运动控制仿真实验报告

合集下载

运动控制实习报告

运动控制实习报告

运动控制实习报告一、实习背景运动控制是现代工业领域中关键的技术之一,它广泛应用于自动化生产线、机器人工作站、飞行器、医疗设备等众多领域。

为了了解和掌握运动控制的基本原理和技术,我在实习期间选择了从事与运动控制相关的实习工作。

二、实习目标1.了解运动控制系统的基本组成和工作原理;2.掌握运动控制中常见的数学模型和算法;3.学会使用运动控制设备进行实验和调试;4.参与运动控制系统的开发和优化过程。

三、实习内容及实施过程在实习期间,我主要参与了某公司的运动控制系统开发项目,具体内容包括以下几个方面:1.了解运动控制系统的基本组成和工作原理。

通过学习相关资料和参观实验室设备,我了解了运动控制系统通常由运动控制器、执行器和传感器等部分组成,并学习了其工作原理和通信方式。

2.学习运动控制中的数学模型和算法。

我系统学习了运动学和动力学方面的知识,并掌握了运动控制中常见的数学模型和算法,如PID控制器、模糊控制、自适应控制等。

3.实验与调试。

在实习期间,我通过实验室设备的调试和实验操作,掌握了运动控制系统的操作和调试方法,包括参数设置、控制信号调节等。

4.参与系统开发和优化。

在实习过程中,我参与了运动控制系统的开发和优化工作,与团队成员共同解决系统中的技术难题、进行性能优化,并进行了相关实验和测试。

四、实习心得体会通过参与实习工作,我对运动控制系统有了更深入的了解,并掌握了运动控制中的基本原理和技术。

通过实践操作,我对运动控制系统的工作过程和调试方法有了更加清晰的认识。

在实习期间,我还学到了团队合作的重要性。

在项目中,我们团队成员之间密切配合,相互交流,共同解决问题,取得了良好的成果。

另外,在实习中,我还发现了运动控制技术的应用前景广阔。

运动控制系统在工业领域中有着重要的应用,它能够提高生产效率和质量,降低成本,为人们的生活带来便利。

通过这次实习,我对运动控制技术有了更加深入的了解,也增强了对未来工作的信心。

我相信,在今后的工作中,我会更加积极主动地学习和应用运动控制技术,为提高工作效率和质量做出贡献。

运动控制实验报告

运动控制实验报告

运动控制实验报告篇一:运动控制实验报告“运动控制系统”专题实验报告篇二:运动控制系统实验报告运动控制系统实验报告姓名:杜文划学号:912058XX02同组人:杜文坚,周文活,黎霸俊异步电动机SPWM与电压空间矢量变频调速系统一、实验目的1. 通过实验掌握异步电动机变压变频调速系统的组成与工作原理。

2. 加深理解用单片机通过软件生成SPWM波形的工作原理特点。

以及不同不同调制方式对系统性能的影响。

3. 熟悉电压空间矢量控制的原理与特点。

4. 掌握异步电动机变压变频调速系统的调试方法。

二、实验过程一、采用SPWM方式调制1. 同步调制30HZ下电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下:定子电流波形如下示: IGBT两端波形如下示:定子端电压波形如下示:50HZ下电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下:定子电流波形如下示: IGBT两端波形如下示:定子端电压波形如下示:波形分析:电机气隙磁通两相绕组之间相差约60°。

电机磁通轨迹50Hz时更接近圆形。

对定子电流:30Hz时和50Hz时呈正弦波,但其中有很多的高频分量。

IGBT的疏密程度反映了脉冲宽度调制的过程,越密表示频率越高。

定子电压呈正弦分布。

同步调制方式在50Hz比较好。

2、异步调制30HZ下电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下:定子电流波形如下示:IGBT两端波形如下示:定子端电压波形如下示:50HZ下电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下:定子电流波形如下示: IGBT两端波形如下示:定子端电压波形如下示:异步调制与同步调制想比,气隙磁通分量更接近正弦波,气隙磁通轨迹更接近圆形,此时30Hz比50Hz效果好些。

3、混合调制混合调制在不同的输出频率段采用不同的载波比10HZ下,载波比为100电机气隙磁通分量波形如下示:电机气隙磁通轨迹下:篇三:运动控制实验报告运动控制系统实验报告姓名刘炜原学号 XX03080414实验一晶闸管直流调速系统电流-转速调节器调试一.实验目的1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。

