 因为: R2 所以: 2R sin D 2 sin 2
代入到(a)式,得到
m
pR2 2
回转壳体薄膜应力分析—σθ计算
2、环向应力( σθ )计算公式
d 1
d 2 pdl1dl2 2 m dl2 sin 2 dl1 sin 0 2 2
其中:
d1 dl1 sin 2 2 2 R1
d1
d 2 dl2 sin 2 2 2 R2

化工设备设计基础

化工设备设计基础

《化工设备设计基础》综合练习题第一篇工程力学基础第一章构件的受力分析一简答题1.什么叫力?力的三要素是什么?2.二力平衡条件是什么?什么叫二力杆?3.平面一般力系的平衡条件是什么?4.什么叫约束反力?5.工程中有哪几种常见的约束型式?二计算题1.如图所示的简易起重机横梁AB的A端以铰链固定,B端有拉杆BC,起重量W=10KN。

AB梁重P=4KN。

BC杆自重忽略不计,试求载荷W位于图示位置时BC杆的拉力和铰链A的约束反力。

2.车刀的A端禁固在刀架上,B端受到切削刀作用,已知Py=18KN,Px=7.2KN,L=60mm,求固第二章直杆的拉伸与压缩一简答题1.什么叫内力?如何求出直杆各截面处的内力?2.什么叫强度?直杆拉伸或压缩时的强度条件是什么?3.低碳钢的拉伸试验中,从开始加载至断裂经过哪几个阶段?4.钢材的机械性能主要包含哪些指标?5.什么叫应力集中?二计算题1.试求图示的杆横截面1-1的内力,已知P1=26KN,P2=14KN,P3=12KN。

32.一个总重为200N的电动机,采用M8吊环螺钉,螺纹根部的直径为6.4mm,其材料的许用应力[σ]=40MPa。

问起吊电动机时,吊环螺钉是否安全?第三章直梁的弯曲一简答题1.什么叫梁?2.什么叫平面弯曲?3.梁中内力有哪些?4.剪力和弯矩的正负如何规定?5.什么剪力图和弯矩图?6.梁弯曲时的正应力强度条件是什么?7.梁纯弯曲时的正应力分布有什么特点?第五章复杂应力状态下的强度计算一简答题1.什么叫应力状态?2.什么叫主应力?什么叫二向应力状态?3.工程设计中有哪几种常用的强度理论?4.什么是第一强度理论?5.材料破坏有哪几种主要形式?第二篇化工设备常用材料一简答题1.金属材料有哪些基本性能?2.金属材料中碳,硫,磷,锰,硅对材料性能各有何影响?3.什么叫弹性变形?什么叫塑性变形?4.什么叫材料的韧性?什么叫无塑性转变温度?5.什么叫热处理?什么叫调质处理?6.碳钢按含碳量如何分类?按冶炼方法如何分类?7.碳钢按质量如何分类?碳钢的牌号如何规定?8.指出Q235B中各符号的含义?指出20R中各符号的含义?9.合金钢按用途如何分类?10.合金钢的牌号如何规定?11.指出0Cr18Ni9Ti及16MnR中各符号的含义?第三篇化工设备设计基础绪论一简答题1.什么叫压力容器?2.内压容器有几种分类方法?3.判断容器是一类、二类或三类容器的原则是什么?4.何谓公称直径?管子DN20表示什么意思?5.何谓公称压力?第八章内压薄壁容器的应力理论一简答题1.什么叫薄壁容器?2.什么叫回转壳体?什么叫经线?什么叫纬线?3.什么叫无力矩理论?什么叫薄膜应力?4.什么叫边缘应力?边缘应力如何产生?边缘应力有何特点?5.什么叫第一曲率半径?什么叫第二曲率半径?二判断题1.下列直立薄壁容器,受均匀气体内压力作用。

