解三角形PPT教学课件

合集下载

解直角三角形PPT课件

解直角三角形PPT课件

感悟新知
知2-练
1.如图,在 Rt△ABC 中,∠C=90°,∠B=30°,AB=
8,则 BC 的长是( D )
A.4 3 3 C.8 3
B.4 D.4 3
感悟新知
知2-练
2.在△ABC 中,∠C=90°,若∠B=2∠A,AC=3,则
BC 等于( B )
A.
3 3
B. 3
C.6
D.32
感悟新知
A.沥青表面被烤化 B.水中加糖得到糖水
C.冰凌化成水
D.蜡烛燃烧
夯实基础·逐点练
【点拨】 水中加糖,水变成糖水,糖块变成小颗粒溶解在水中,
属于溶解现象,不是熔化现象.
整合方法·提升练
12 【南京期中】如图所示是“探究某物质熔化和凝固规 律”的实验现象,下列说法正确的是( D ) A.在t=6 min时,该物质处于固液共存状态 B.在BC段,该物质不吸热 C.该物质在CD段是气态 D.该物质的凝固点是45 ℃
感悟新知
解题秘方:紧扣以下两种思路去求解
知2-练
(1) 求边时,一般用未知边比已知边 ( 或已知边
比未 知边 ) ,去找已知角的某一个锐角三
角函数 .
(2) 求角时,一般用已知边比已知边,去找未
知角的某一个锐角三角函数.
感悟新知
知2-练
解: (1) 在 Rt △ABC 中,∠C = 90°,∠ A =30 °,
探究培优·拓展练
16 如图所示,把盛有碎冰块的大试管插入烧杯里的碎冰 块中,用酒精灯对烧杯底部慢慢加热,当烧杯中的冰 块有大半熔化时,试管中的冰( C ) A.熔化一部分 B.全部熔化 C.一点也不熔化 D.无法判断
探究培优·拓展练
【点拨】 烧杯中是冰水混合物,温度为0 ℃.当处于其中的小瓶

《解直角三角形》数学教学PPT课件(3篇)

《解直角三角形》数学教学PPT课件(3篇)
b
获取新知
B
对边 a C
c 斜边
b 邻边 A
定义:一般地,直角三角形中,除直角外 还有五个元素,即三条边和两个锐角.由直角三 角形中的已知元素,求出其余未知元素的过程 叫做解直角三角形.
直角三角形中,未知的5个元素之间的关系
B
①三边之间的关系
a
c
a2 b2 c2
C
A
b
已知任意两边可求出第
直角三角形中,未知的5个元素之间的关系
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°, ∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
A
D B
归纳总结
C

AD
BB
A D
CE

提 求解非直角三角形的边角问题,常通过添加适 示
解:∵△ABD是等边三角形,∴∠B=60°.
在Rt△ABC中,AB=2,∠B=60°,
BC
AB cosB
2 1

4,AC
AB
tanB
2
3.
2
△ABC的周长为2+ 2 3 +4=6+ 2 3 .
3.在Rt△ABC中,∠C=90°,tanA= 12 ,△ABC 5
的周长为45cm,CD是斜边AB上的高,求CD的长.(精 确到0.1 cm)
例5 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形
的其他元素.(长度精确到0.01)

解直角三角形PPT课件

解直角三角形PPT课件
2024/1/25
正切定理
在直角三角形中,锐角的正切值等于其对边比邻边,即 tanα = a/b。
6
02
勾股定理及其逆定 理
2024/1/25
7
勾股定理内容及证明
2024/1/25
勾股定理内容
在直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理证明
可以通过相似三角形、面积法、 向量法等多种方法进行证明。
2024/1/25
正弦、余弦定理
已知任意两边和夹角,可以利用正弦定理$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$或余弦定理$c^2 = a^2 + b^2 - 2abcos C$求出第三边和角度。
16
已知一边一角求其他元素
正弦、余弦函数
已知一条边和一个锐角,可以利用正弦或余弦函数求出另一条直角边和斜边。例如,已知直角边$a$和锐角$A$ ,则可以利用$sin A = frac{a}{c}$求出斜边$c$,再利用勾股定理求出另一条直角边$b$。
正切函数
正切(tangent)是一个 角的对边长度与邻边长度 的比值,即 tan(θ) = 对边 / 邻边。
12
特殊角度三角函数值
0°、30°、45°、60°、90°等特殊角 度的三角函数值,如 sin(30°) = 1/2 ,cos(45°) = √2/2,tan(60°) = √3 等。
特殊角度三角函数值的推导过程及其 在解题中的应用。
2024/1/25
13
三角函数图像与性质
正弦、余弦、正切函数的图像及其周期性、奇偶性、单调性等性质。 利用三角函数图像解决相关问题的思路和方法。
2024/1/25

解直角三角形-ppt课件

解直角三角形-ppt课件



,∴




∴CH = ,
∴AH=

∴AB=2AH=



.