运动控制专题实验报告(3篇)

运动控制专题实验报告(3篇)

第1篇一、实验背景随着科技的不断发展,运动控制技术已成为现代工业、军事、医疗等领域的关键技术之一。

运动控制系统通过对运动物体的位置、速度、加速度等参数进行精确控制,实现各种复杂运动任务。

本实验旨在通过对运动控制系统的设计与实现,掌握运动控制的基本原理和方法。

二、实验目的1. 理解运动控制系统的基本原理和组成;2. 掌握运动控制系统的设计方法;3. 学习运动控制系统的实现技术;4. 培养实际操作能力和创新能力。

三、实验内容本实验主要分为以下几个部分:1. 运动控制系统概述:介绍运动控制系统的基本概念、组成、分类和特点。

2. 运动控制器:学习运动控制器的种类、原理、功能和性能指标。

3. 运动控制算法:研究常用的运动控制算法,如PID控制、模糊控制、自适应控制等。

4. 运动控制系统设计:根据实际需求,设计运动控制系统,包括系统结构、参数选择和算法实现。

5. 运动控制系统实现:利用运动控制器和实验平台,实现运动控制系统,并进行实验验证。

四、实验步骤1. 运动控制系统概述:- 学习运动控制系统的基本概念和组成;- 了解运动控制系统的分类和特点;- 分析运动控制系统的应用领域。

2. 运动控制器:- 学习运动控制器的种类、原理和功能;- 分析运动控制器的性能指标和选择方法;- 熟悉常见运动控制器的操作方法和编程接口。

3. 运动控制算法:- 学习PID控制、模糊控制、自适应控制等运动控制算法;- 分析各种算法的优缺点和适用范围;- 熟悉各种算法的编程实现。

4. 运动控制系统设计:- 根据实际需求,确定运动控制系统的性能指标;- 设计运动控制系统的结构,包括控制器、执行器、传感器等;- 选择合适的运动控制算法,并进行参数优化。