内压薄壁圆筒容器讲解

内压薄壁圆筒容器讲解

pD
≤[σ]tφ
2
实际应用中还必须考虑以下几种情况:
(2)容器内径
内径Di,受力分析中的D是中面直径,D换算成 Di的形式,可得:
D Di
故有: p(Di ) ≤[σ]tφ 2
实际应用中还必须考虑以下几种情况:
(3)计算压力pc
确定筒体厚度的压力为计算压力pc
pc (Di ) t
(二)内压薄壁圆筒容器的强度条件与壁厚计算
按第一强度理论(最大主应力理论),
应使筒体上的最大应力小于或等于圆筒材 料在设计温度下的许用应力[σ]t。对于内压 圆筒,筒体上最大应力为环向应力σt,即:
t
pD
2
≤[σ]t
实际应用中还必须考虑以下几种情况:
(1)焊缝系数
筒体多由钢板卷焊而成,焊缝可能隐含 缺陷,使焊缝及其附近金属的强度低于钢 板本体强度。考虑这种影响引入焊接接头 系数φ:
2
所以内压薄壁圆筒体的计算厚度δ为:
pc Di
2[ ]t
pc
实际应用中还必须考虑以下几种情况:
(4)腐蚀裕量、钢板负偏差与壁厚
考虑到介质或周围大气对筒壁的腐蚀作用,在
确定钢板所需厚度时,还应在计算厚度基础上,加
上腐蚀裕量c2,得设计壁厚
d
C2
pc Di
2[ 差,将设计厚度加上厚度
职业教育应用化工技术专业教学资源库《化工设备认知与制图》课程
内压薄壁圆筒容器
吉林工业职业技术学院
内压薄壁圆筒容器
(一)内压薄壁圆筒容器的应力
设介质压力p,中间直径D,壁厚为δ。
变形分析:在内压力作用下,直径将会变大,长度 也会增长。 受力分析:经向拉力和环向拉力
(一)内压薄壁圆筒容器的应力

内压薄壁圆筒应力分析

内压薄壁圆筒应力分析

x :椭球壳上任意点距椭球壳中心轴的距离mm。
2020/3/21
O
x2 y2 1 a2 b2
3.2.3、受气体内压的椭球壳(椭圆形封头)
pa
2
σm
b a=b
a pa
pa
2
2
σθ
b a=b
a
pa
2020/3/21 圆球 2
σm
b 1 a 1.4
b
a
σm
b a=2b a
σθ
b 1 a 1.4
2020/3/21
3.2.4 圆锥形壳体中的薄膜应力
最大薄膜应力在锥形壳体大端,在锥顶处, 应力为零。
锥形壳体内最大薄膜应力是同直径同壁厚圆筒形壳 体的薄膜应力的1/cos a 倍。
锥形壳体的环向应力是经向应力的两倍。
锥形壳体的应力,随半锥角a的增大而增大,设计 时,a角要合适,不宜太大。
2020/3/21

m
PD
4
P
4 /
D
,
PD
2
P,
2 / D
所以应力与S/D成反比,不能只看壁厚大小 。
2020/3/21
3.2 薄膜理论的应用
3.2.2、受气体内压的球形壳体
2020/3/21
2
,
m
pD
4
2020/3/21
3.2.2、受气体内压的球形壳体
①在直径与内压相同的情况下,球壳内的应力 仅是圆筒形壳体环向应力的一半,即球形壳 体的厚度仅需圆筒容器厚度的一半。
pa
b a=2b a
σθ
pa
3.2.3、受气体内压的椭球壳(椭圆形封头)
pa
σm
b a=2b a pa 2

内外压容器实验指导书(BZ10)

内外压容器实验指导书(BZ10)

内压薄壁容器应力测定实验实验指导书北京化工大学机电学院过程装备与控制工程系实验一、内压薄壁容器应力测定实验一、实验目的1.掌握电阻应变测量原理;2.学习电阻应变仪的使用方法,学习电阻应变片的贴片和接线技术; 3.了解封头在内压作用下的应力分布规律。