=

,∵∠B=30°,

=



26.3 解直角三角形
重 ■题型 解双直角三角形

例 如图,在 Rt△ABC 中,∠C=90°,D 是 AC 上一



点,BD=10
,∠BDC=45°,sinA=
,求 AD 的长.

∴S






AB·AE= ×4×4 =8 ,


CD·DE= ×5 ×15=
四边形 ABDC=S△CDE-S△ABE=






(方法二)如图 2,过点 A 作 AF⊥CD 于点 F,过点
B 作 BG⊥AF 于点 G,则∠ABG=30°,
∴AG=


AB=2,BG= − =2 ,
况讨论,求出不同情况下的答案.
26.3 解直角三角形
■方法:运用割补法求不规则图形的面积


割补法是求不规则图形面积问题的最常用方法,割补法

巧 包含三个方面的内容:一是分割原有图形成规则图形;二

拨 是通过作辅助线将原有图形补为规则图形;三是分割和补
形兼而有之.
26.3 解直角三角形
例 如图,在四边形 ABDC 中,∠ABD=120°,AB⊥AC,


2

=25
26.3 解直角三角形
变式衍生 如图,在Rt△ABC中,∠ACB=90°,D 是 AB

《解直角三角形》教学课件

《解直角三角形》教学课件

利用正弦、余弦函数的定 义和勾股定理,可以分别 求出斜边c和另一直角边b 的长度。
sin60°=a/c,即√3/2=4/c b=√(c²-a²)=√(4.62²-
,解得c≈4.62。
4²)≈2.31。
本题主要考察了解直角三 角形中已知一边一角求其 他元素的方法,通过正弦 、余弦函数的定义和勾股 定理进行求解。在实际应 用中,还可以利用正切等 三角函数进行求解。
加强公式应用训练
通过大量的练习题,让学生熟练掌握解直角三角形的相关公式,并 能够正确应用。
提高计算准确性
鼓励学生进行反复练习,提高计算速度和准确性。同时,教师可以 提供一些计算技巧和方法,帮助学生更好地进行计算。
提高计算准确性和效率策略
使用科学计算器
鼓励学生使用科学计算器进行计算,以提高计算效率和准确性。
《解直角三角形》教 学课件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 典型例题分析与解答 • 学生常见错误及纠正方法 • 拓展延伸:三角函数在解直角三角形中应
用 • 总结回顾与课堂互动环节
01
直角三角形基本概念与性质
直角三角形的定义
01
有一个角为90度的三角形称为直 角三角形。
学生自我评价报告分享
学习成果展示
学生可以通过绘制思维导图、制作海报或写学习报告等方式 ,展示自己的学习成果,包括掌握的知识点、解题技巧和学 习心得等。
学习反思与改进
学生可以反思自己在学习过程中的不足和遇到的困难,提出 改进措施和学习计划,以便更好地掌握解直角三角形的相关 知识和技能。
教师点评及建议
典型例题三:综合应用问题
01
02
03
04

解直角三角形完整版PPT课件

解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

28.2.1解直角三角形课件(共16张PPT)

28.2.1解直角三角形课件(共16张PPT)
c b 20 34.9. sin B sin 35
A
c
b = 20
35°
B
aC
你还有其他方 法求出c吗?
【针对练】
如图,从点C测得树的顶角为33º,BC=20米,则树高AB= ________米(用计算器计算,结果精确到0.1米)
【解析】由tanC AB,得
BC
AB=BC·tanC=20×tan33°=13.0 【答案】13.0
C
6
B
AB 2AC 2 2.
合作探究 达成目标
【例2】如图,在Rt△ABC中,∠B=35°,b=20,解这
个直角三角形(精确到0.1)
【解析】A 90-B 90-35 55.
tan B b a
a b 20 28.6 tan B tan 35
sin B b c
B的邻边 斜边

a c
tan
A

A的对边 A的邻边

a b
tan
B

B的对边 B的邻边

b a
合作探究 达成目标
【例1】如图,在Rt△ABC中,∠C=90°,AC 2, BC 6
解这个直角三角形.
【解析】
tan A BC AC
6 2
3,
A
2
A 60.
B 90 A 30.
总结梳理 内化目标
1.解直角三角形的关键是找到与已知和未知相关 联的直角三角形,当图形中没有直角三角形时, 要通过作辅助线构造直角三角形(作某边上的高 是常用的辅助线).
2.一些解直角三角形的问题往往与其他知识联系 ,所以在复习时要形成知识结构,要把解直角三 角形作为一种工具,能在解决各种数学问题时合 理运用.