5. 运动控制系统实现:- 利用运动控制器和实验平台,搭建运动控制系统;- 编写运动控制程序,实现运动控制算法;- 进行实验验证,分析实验结果,调整系统参数。

五、实验结果与分析1. 实验结果:- 实验过程中,成功搭建了运动控制系统,实现了预定的运动控制任务; - 通过实验验证,运动控制系统具有良好的稳定性和准确性。

人体运动控制实验报告

人体运动控制实验报告

人体运动控制实验报告引言人体运动控制是研究人类运动行为和运动控制原理的重要领域。

通过对人体运动控制的研究,可以更好地了解人体运动的机制,为运动训练、康复治疗、运动健身等提供科学依据。

本次实验旨在探究人体运动控制的基本原理,并通过实验验证理论的可行性。

材料与方法材料- 电脑- Matlab软件- 人体运动数据采集设备方法1. 实验设计:选择一个简单的运动任务,例如手臂的屈伸运动。

2. 实验操作:被试者进行手臂屈伸运动,数据通过运动数据采集设备记录并传输到电脑上。

3. 数据处理:使用Matlab软件对采集到的数据进行处理和分析,得出相应的结果。

4. 结果分析:根据数据分析结果,验证人体运动控制的相关原理。

实验结果经过运动数据采集设备的记录和Matlab软件的处理,得到了被试者手臂屈伸运动的相关数据。

通过分析这些数据,我们得到了以下结论:1. 运动轨迹:手臂屈伸运动的运动轨迹呈现出周期性的波动曲线,符合人体运动的特征。

2. 运动速度:手臂屈伸运动的速度在屈曲和伸展阶段存在差异,屈曲阶段速度较慢,伸展阶段速度较快。

3. 运动力度:手臂屈伸运动的力度在不同时间段存在差异,屈曲阶段力度较小,伸展阶段力度较大。

结果讨论通过本次实验得到的结果可以与已知的人体运动控制原理进行对比分析。

手臂屈伸运动的运动轨迹呈现出周期性的波动曲线,这与中枢神经系统的节律生成机制相吻合。

手臂屈伸运动的速度和力度在不同阶段的差异可以归因于运动控制系统对不同肌肉的激活程度的调节。

此外,实验结果还表明人体在进行手臂屈伸运动时,能够通过神经肌肉系统的协调作用,实现运动的平稳与精确。

同时,实验结果还为运动训练和康复治疗提供了一定的参考价值。

然而,本次实验只针对手臂屈伸运动进行了研究,其他运动行为的研究仍然有待深入。

此外,本实验所采集的数据量较小,数据质量和可靠性有待提高。

结论本次实验结果表明人体运动控制的基本原理是可行的。

通过对手臂屈伸运动轨迹、速度和力度的分析,我们得出了有关人体运动控制的一些结论。

运动控制系统仿真实验报告——转速、电流反馈控制直流调速系统的仿真

运动控制系统仿真实验报告——转速、电流反馈控制直流调速系统的仿真

运动控制系统仿真实验报告——转速、电流反馈控制直流调速系统的仿真双闭环直流调速系统仿真对例题3.8设计的双闭环系统进行设计和仿真分析,仿真时间10s 。

具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:60=N P kW , 220=N U V , 308=N I A , 1000=N n r/min , 电动势系数e C =0.196 V·min/r , 主回路总电阻R =0.18Ω,变换器的放大倍数s K =35。

电磁时间常数l T =0.012s,机电时间常数m T =0.12s,电流反馈滤波时间常数i T 0=0.0025s,转速反馈滤波时间常数n T 0=0.015s 。

额定转速时的给定电压(U n *)N =10V,调节器ASR ,ACR 饱和输出电压U im *=8V,U cm =7.2V 。

系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量i σ≤5% ,空载起动到额定转速时的转速超调量n σ≤10%。

试求:(1)确定电流反馈系数β(假设起动电流限制在1.3N I 以内)和转速反馈系数α。

(2)试设计电流调节器ACR.和转速调节器ASR 。

(3)在matlab/simulink 仿真平台下搭建系统仿真模型。

给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。

(4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。

并与仿真结果进行对比分析。

(5)估算空载起动到额定转速的时间,并与仿真结果进行对比分析。

(6)在5s 突加40%额定负载,给出转速调节器限幅后的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),并对波形变化加以分析。

(一)实验参数某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: • 直流电动机:220V ,136A ,1460r/min ,C e=0.132Vmin/r ,允许过载倍数λ=1.5; • 晶闸管装置放大系数:K s=40; • 电枢回路总电阻:R =0.5Ω ; • 时间常数:T i=0.03s , T m=0.18s ;• 电流反馈系数:β=0.05V/A (≈10V/1.5I N )。