二、实验原理 1. 应力计算:薄壁压力容器主要由封头和圆筒体两个部分组成,由于各部分曲率不同,在它们的连接处曲率发生突变。

受压后,在连接处会生产边缘力系——边缘力矩和边缘剪力。

使得折边区及其两侧一定距离内的圆筒体和封头中的应力分布比较复杂,某些位置会出现较高的局部应力。

利用电阻应变测量方法可对封头和与封头相连接的部分圆筒体的应力分布进行测量。

应力测定中用电阻应变仪来测定封头各点的应变值,根据广义虎克定律换算成相应的应力值。

由于封头受力后是处于二向应力状态,在弹性范围内用广义虎克定律表示如下:经向应力:()21211μεεμσ+-=E(1-1)环向应力:()12221μεεμσ+-=E(1-2) 式中:E —材料的弹性模量μ—材料的波桑比 ε1—经向应变 ε2—环向应变。

椭圆封头上各点的应力理论计算公式如下:经向应力:()[]bb a x a s p r 2122242--=σ (1-3)环向应力:()[]()⎥⎦⎤⎢⎣⎡-----=2224421222422b a x a a bba x a s p θσ (1-4)2.电阻应变仪的基本原理:电阻应变仪将应变片电阻的微小变化,用电桥转换成电压电流的变化。

其过程为:()→∆∆→→放大器或电桥应变片I V RdR ε将()指示或纪录检流计或纪录仪放大或→∆∆I V将电阻应变片用胶水粘贴在封头外壁面上,应变片将随封头的拉伸或压缩一起变形,应变片的变形会引起应变片电阻值的变化,二者之间存在如下关系:ε⋅=∆=∆K LlK R R (1-5) 式中:ΔR/R —电阻应变片的电阻变化率ΔL/L —电阻应变片的变形率 K —电阻应变片的灵敏系数; ε—封头的应变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


①环向应力或周向应力, 用 表示,单位 MPa, 方向为垂直于纵向截面; ②轴向应力或经向应力, 用 m表示,单位 MPa,方 向为垂直于横向截面; ③由于厚度δ 很小,认为 并把它们称为薄膜应力。
m
4
都是沿壁厚均匀分布的, 、 m
二、基本概念与基本假设 1、回转壳体中的基本的几何概念

在 x= a处 m
在 x=a处
pa 2

pa

图3-12 椭圆形封头的应力分布
m
pa pa a2 , (2 2 ) 2 2 b
(1)在椭圆形封头的中心(x=0处),经向应力与环向应力相等。 (2)经向应力恒为正值,是拉应力。 (3)周向应力最大值在x=0处,最小值在x=a处。
1 sin =Sdl1 dl 2 ,整理得 代入式(3-8) ,并对各项均除以 2 R2 2 d d 2 2 dl 2 sin 2 = 代入式(3-8) ,并对各项均除以 1 dl 2 ,整理得 2 R2 2 2 Sdl
Nn 2 Sdl1 均除以 Sdl1 dl 2 整理得 代入式(3-8) ,并对各项均除以 ,整理得
图8-5 确定环向应力微元体的取法
15
环向截面:
微元体受力放大图
图8-6 微小单元体的应力及几何参数
16
2、回转壳体的经向环向应力分析
根据法线n方向上力的平衡条 件,得到
Pn
N mn
N n = 0
图8-7 回转壳体的环向应力分析
内压力p在微体abcd上所产生的外力 的合力在法线n上的投影为Pn 在 bc与ad截面上经向应力 的合力 m 在法线n上的投影为Nmn 在ab与cd截面上环向应力 的合力 在法线n 上的投影为 Nn
图8-14 锥壳的应力分析
讨论:对相同的内压,球壳应力比同直径、 同 厚度的圆筒壳的应力有何不同呢? 结论:对相同的内压,球壳的环向应力要比同 直径、 同厚度的圆筒壳的环向应力小一半,这 是球壳显著的优点。
23
m
pr 2 cos

pr
cos
24
4
四、受气体内压的椭球壳 锥形壳体环向应力是经向 应力两倍,随半锥角a的增 大而增大 1、第一曲率半径R1
2、回转壳体的经向应力分析
⒈ Z轴上的合力为Pz
Pz
pR m 2 2
p ——工作压力,MPa R2 ——第二曲率半径,mm