《解直角三角形》-完整版PPT课件

《解直角三角形》-完整版PPT课件

整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm

解直角三角形的应用(19张ppt)课件

解直角三角形的应用(19张ppt)课件

选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。

解三角形PPT优秀课件1

解三角形PPT优秀课件1

b2 A
c2
a2
可得
2bc
(1)若a²=b²+c²,则A为直角;
(2)若a²<b²+c²,则A为锐角;
(3)若a²>b²+c², 则A为钝角;
6、三角形面积:
S 1底 h 2
S 1absinC1acsinB1bcsinA
2
2
2
S
1、 A B C 中 , A 4 5 , C 3 0 , c 1 0 , 求 B , a , b . 解: B 1 8 0 A C 105
a
b
c
s i n A 2 R,s i n B 2 R,s i n C 2 R ,
a:b:c sinA: sinB:sinC.
正弦定理可解以下两种类型的三角形:
(1)已知两角一边; (2)已知两边及其中一边的对角.
4、余弦定理:
a2=b2+c2-2bccosA b2= c2+a2-2cacosB
解:由 a b ,
sin A sin B
得 sin B b s in A 6 3 sin 30 3
a
6
2
B = 60或120,
a
∵ 在 ABC中,ab
C b
∴ ∠A < ∠B
A
B
B
B = 60或 120都 成 立 ,
当 B = 6 0时 C 9 0, 当 B = 1 2 0时 C 3 0。
cos A= 1 ,
2
∴∠B 2 3 sin 45 3
b
22
2
A=60或 120,ca,0 A90,
∴∠A=60°.

《解直角三角形(第2课时)》课件 (共29张PPT)

《解直角三角形(第2课时)》课件 (共29张PPT)

B
α=30° 120 D β=60°
A
C
P
Q
α O·
1. 如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同 时施工,从AC上的一点B取∠ABD = 140°,BD = 520m,∠D=50°,那 么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m) A B 140° C E
50° D
3. 如图,太阳光与地面成60度角,一棵倾斜的大树 AB与地面成30度角,这时测得大树在地面上的影长 为10m,请你求出大树的高.
P
30°
A
200米
45°
O
B
L U D
合作与探究
变题2:如图,直升飞机在高为200米的大楼AB 左侧P点处,测得大楼的顶部仰角为45°,测得 大楼底部俯角为30°,求飞机与大楼之间的水 A 平距离.
P
45° 30°
200米 D
O
B
例2:热气球的探测器 显示,从热气球看阳光 宾馆顶部的仰角为 30°,看它的底部的俯 角为60°,热气球与阳 光宾馆的水平距离为 120m,阳光宾馆有多 高?

a
b

温故而知新
如图,Rt△ABC中,∠C=90°,
(1)若∠A=30°,BC=3,则AC= 3 3 (2)若∠B=60°,AC=3,则BC=
3
(3)若∠A=α°,AC=3,则BC= 3 tan
m (4)若∠A=α°,BC=m,则AC= tan
B
A
┌ C
例题 例4: 2008年10月15日“神舟”7号载人航天飞船发射 成功.当飞船完成变轨后,就在离地球表面350km的 圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到地球上的点 在什么位置?这样的最远点与P点的距离是多少? (地球半径约为6 400km,结果精确到0.1km) F

《解直角三角形的应用》PPT教学课件(第1课时)

《解直角三角形的应用》PPT教学课件(第1课时)
10 3
2
10 3 10
∴渔船不会进入危险区.
例题分析
思考:用三角函数求边长,什么情况下需要设未知数、列方程?什么情况下不需要设未知
数,可以直接求?
C
F
北 E
60°
A
F
北 E
30°

60°
是直角三角形的边长
D

A
C
2
30°
0
1
B
2
0 已知边
2
2
0
角三角形的边长
B
D
是直
总结分析
用三角函数求边长时的注意事项
随堂练习
2.如图,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并
测得它的俯角为45°,则船与观测者之间的水平距离BC=____
100 米.
解析:由题意知,从A处观测B,其俯角为450,
∴∠BAC=900-450=450,
又AC⊥BC
∴△ABC是等腰直角三角形,
∴BC=AC=100米.