运动控制实训报告总结范文

运动控制实训报告总结范文

运动控制实训报告总结范文一、引言运动控制是现代工程领域中的一个重要方向,广泛应用于机器人控制、工业自动化、航空航天等领域。

本次实训旨在通过实际操作,提高我们对运动控制的理论知识的理解和应用能力,加深对运动控制系统的工作原理和设计方法的了解。

二、实训内容1. 运动控制理论讲解在实训之初,我们首先接受了相关的理论知识讲解。

通过学习运动控制的基本原理和常见的控制算法,我对闭环控制、速度控制和位置控制等概念有了更加清晰的认识。

2. 运动控制系统设计在实训的第二部分,我们利用软件仿真工具进行了运动控制系统的设计。

通过搭建闭环控制系统模型并进行仿真实验,掌握了运动控制器的设计方法,并深入了解了不同参数对系统性能的影响。

3. 实际控制器配置与调试基于虚拟仿真的系统设计,我们进一步进行了实际控制器的配置和调试。

通过连接电机、编码器和控制器,掌握了运动控制系统的实际搭建流程并对其进行了参数调整和优化,使系统能够实现准确控制。

4. 运动控制系统性能评估在控制系统搭建完成后,我们对其性能进行了评估。

通过对速度和位置误差的分析和测量,以及对实际轨迹和目标轨迹的对比,判断控制系统是否达到设计要求,并进行可能的改进。

三、实训成果通过本次实训,我取得了以下几方面的成果和收获:1. 提高了对运动控制的理论和实际应用的理解。

通过实际操作,我对运动控制的原理、方法和技术有了更深刻的认识,进一步巩固了相关的理论知识。

2. 掌握了运动控制系统的设计和调试方法。

通过实践操作,我了解了运动控制系统的设计流程和调试步骤,提升了自己的工程实践能力。

3. 熟悉了实际控制器的配置和参数调整。

在实际操作中,我掌握了常见的控制器配置方法,并学会了如何根据系统需求进行参数调整和优化。

4. 学会了运动控制系统性能评估方法。

通过对实际控制系统的性能评估,我了解了如何分析系统的误差和偏差,提出改进方案,进一步完善运动控制系统。

四、实训反思本次实训对我来说是一次非常宝贵的学习机会。

运动控制系统实验报告

运动控制系统实验报告















状 态




在启动阶段,ASR 很快达到转速调节器的限幅值,这个时候转速的变化对转 速环不再产生影响,双闭环系统变成电流无静差的单电流闭环调节系统。当转速
5
图 10 原始动态系统
图 11 校正后的典型Ⅰ型系统
图 12 校正后的典型Ⅱ型系统
图 13 校正后的典型Ⅱ型系统
等效的惯性环节
原始动态系统与Ⅱ型系统相比,动态性能较为吻合,Ⅱ型系统中采用了将大
惯性环节近似为积分环节的工程近似方法,由此可见该近似方法可以在不影响整
体系统的情况下简化对系统的设计难度。
检验电流环传递函数简化条件,满足简化条件。 检验转速环小时间常数近似处理条件,满足近似条件。 转速环设计仿真模型如图所示:
15
(2)仿真起动过程
图 14 转速调节器设计模型
仿真双闭环直流调速系统的启动阶段,启动阶段的转速调节器的状态变化,
启动阶段的电流和转速的动态变化如下图所示:



17 16


电流调节器的超前时间常数 i hTi =0.00125s。 电流调节器的比例系数:
Ki
h 1 2h
R KS
Tl T i
(5 1)0.368 0.0144 2 5107.5 0.1277 0.00025
0.957
校验近似条件
电流环截止频率: ci
1 4T i
0.25 0.00025
1000s1
4.1 按照Ⅰ型系统设计电流环....................................................................1 (1)建立仿真模型(原动态系统).................................................. 1 (2) 按照 KT =0.5 设计 ACR 调节器参数......................................... 2 (3)按照 KT =1 设计 ACR 调节器参数.............................................. 3 (4)仿真比较校正环节与等效环节的性能...................................... 4

运动仿真测量实验报告(3篇)

运动仿真测量实验报告(3篇)

第1篇一、实验背景随着计算机技术的飞速发展,运动仿真技术在体育科学、运动医学、机械设计等领域得到了广泛应用。

运动仿真测量实验可以帮助我们更好地了解运动过程中的力学参数、生物力学特性以及运动效果。

本实验旨在利用运动仿真软件对某运动项目进行测量,分析其运动特性,为运动训练和康复提供理论依据。

二、实验目的1. 掌握运动仿真软件的使用方法;2. 了解运动过程中的力学参数和生物力学特性;3. 分析运动效果,为运动训练和康复提供理论依据。

三、实验原理运动仿真测量实验主要基于运动学、动力学和生物力学原理。

通过建立运动模型,模拟运动员在运动过程中的力学行为,分析运动过程中的力学参数和生物力学特性。

四、实验器材1. 运动仿真软件:如ADAMS、MATLAB等;2. 运动数据采集设备:如高速摄像机、力传感器等;3. 运动模型:运动员模型、运动器械模型等。

五、实验步骤1. 建立运动模型:根据实验需求,利用运动仿真软件建立运动员模型、运动器械模型等;2. 定义运动参数:设置运动员的初始位置、速度、加速度等运动参数;3. 模拟运动过程:启动运动仿真软件,观察运动员在运动过程中的力学行为;4. 数据采集:利用运动数据采集设备记录运动过程中的力学参数和生物力学特性;5. 数据分析:对采集到的数据进行处理和分析,得出运动效果。

六、实验结果与分析1. 运动员在运动过程中的力学参数:如速度、加速度、力矩等;2. 运动员在运动过程中的生物力学特性:如肌肉活动、关节运动等;3. 运动效果分析:根据实验结果,分析运动过程中的优点和不足,为运动训练和康复提供理论依据。

七、实验结论1. 运动仿真测量实验可以帮助我们更好地了解运动过程中的力学参数和生物力学特性;2. 通过分析实验结果,为运动训练和康复提供理论依据,提高运动效果;3. 运动仿真技术在体育科学、运动医学、机械设计等领域具有广泛的应用前景。