4
D2 p
图8-4 回转壳体上的径向应力分析
1、截面法

——壁厚,mm
⒉作用在截面上应力的合力 在 Z轴上的投影为Nz ⒊在Z 方向的平衡方程

4 D p mD sin 0
m
R1


R2

p
18

3
三、薄膜理论的适用条件 无力矩理论是在旋转薄壳的受力分析中忽略了弯矩 的作用。此时应力状态和承受内压的薄膜相似,又 称薄膜理论。
• 回转壳体曲面在几何上是轴对称,壳体厚度无突变;曲 率半径是连续变化的,材料是各向同性的,且物理性能 (主要是E和μ)应当是相同的 • 载荷在壳体曲面上的分布是轴对称和连续的 • 壳体边界的固定形式应该是自由支承的 • 壳体的边界力应当在壳体曲面的切平面内,要求在边界 上无横剪力和弯矩 • δ/Di≤0.1
19
第三节 典型回转壳体的应力分析
区域平衡方程式
m
m
R1
pR2 2

R2 p
微体平衡方程式

20
一、受气体内压的圆筒形壳体
讨论1:薄壁圆筒上开孔的有利形状 ① 环向应力是经向应力 的2倍,所以环向承受应 力更大,环向上就要少削 弱面积,故开设椭圆孔时, 椭圆孔之短轴平行于筒体 轴线,见图
椭圆壳经线为一椭 圆,a、b分别为椭 圆的长短轴半径, 其曲线方程
x2 y2 1 a 2 b2
3 2
α角要选择合适,不宜太大
图8-14 锥形封头的应力分布
R1
1 y
2
y
y 2 b2
b2 2 x a2
在锥形壳体大端r=R时,应力最大,在锥顶处,应力为零。因 此,一般在锥顶开孔。 锥底各点应力 锥顶
Pn pdl1 dl 2
N mn 2 m Sdl 2 sin d 1 2
d 1 d 2 即 即 pdl1 dl 2 - 2 m Sdl 2 sin - 2 Sdl1 sin =0 (式 (3-8 ) 1) 2 2 d d 1 2 d 21 因为微体的夹角 与 很小,因此取 即 pdl1 dl 2 2 m Sdl 2 sin -1 2 d Sdl sin =0 (3-8) 2 2 d d 1 dl1 d 1 d 2 d1 和 d 微元体的夹角 很小,可取 2 1 = d 因为微体的夹角 即 pdl - 2 Sdl =0 sin (3-8 ) 2 很小,因此取 1 dl 2 - 2 m Sdl 2 sin d 1 与 1 sin 2 2 2 R1 2 2 d 1 d 1 dl1 因为微体的夹角 d 1 与 d 2 很小,因此取 sin = dl 2 d 2 d 2 sin = 2 2 2 R 1 d d 1 dl1 2 R2 2 2 sin 1 = dl 2 2 2 d 22 R d 2
图8-3 回转壳体的几何特性
10
第一曲率半径R1
中间面上任一点M 处经线的曲率 半径为该点的“第一曲率半径”
R1 MK1 R2 MK 2
2、无力矩理论基本假设 假定材料具有连续性、均匀性和 各向同性,即壳体是完全弹性的
小位移假设
R1
1 y
2
3 2
y
壳体受力后,壳体中各点的位移远 小于壁厚 ,利用变形前尺寸代替 变形后尺寸 壳体在变形前垂直于中间面的直线 段,在变形后仍保持为直线段,并 且垂直于变形后的中间面。 壳体各层纤维变形前后均互不挤压
2
N z mD sin
用假想截面将壳体沿经线的法线方向切开,即平行圆直径 D 处有垂直于经线的法向圆锥面截开,取下部作脱离体, 建立静力平衡方程式。
Pz N z 0
思考:为什么不能用横截面?
13
D 2 sin D 2 R2 sin R2
m
pR2 2
14
第八章 内压薄壁容器设计基础
薄壁容器
第一节 回转壳体的几何特性