在Rt△AOC中,tan ∠AOC=
∴AC=OC ×tan500 ≈4.5 ×1.9 ≈5.36
∴AB=AC+BC=1.44+5.36=6.8
O
C
D
B
4.5
认识方位角

D
E
H
45°
(1)正东,正南,正西,正北
45°
射线OA OB OC OD

西
C
射线OE
A (2)西北方向:_________

3
CD
∴ =
=
tan∠
3
BD

高中数学解三角形ppt课件

高中数学解三角形ppt课件

证明几何定理
如勾股定理、正弦定理、余弦定理等 ,可以通过面积公式进行证明
计算三角形的内角和
利用面积公式和三角形内角和定理, 可以求出三角形的内角和
面积公式在物理问题中的应用
1 2
计算物体的受力面积
在物理学中,经常需要计算物体在某个方向上的 投影面积或受力面积,可以通过面积公式进行计 算
计算物体的体积和表面积
02 余弦定理
在任意三角形中,任何一边的平方等于其他两边 平方的和减去这两边与它们夹角的余弦的积的两 倍。
03 三角形的面积公式
S=1/2absinC,其中a、b为两边长,C为两边夹 角。
02
正弦定理及其应用
正弦定理的推导与证明
推导过程
通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。
一些几何性质。
最值问题
通过解三角形的方法,可以求解一 些与三角形相关的最值问题,如最 大面积、最小周长等。
存在性问题
在数学竞赛中,有时需要判断满足 某些条件的三角形是否存在,这可 以通过解三角形的方法来实现。
THANKS
感谢观看

对于一些规则或不规则的物体,可以通过计算其 各个面的面积,进而求出物体的体积和表面积
3
解决光学问题
在光学中,经常需要计算光线通过某个形状的面 积或光斑的大小,可以通过面积公式进行求解
05
解三角形综合应用举例
解直角三角形问题举例
已知两边求角度
通过正弦、余弦定理求解 直角三角形中的角度。
三角形的面积
解决三角形中的边长问题
利用正弦定理求出三角形中的未知边长。
正弦定理在物理问题中的应用
解决力学问题
在力学中,正弦定理可用于解决 涉及三角形的问题,如力的合成 与分解等。

解三角形PPT课件

解三角形PPT课件
第13页/共40页
解 法 三: a2 b2 c2 2bccos A
(1) 2
2
2 2
32 c2 22
3 c cos45
c2 2 6c 4 0.解 得c 6 2 ABC有 两 解
(2) 112 222 c2 2 22 c cos30
c2 22 3c 363 0. 解 得c 11 3 ABC有 一 解
A. 0 a 4 3
B. a 6
C. a 4 3或a 6 D. 0 a 4 3或a 6
点评:可通过正弦定理或几何作图很容易 看出三角形有一个解的情况有两种。这些 有些同学容易出现误区,直接令关于C的一 元二次方程有一解,很容易少考虑a>b的情 况,以后做题时要注意。
第15页/共40页
2 sin15 sin45
6 2
2
第19页/共40页
方 法 二用 余 弦 定 理
b2 a2 c2 2accosB 2 3 c2 2 3 cos45 即c2 6c 1 0 解 之 , 得c 6 2
2
点评:此类问题求解需要主要解的个数的讨论,比 较上述两种解法,解法二比较简便。
2
2
cos A B sinC ;
2
2
tan A B cotC
2
2
(5)在ABC中,tanA tanB tanC tanA tanB tanC
第4页/共40页
(6)ABC 中,A、B、C成等差数列的充要条件
是B=60
(7) ABC为正三角形的充要条件是A、B、C成等差数 列,a、b、c成等比数列.
(3) 182 202 c2 2 20 c cos150 c2 20 3c 76 0. 解 得c 10 3 4 11 10 3 4 11 0 ABC无 解