八、实验总结1. 运动仿真测量实验有助于我们深入了解运动过程中的力学行为和生物力学特性;2. 实验过程中,需要注意数据采集的准确性,以及运动模型的合理性;3. 运动仿真技术在体育科学、运动医学、机械设计等领域具有广泛的应用前景,为运动训练和康复提供有力支持。

控制仿真实验报告

控制仿真实验报告

控制仿真实验报告控制仿真实验报告引言:控制仿真实验是一种通过计算机模拟系统行为,以验证和优化控制算法的方法。

在现代工程领域中,控制仿真实验在设计和开发过程中扮演着重要的角色。

本文将介绍一次控制仿真实验的过程和结果,探讨仿真实验的意义和应用。

1. 实验目标本次控制仿真实验的目标是设计和评估一种PID控制器,用于稳定一个机械臂的运动。

通过仿真实验,我们希望验证该控制器是否能够使机械臂达到预定的位置和速度,并且具有良好的鲁棒性和响应速度。

2. 实验设置在仿真软件中,我们建立了一个包含机械臂、传感器和控制器的模型。

机械臂由多个关节组成,可以在三维空间中进行运动。

传感器用于测量机械臂的位置和速度,并将这些信息反馈给控制器。

控制器根据传感器的反馈信息和预定的目标,计算出控制信号,控制机械臂的运动。

3. 实验步骤首先,我们根据机械臂的物理参数和运动方程,建立了仿真模型。

然后,我们选择了PID控制器作为控制算法,并根据经验设定了合适的参数。

接下来,我们进行了一系列仿真实验,分别测试了机械臂在不同位置和速度下的控制效果。

在每次实验中,我们记录了机械臂的运动轨迹、控制信号和误差。

4. 实验结果通过对实验数据的分析,我们得到了以下结论:- PID控制器能够使机械臂达到预定的位置和速度,并且具有良好的鲁棒性。

在不同位置和速度的情况下,控制器都能够快速且稳定地将机械臂调整到目标状态。

- 在实验过程中,我们发现控制器的参数对控制效果有着重要的影响。

通过调整PID参数,我们可以改变控制器的响应速度和稳定性。

- 在某些情况下,机械臂可能会出现振荡或超调的现象。

这时,我们可以通过调整PID参数或者采用其他控制算法来改善控制效果。

5. 实验讨论控制仿真实验为我们提供了一个安全、经济且高效的方法,用于验证和优化控制算法。

通过仿真实验,我们可以在实际系统投入运行之前,对控制器的性能进行评估和改进。

同时,仿真实验还能够帮助我们理解系统的动态特性,探索不同控制策略的优缺点。

汽车运动控制仿真实验报告

汽车运动控制仿真实验报告

汽车运动控制系统仿真设计姓名:学号:912110300325班级:9121102001一、题目介绍针对具体的设计对象进行数学建模,然后运用经典控制理论知识设计控制函数,并应用Matla进行仿真分析。

通过本次仿真设计,建立理论知识与生活中对象之间的联系,加深和巩固所学的控制理论知识。

二、控制对象分析1、控制设计对象简化图2、机构特征汽车运动控制系统如图1所示。

忽略车轮的转动惯量,且假定汽车受到的摩擦阻力大小与运动速度成正比,方向与汽车运动方向相反。

根据牛顿运动定律,该系统的模型表示为:mv +bv=uy=v(1)其中,u为汽车驱动力(系统输入),m为汽车质量,b为摩擦阻力与运动速度之间的比例系数,v为汽车速度(系统输出),v为汽车加速度。

3、对系统的参数进行如下设定:汽车质量m=1200kg比例系数b=60 N·s/m汽车的驱动力u=600 N。

三、题目要求分析当汽车的驱动力为600N时,汽车将在5秒内达到10m/s的最大速度。

由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。

这样,该汽车运动控制系统的性能指标设定为:上升时间:<5s;最大超调量:<10%;稳态误差:<2%。

所以,写出控制系统的数学模型:为了得到控制系统传递函数,对式(1)进行拉普拉斯变换,假定系数的初始条件为零,则动态系统的拉普拉斯变换为既然系统输出是汽车的速度,用Y(s)替代v(s),得到msV s+bV s=u(s)Y s=V(s)(2)由于系统输出是汽车的运动速度,用Y(S)替代V(s),得到:msY s+bY s=U(s)(3)该控制系统汽车运动控制系统模型的传递函数为:Y(s) U(s)=1ms+b(4)由此,建立了系统模型。