0.1 或 K D0 1.2
Di
Di
教学重点:
薄膜理论及其应用
教学难点:
对容器的基本感性认识
容器的厚度与其最大截面圆的内径之 比小于0.1的容器称为薄壁容器。 (超出这一范围的称为厚壁容器)
应力分析是强度设计中首先要解决的问题
R1 , R2 r
D 图8-8 受气体内压的圆筒形壳体 R ,R r
1
2
讨论2:介质与压力一定,壁厚越大,是否应力就越小
PD P PD P = , = = , 4 4 / D 2 2 / D 所以应力与 δ/D 成反比,不能只看壁厚大小。
② m =
=
29

顶点应力最大,经向应力与环向应力是相等的拉应力。 顶点的经向应力比边缘处的经向应力大一倍。 顶点处的环向应力和边缘处相等但符号相反。 应力值连续变化。
30
5
五、受气体内压的碟形壳体 1.碟形壳体的组成
【例8-1】有一外径为219的氧气瓶,最小壁厚为 =6.5mm,材质为40Mn2A,工作压力为15MPa,试求氧气瓶 筒壁内的应力。 解:
二、环向应力计算公式——微体平衡方程式
m
R1


R2

p
m ——经向应力,MPa
——环向应力,MPa
微元体abcd 的受力

p ——工作压力.MPa
R1 ——第一曲率半径,mm
R2 ——第二曲率半径,mm
——壁厚,mm
m 上下面:
内表面:p
1、截取微元体 截面1 截面2 截面3 壳体的内外表面 两个相邻的,通过壳 体轴线的 经线平面 两个相邻的,与壳体 正交的园锥法截面
a,b——分别为椭球壳的长、短半径,mm ; x ——椭球壳上任意点距椭球壳中心轴的距离mm 其它符号意义与单位同前。
28
4、椭圆形封头的应力分布 由 m和 的公式可知:
在 x=0处
标准椭圆形封头a/b=2 在x=0处 m
pa
m
pa a ( ) 2 b
y/
b2 x a2 y b4 1 a2 y3
26
m
pD 4 cos

pD 2 cos
25
R1
[a 4 x 2 (a 2 b 2 )]3 / 2 a 4b
y //
2、第二曲率半径R2 如图,自任意点A(x,y) 作经线的垂线,交回转轴 于O点,则OA即为R2 ,根 据几何关系,可得
12
第二曲率半径R2
直法线假设
通过经线上一点M 的法线作垂直于经线的平面与中 间面相割形成的曲线MEF,此曲线在M 点处的曲率 半径称为该点的第二曲率半径R2 ,第二曲率半径的 中心落在回转轴上,其长度等于法线段MK2 。 11
不挤压假设
2
第二节 回转壳体的薄膜应力分析 一、经向应力计算公式——区域平衡方程式 经向应力,MPa —— m
5
均对称于回转轴
回转曲面
回转壳体
6
1
几个典型回转壳体
母线
形成回转壳体中间面的 那条直线或平面曲线。 如图所示的回转壳体即 由平面曲线AB绕OA轴旋 转一周形成,平面曲线 AB为该回转体的母线。 注意:母线形状不同 或与回转轴的相对位 置不同时,所形成的 回转壳体形状不同。
相关文档
最新文档