解三角形-PPT课件

解三角形-PPT课件
2023最新整理收集 do something
本 章 优 化 总 结
本章优化总结
知识体系网络
专题探究精讲
知识体系网络
专题探究精讲
判断三角形形状 判断三角形的形状,一般有以下两种途径: (1)将已知条件统一化成边的关系,用代数方法 求解; (2)将已知条件统一化成角的关系,用三角方法 求解. 在解三角形时的常用结论有:
【解】 (1)依题意,PA-PB=1.5×8=12 (km), PC-PB=1.5×20=30 (km). 因此 PB=(x-12) km,PC=(18+x) km. 在△PAB 中,AB=20 km, cos∠PAB=PA2+2PAAB·A2-B PB2=x2+2022-x·20x-122 =3x+ 5x32.
(1)设A到P的距离为x km,用x表示B、C到P 的距离,并求x的值; (2)求静止目标P到海防警戒线a的距离.(结果 精确到0.01 km)
【思路点拨】 (1)PA、PB、PC长度之间的关 系可以通过收到信号的先后时间建立起来; (2)作PD⊥a,垂足为D,要求PD的长,只需要 求出PA的长和cos∠APD,即cos∠PAB的 值.由题意,PA-PB,PC-PB都是定值,因 此,只需要分别在△PAB和△PAC中,求出 cos∠PAB,cos∠PAC的表达式,建立方程即可.
例4 如图所示,a是海面上一条南北方向的 海防警戒线,在a上点A处有一个水声监测点, 另两个监测点B、C分别在A的正东方向20 km 处和54 km处,某时刻,监测点B收到发自静 止目标P的一个声波,8 s后监测点A、20 s后 监测点C相继收到这一信号,在当时的气象条 件下,声波在水中的传播速度是1.5 km/s.
(1) 在 △ ABC 中 , ∠ A> ∠ B⇔ a>b ⇔ sinA>sinB ⇔
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
D
C
y′ C′
D′
A
Bx
A′
B′ x′
29
例1.用斜二测画法画水平放置的六边形的 直观图。
1 在六边形ABCDEF中,取AD所在的直线为X轴,
对称轴MN所在直线为Y轴,两轴交于点O。画相应
的X轴和Y轴,两轴相交于点O,使xOy=45
y
y
F ME
A
O Dx
O
x
B NC
30
例1用斜二测画法画水平放置的六边形的直观图
AP B
41
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
A
D
A
C
B
C
B
42
练习:怎样画底面是正三角形,且顶点 在底面上的投影是底面中心的三棱锥?
C
A
B
zS
y C
M
A
o B xA
S C B
画轴 → 画底面 → 画侧棱 → 成图
43
变式训练
在ABC中,角A、B、C的对边分别为a,b,c,tan C 3 7 (1)求cos C (2)若CA • CB 5,且a b 9,求c
2
典型例题
例 在ABC中,a2 (b b c),求A与B满足的关系
本题启示:由正弦定理、余弦定理进行边角转化 一般的,如果遇到的式子含角的余弦或是边的二次式,要
典型例题
例 在ABC中,a2 (b b c),求A与B满足的关系
解答
例 在ABC中,a2 (b b c),求A与B满足的关系
解:由已知a2 (b b c) a2 b2 bc,移项得:b2 a2 bc
由余弦定理:a2 b2 c2 2bccosA,移项:2bccosA=b2 a2 c2
(sin C c ) 2R
余弦定理
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
推论
b2 c2 a2 cos A
2bc cos B a2 c2 b2
2ac cos C a2 b2 c2
2ab
三角形面积公式
便获得正六边形ABCDEF水平放置的直观图ABCDEF
y
F ME
A
O Dx
B NC
y
F M E
A
O
D x
B N C
32
知识探究(一)水平放置的平面图形的直观 图的作法
1.斜二测画法:画多边形
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交
于o点.画直观图时,把它画成对应的x′轴、y′轴,使
xOy=45 或135 ,它确定的平面表示水平平面。
B
A
B
S 2 2
45
作业:
P19练习:2,3(做书上); P21习题1.2A组:4,5.
46
B A B或B (A B) (舍去)
即A与B满足的关系为A 2B
本题启示
典型例题
例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c 7 , 2
且 tan A tan B 3 tan A • tan B 3,又ABC的面积为
SABC
3 3 ,求a 2
b的值
例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c 7 , 2
24
3、 说出下面的三视图表示的几何体的结 构特征.
25
4、根据几何体的三视图,还原成几何体。
26
对于柱体、锥体、台体及简单的组合 体,在平面上应怎样作图才具有强烈的 立体感?这涉及空间几何体的直观图的 画法问题.
27
1.2空间几何体的直观图
28