四、系统模型的仿真根据我们建立的数学模型,求系统的开环阶跃响应由汽车质量m=1200kg,比例系数b=60 N·s/m,汽车的驱动力u=600 N。

运动控制系统实验报告

运动控制系统实验报告

运动控制系统实验报告运动控制系统实验报告概述运动控制系统是现代工业中不可或缺的一部分,它通过对机械设备的运动进行精确的控制,实现了生产过程的自动化和高效化。

本实验旨在通过对运动控制系统的研究和实验,探索其原理和应用。

一、实验目的本次实验的主要目的是研究运动控制系统的基本原理和应用,包括控制器的设计、运动规划和运动控制算法的实现。

通过实验,我们将深入了解运动控制系统的工作原理,掌握其调试和优化方法,为今后在工业自动化领域的应用打下基础。

二、实验装置和原理实验所用的运动控制系统包括运动控制器、电机驱动器和电机。

运动控制器是整个系统的核心,它接收外部的控制信号,经过处理后输出给电机驱动器。

电机驱动器负责将控制信号转换为电机能够理解的电压和电流信号,并驱动电机实现运动。

电机则是实际执行运动的部分,它根据电机驱动器的信号进行转动或线性运动。

三、实验步骤1. 系统搭建:按照实验指导书的要求,将运动控制器、电机驱动器和电机连接起来,并进行必要的设置和校准。

2. 控制器设计:根据实验要求,设计控制器的结构和参数。

可以选择PID控制器或者其他适合的控制算法。

3. 运动规划:根据实验要求,设计合适的运动规划方式。

可以使用简单的直线运动或者复杂的曲线运动。

4. 运动控制算法实现:将设计好的控制器和运动规划算法实现在运动控制器上。

可以使用编程语言或者专用的控制软件。

5. 实验调试:进行实验前的调试工作,包括控制器参数的调整、运动规划的优化等。

6. 实验运行:按照实验要求,进行实验运行并记录实验数据。

7. 数据分析:对实验数据进行分析和处理,评估实验结果的准确性和稳定性。

8. 实验总结:总结实验过程中的问题和经验,提出改进和优化的建议。

四、实验结果与讨论根据实验数据和分析结果,我们可以得出运动控制系统在不同条件下的性能表现。

通过对比不同控制算法和运动规划方式的实验结果,我们可以评估其优缺点,并选择最适合实际应用的方案。

五、实验的意义和应用运动控制系统在现代工业中有着广泛的应用,包括机械加工、自动化生产线、机器人等领域。

运动控制实验报告

运动控制实验报告

运动控制实验报告运动控制实验报告引言:运动控制是现代工程领域中的重要技术之一,它在各种机械系统、自动化设备以及机器人等领域得到广泛应用。

本实验旨在通过实际操作,探索运动控制的原理和应用,以提升我们对运动控制的理解和应用能力。

实验一:电机速度控制在本实验中,我们使用了一台直流电机,通过调节电压来控制电机的转速。

首先,我们将电机与电源连接,并通过转速传感器实时监测电机的转速。

然后,我们逐渐增加电压,观察电机转速的变化。

实验结果显示,电机的转速与电压呈线性关系,即电机转速随着电压的增加而增加。

这验证了电机转速与电压之间的直接关系,并为后续实验奠定了基础。

实验二:位置控制在本实验中,我们使用了一台步进电机,并通过控制步进电机的脉冲数来实现位置控制。

我们将步进电机与控制器连接,并设置目标位置。

通过发送脉冲信号,控制器驱动步进电机旋转一定角度,直到达到目标位置。

实验结果显示,步进电机能够精确控制位置,并且具有良好的重复性。

这表明步进电机在位置控制方面具有较高的精度和可靠性。

实验三:PID控制在本实验中,我们使用了一个小车模型,并通过PID控制器来控制小车的运动。

PID控制器通过比较实际位置与目标位置的差异来计算控制信号,从而实现位置控制。

我们设置了不同的目标位置,并观察小车的运动轨迹。

实验结果显示,PID控制器能够有效地控制小车的位置,使其稳定地停在目标位置上。

同时,我们还测试了PID控制器的鲁棒性,即在外部干扰的情况下,控制器是否能够保持稳定。

实验结果表明,PID控制器对于外部干扰具有一定的鲁棒性,但仍然存在一定的误差。

实验四:力控制在本实验中,我们使用了一个力传感器和一个伺服电机来实现力控制。

