解三角形PPT教学课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2bccosA=-bc+c2,2b cos A b c 由正弦定理:2•2RsinB cos A 2Rsin B 2Rsin C 2sinB cos A sin B sin C sin B sin(A B)
sin B sin Acos B sin B cos A
sin B sin Acos B sinBcos A sin(A B)
必修5 解三角形复习 课件
正弦定理
a b c 2R (R为三角形外接圆半径) sin A sin B sin C
a : b : c sin A: sin B : sinC
a 2R sin A b 2R sin B c 2R sin C
(sin A a ) 2R
(sin B b ) 2R
24
3、 说出下面的三视图表示的几何体的结 构特征.
25
4、根据几何体的三视图,还原成几何体。
26
对于柱体、锥体、台体及简单的组合 体,在平面上应怎样作图才具有强烈的 立体感?这涉及空间几何体的直观图的 画法问题.
27
1.2空间几何体的直观图
28
知识探究
探究1、画一个水平放置的平面图形的直 观图.
2以O为中心,在X上取AD=AD,在y轴上取
MN= 1 MN.以点N为中心,画BC平行于x轴, 2
并且等于BC;再以M为中心,画EF平行于x轴,
并且等y于EF.
F ME
A
O Dx
y
F M E
A
O
D x
B N C
B NC 31
例1.用斜二测画法画水平放置的六边形 的直观图
3 连接AB,CD,EF,FA,并擦去辅助线x轴和y轴,
1 2
ab sin C
3 3 ,ab 2
6
由余弦定理得:c2 a2 b2 2ab cos C
c2 (a b)2 2ab 2ab cos C 代入计算得:a b 11
2
本章知识框架图
正弦定理 余弦定理
解三角形 应用举例
求解三角形应用题的一般步骤:
1、分析题意,弄清已知和所求; 2、根据提意,画出示意图; 3、将实际问题转化为数学问题,写出已知所求; 4、正确运用正、余弦定理。
典型例题
例 在ABC中,a2 (b b c),求A与B满足的关系
解答
例 在ABC中,a2 (b b c),求A与B满足的关系
解:由已知a2 (b b c) a2 b2 bc,移项得:b2 a2 bc
由余弦定理:a2 b2 c2 2bccosA,移项:2bccosA=b2 a2 c2
练习:已知一个几何体的三视图如下, 这个几何体的结构特征如何?试用斜二 测画法画出它的直观图.
正视图 侧视图 俯视图
z
y′
A′
B′
o′
x′
y
A
oB x
44
练习:如图,一个平面图形的水平放置 的斜二测直观图是一个等腰梯形,它的 底角为45°,两腰和上底边长均为1, 求这个平面图形的面积.
D
C
D
C
A
变式训练
在ABC中,角A、B、C的对边分别为a,b,c,tan C 3 7 (1)求cos C (2)若CA • CB 5,且a b 9,求c
2
典型例题
例 在ABC中,a2 (b b c),求A与B满足的关系
本题启示:由正弦定理、余弦定理进行边角转化 一般的,如果遇到的式子含角的余弦或是边的二次式,要
(sin C c ) 2R
余弦定理
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
推论
b2 c2 a2 cos A
2bc cos B a2 c2 b2
2ac cos C a2 b2 c2
2ab
三角形面积公式
xOz 90 .
Z
y
O
x
38
2画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在
轴上取线段PQ,使PQ=1.5cm;分别过点M 和N作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
Z
y
D QC
MO N x
AP B
角称为该直线的方位角。方位角的取值范围为0°~360°
Q
P
105o
C
v
B
45o 10
4v
A
解:由正弦定理得, BC AB sin CAB sin ACB
vt 4vt sin CAB sin120o
解得 sin CAB 3 8
cos CAB 61 8
sin PAB sin(CAB 45o) sin CAB cos 45o cos CABsin 45o
B A B或B (A B) (舍去)
即A与B满足的关系为A 2B
本题启示
典型例题
例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c 7 , 2
且 tan A tan B 3 tan A • tan B 3,又ABC的面积为
SABC
3 3 ,求a 2
b的值
例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c 7 , 2
应用举例
某渔船在航行中遇险发出呼救信号,我海军舰艇在A处获悉后
立即测出该渔船在方向角为北偏东45o,距离10海里的C处,
渔船沿着方位角为105o的方向以v海里 / 小时的速度向小岛靠拢, 我海军艇舰立即以4v海里 / 小时的速度前去营救。设艇舰在B处 与渔船相遇,求AB方向的方位角的正弦值
方向角
C B
s 1 ab sin C 2
1 bc sin A 2
1 ac sin B 2
解决已知两边及其夹角求三角形面积
课堂练习 (1)在ABC中,已知a 4,b 4 2,B 45o,求A (2)在ABC中,已知三边长AB=7,BC=5,AC=6,求 cos B
本章知识框架图
正弦定理 余弦定理
解三角形
多考虑用余弦定理;反之,若是遇到的式子含角的正弦和边的 一次式,则大多用正弦定理.
高一年级数学必修2 1.2空间几何体的直观图
22
复习巩固
1、如图所示,将一个长方体截去一 部分,这个几何体的三视图是什么?
正视
正视图
侧视图
俯视图
23
复习巩固 2、将一个长方体挖去两个小长方体后剩余 的部分如图所示,试画出这个组合体的三 视图.
B
A
B
S 2 2
45
作业:
P19练习:2,3(做书上); P21习题1.2A组:4,5.
46
便获得正六边形ABCDEF水平放置的直观图ABCDEF
y
F ME
A
O Dx
B NC
y
F M E
A
O
D x
B N C
32
知识探究(一)水平放置的平面图形的直观 图的作法
1.斜二测画法:画多边形
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交
于o点.画直观图时,把它画成对应的x′轴、y′轴,使
xOy=45 或135 ,它确定的平面表示水平平面。
39
3画侧棱.过A,B,C,D,各点分别作z轴的平行线,并在这些平行线
上分别截取2cm长的线段AA,BB,CC,DD.
Z
D
C y
A
B
M D O Q NC x
AP B
40
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
Z
D
C y
A
B
M D O Q NC x
AP B
41
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
A
D
A
C
B
C
B
42
练习:怎样画底面是正三角形,且顶点 在底面上的投影是底面中心的三棱锥?
C
A
B
zS
y C
M
A
o B xA
S C B
画轴 → 画底面 → 画侧棱 → 成图
43
(2)已知图形中平行于x轴或y轴的线段,在直观图中
分别画成平行于x′轴或y′轴的线段.
(3)已知图形中平行于x轴的线段,在直观图中保持
原长度不变;平行于y轴的线段,长度取半.
33
斜二测画法的基本步骤: (1)建坐标系,定水平面; (2)与坐标轴平行的线段保持平行; (3)水平线段等长,竖直线段减半.
y
D
C
y′ C′
D′
A
Bx
A′
B′ x′
29
例1.用斜二测画法画水平放置的六边形的 直观图。
1 在六边形ABCDEF中,取AD所在的直线为X轴,
对称轴MN所在直线为Y轴,两轴交于点O。画相应
的X轴和Y轴,两轴相交于点O,使xOy=45
y
y
F ME
A
O Dx
O
x
B NC
30
例1用斜二测画法画水平放置的六边形的直观图
方位角 A
图2
方向角和方位角的区别
南偏东45o
西