知识探究
探究1、画一个水平放置的平面图形的直 观图.
且 tan A tan B 3 tan A • tan B 3,又ABC的面积为
SABC
3 3 ,求aBiblioteka 2b的值解:由已知 tan A tan B 3(tan A • tan B 1)
得 tan(A B) tan A tan B 3, C 60o
1 tan A• tan B
SABC
s 1 ab sin C 2
1 bc sin A 2
1 ac sin B 2
解决已知两边及其夹角求三角形面积
课堂练习 (1)在ABC中,已知a 4,b 4 2,B 45o,求A (2)在ABC中,已知三边长AB=7,BC=5,AC=6,求 cos B
本章知识框架图
正弦定理 余弦定理
解三角形
练习:已知一个几何体的三视图如下, 这个几何体的结构特征如何?试用斜二 测画法画出它的直观图.
正视图 侧视图 俯视图
z
y′
A′
B′
o′
x′
y
A
oB x
44
练习:如图,一个平面图形的水平放置 的斜二测直观图是一个等腰梯形,它的 底角为45°,两腰和上底边长均为1, 求这个平面图形的面积.
D
C
D
C
A
(2)已知图形中平行于x轴或y轴的线段,在直观图中
分别画成平行于x′轴或y′轴的线段.
(3)已知图形中平行于x轴的线段,在直观图中保持
原长度不变;平行于y轴的线段,长度取半.
33
斜二测画法的基本步骤: (1)建坐标系,定水平面; (2)与坐标轴平行的线段保持平行; (3)水平线段等长,竖直线段减半.
多考虑用余弦定理;反之,若是遇到的式子含角的正弦和边的 一次式,则大多用正弦定理.
高一年级数学必修2 1.2空间几何体的直观图
22
复习巩固
1、如图所示,将一个长方体截去一 部分,这个几何体的三视图是什么?
正视
正视图
侧视图
俯视图
23
复习巩固 2、将一个长方体挖去两个小长方体后剩余 的部分如图所示,试画出这个组合体的三 视图.
39
3画侧棱.过A,B,C,D,各点分别作z轴的平行线,并在这些平行线
上分别截取2cm长的线段AA,BB,CC,DD.
Z
D
C y
A
B
M D O Q NC x
AP B
40
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
Z
D
C y
A
B
M D O Q NC x
34
例2.用斜二测法画水平放置的圆的直观图
y
C EG
A OBx
D FH
y
CEG
A O B
x
DFH
35
例2.用斜二测法画水平放置的圆的直观图
y
C EG
A OBx
D FH
36
知识探究(二):空间几何体的直观图的画法
例3.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体的直观图.
37
1画轴.画x轴,y轴,z轴,三轴交于点O,使xOy=45 ,
应用举例
某渔船在航行中遇险发出呼救信号,我海军舰艇在A处获悉后
立即测出该渔船在方向角为北偏东45o,距离10海里的C处,
渔船沿着方位角为105o的方向以v海里 / 小时的速度向小岛靠拢, 我海军艇舰立即以4v海里 / 小时的速度前去营救。设艇舰在B处 与渔船相遇,求AB方向的方位角的正弦值
方向角
C B
必修5 解三角形复习 课件
正弦定理
a b c 2R (R为三角形外接圆半径) sin A sin B sin C
a : b : c sin A: sin B : sinC
a 2R sin A b 2R sin B c 2R sin C
(sin A a ) 2R
(sin B b ) 2R
sin PAB 6 122 16
答:AB方向的方位角的正弦值为 6 122 。 16
本章知识框架图
正弦定理 余弦定理
解三角形 应用举例
课堂小结
1、正弦定理、余弦定理的简单应用; 2、利用正、余弦定理、三角形面积公式解 三角形问题; 3、解三角形的实际应用问题
变式训练
在ABC中,已知(a b c)(a b c) 3ab, 且2cos Asin B sin C,试确定ABC的形状
2bccosA=-bc+c2,2b cos A b c 由正弦定理:2•2RsinB cos A 2Rsin B 2Rsin C 2sinB cos A sin B sin C sin B sin(A B)
sin B sin Acos B sin B cos A
sin B sin Acos B sinBcos A sin(A B)
角称为该直线的方位角。方位角的取值范围为0°~360°
Q
P
105o
C
v
B
45o 10
4v
A
解:由正弦定理得, BC AB sin CAB sin ACB
vt 4vt sin CAB sin120o
解得 sin CAB 3 8
cos CAB 61 8
sin PAB sin(CAB 45o) sin CAB cos 45o cos CABsin 45o
xOz 90 .
Z
y
O
x
38
2画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在
轴上取线段PQ,使PQ=1.5cm;分别过点M 和N作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
Z
y
D QC
MO N x
相关文档
最新文档