我们将力传感器连接到伺服电机上,并设置目标力值。

通过调节电机的转速,控制力传感器输出的力值接近目标力值。

实验结果显示,伺服电机能够根据力传感器的反馈信号,实时调整转速,从而实现力控制。

这为在机器人领域中的力控制提供了重要的参考。

运动学仿真实验报告

运动学仿真实验报告

运动学仿真实验报告
一、实验目的
1、了解solidworks软件建模和装配过程。

2、运用motion模块进行运动学仿真。

二、实验内容
1、完成摩托车发动机个部件的建模,掌握草图绘制,拉伸、切除、倒角、抽壳等造型的步骤和方法。

2、完成装配,掌握零部件的调入、移动旋转,掌握同轴、重合、平行、垂直、齿轮配合等配合关系的步骤和方法。

三、实验步骤
1、打开装配体如图1-1所示。

图1-1摩托车发动机装配体
隐藏不必要的零件,如图1-2所示。

图1-2隐藏部分零件后的装配体
2、选择运动算例模块,选择“motion分析”,在基本分析中选择motio分析。

3、添加马达在motion分析中选择按钮添加马达,选择发达类型为旋转马达。

4、点击计算按钮进行计算,预设定仿真时间为6s。

5、点击motion分析中坐标按钮,导出力分析图形,选择类型为力-发达力矩-幅值,导出力分析图形。

1)质心速度
2)质心加速度
3)力矩
4)角加速度
四、实验设备
装有SolidWorks的电脑一台,摩托车发动机一台。

五,注意事项
1、装配过程中不能有过定位,欠定位。

2、齿轮配合要用机械配合,齿轮配合。

单摆运动控制系统设计与仿真实验报告

单摆运动控制系统设计与仿真实验报告

单摆运动控制系统设计与仿真实验报告1.引言1.1 概述概述部分的内容:单摆运动控制系统是一个常见的控制系统应用领域,它在诸多科学实验、工程项目和技术研究中都有广泛的应用。

单摆运动控制系统通过控制摆臂的运动,实现对摆臂的稳定性和精确度的控制,从而达到预定位置、速度和加速度的要求。

随着科技的不断发展和进步,单摆运动控制系统的设计和仿真实验成为研究者们关注的焦点。

在过去的几十年中,众多学者和工程师们提出了各种各样的方法和理论,以提高单摆运动控制系统的性能和效果。

这些方法包括但不限于PID控制、自适应控制、模糊控制等等。

它们都在不同的场景中展现了自己的优势和特点,为单摆运动控制系统的设计和仿真实验提供了全新的思路和方法。

本文旨在介绍单摆运动控制系统的设计和仿真实验。

首先,我们将对单摆运动控制系统的相关背景和理论基础进行概述和分析。

接着,我们将详细介绍单摆运动控制系统的设计过程,包括系统结构、控制算法和参数选择等方面。

在设计完成后,我们将进行仿真实验,在不同的工作条件下对系统进行测试和评估,以验证设计的有效性和性能。

最后,我们将总结本文的研究成果,并对未来的研究方向进行展望。

通过本文的研究,我们希望能够为单摆运动控制系统的设计和仿真实验提供实用有效的方法和理论支持,为相关领域的研究者和工程师提供参考和借鉴。

同时,我们也期待通过本文的工作,能够推动单摆运动控制系统设计的进一步发展和应用。

文章结构部分的内容可以如下所示:1.2 文章结构本文主要分为三个部分,即引言、正文和结论。

引言部分主要概述了文章内容和研究背景,介绍了单摆运动控制系统设计与仿真实验的目的和重要性。

正文部分包括两个主要内容,即单摆运动控制系统设计和仿真实验。

在单摆运动控制系统设计中,我们将介绍系统的原理和设计方法,并详细描述系统的硬件和软件实现。

在仿真实验中,我们将使用相关仿真软件进行系统的仿真,验证设计的有效性和准确性。

结论部分对本文的主要内容进行总结,回顾了实验的结果和分析,总结了系统的性能和局限性。

运动控制系统实验报告

运动控制系统实验报告

.实验报告步进电机控制实验实验目的:把握编程的灵活性和简洁性,学习PLC控制步进电机的方法。

步进电机有两相绕组,分别为A相绕组和B相绕组,端子为A、A和B、B ,每相中间已接±24V直流电源的+24V端,A、A、B、B 接可编程控制器的输出端,按照步进电机的运行规律,由可编程序控制器轮流输出信号控制,工作方式为双四拍。