45o

方向角 一般是指以观测者的位置为中心,将正北或正南
方向作为起始方向旋转到目标的方向线所成的角(一般指 锐角),通常表达成北(南)偏东(西)××度.
方位角和方向角的区别
方位角120o
西

120o


方位角 从标准方向的北端起,顺时针方向到直线的水平
且 tan A tan B 3 tan A • tan B 3,又ABC的面积为
SABC
3 3 ,求a 2
b的值
解:由已知 tan A tan B 3(tan A • tan B 1)
得 tan(A B) tan A tan B 3, C 60o
1 tan A• tan B
SABC
sin PAB 6 122 16
答:AB方向的方位角的正弦值为 6 122 。 16
本章知识框架图
正弦定理 余弦定理
解三角形 应用举例
课堂小结
1、正弦定理、余弦定理的简单应用; 2、利用正、余弦定理、三角形面积公式解 三角形问题; 3、解三角形的实际应用问题
变式训练
在ABC中,已知(a b c)(a b c) 3ab, 且2cos Asin B sin C,试确定ABC的形状
34
例2.用斜二测法画水平放置的圆的直观图
y
C EG
A OBx
D FH
y
CEG
A O B
x
DFH
35
例2.用斜二测法画水平放置的圆的直观图
y
C EG
A OBx
D FH
36
知识探究(二):空间几何体的直观图的画法
例3.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体的直观图.
37
1画来自百度文库.画x轴,y轴,z轴,三轴交于点O,使xOy=45 ,
相关文档
最新文档