正反转步序参考如下表:正转: 反转:实验一正反转实验实验任务:程序启动后,按下启动按钮,电机启动,按下停止按钮,电机停止,按下反向按钮,电机反向启动。

I/O分配:实验二转速控制实验实验任务:步进电机的旋转速度由轮流通电频率控制。

程序启动后,按下启动按钮,前10秒电机转速由慢变快,接下来10秒快变慢,如此循环。

I/O分配:实验三定步旋转实验实验任务:实验所用步进电机的步进角为7.5°。

程序启动后,按下启动按钮,使转盘按每次90°和180°的设定值交替转动,每两次之间停止1秒钟。

I/O分配:三相交流异步电动机控制实验一.实验目的:根据三相交流异步电机的原理图,学习用PLC来控制电机的正反转和Y/△启动的方法。

二.实验介绍:右图为三相交流异步电机的实验原理及实验模拟图。

此实验的控制对象是一台三相交流异步电动机,要完成的功能的是用PLC控制三相交流异步电动机的正反转和Y/△启动。

要完成这两项功能,除电机外,还需要四组三相交流接触器KM1、KM2、KMY 和KM△,以及3个按钮SB1、SB2、SB3。

三相异步电动机控制实验示意图图中的M代表三相交流异步电动机,两个箭头旁分别有一个发光二极管,其中,红灯亮表示电机正转,绿灯亮表示电机反转,都不亮表示电机停转;代表KM1、KM2、KMY和KM△的发光二极管亮时表示该接触器线圈得电,对应的常开触点闭合。

实验一电机正反转控制实验任务:当按下按钮SB1时,KM△接通,KM1灯亮,电机正转;当按下按钮SB2时,KMY接通,KM2灯亮,电机反转;KMY和KM△绝不能同时接通;正反转之间要联锁;I/O分配:Q0.1Q0.2Q0.3KM2 KM △ KMY实验二 自锁运行实验实验任务:按下SB1,KM1、KM△接通,电动机正转。

运动控制实验报告

运动控制实验报告

苏州市职业大学实训报告名称运动控制系统实训项目转速、电流双闭环直流调速系统的MATLAB仿真设计2012年12月31日至2013年1月4日共一周院系电子信息工程系班级姓名学号系主任张红兵教研室主任邓建平指导教师叶国平苏州市职业大学实训任务书课程名称:运动控制系统实训起讫时间:2012.12.31-2013.1.4院系:电子信息工程系班级:指导教师:叶国平系主任:张红兵目录实训任务书 (1)第一章绪论 (5)1.1仿真控制技术 (5)1.2 MATLAB与控制系统仿真 (6)第二章转速、电流双闭环直流调速系统 (7)2.1双闭环直流调速系统的介绍 (7)2.2 双闭环直流调速系统的组成 (7)2.3 双闭环直流调速系统的工作原理 (8)2.4双闭环直流调速系统的稳态结构图 (8)第三章 Simulink环境下的仿真 (10)3.1 双闭环直流调速系统的仿真模型图 (10)3.2 仿真参数设置 (10)3.3 仿真结果及分析 (11)第四章实训总结 (14)参考文献 (15)第一章绪论1.1仿真控制技术系统仿真作为一种特殊的试验技术,在20世纪30年代到90年代的半个多世纪中经历了飞速的发展,到今天已经发展成为一种真正的、系统的试验科学。

伴随着第一台电子管电子计算机的诞生和以相似理论为基础的模拟技术的应用,仿真作为一种研究和发展新产品、新技术的科学手段,在航空、航天、造船、兵器等与国防科研相关的行业中首先发展起来,并显示了巨大的社会效益和经济效益。

随着计算机技术的发展,仿真技术逐步发展,现已形成完整的学科,渗透到各个领域,为应用系统的研究提供了强大的工具。

仿真技术发展趋势:1)硬件发面,基于多CPU并行处理技术的全数字仿真将有效提高仿真系统的速度,大大增强数字仿真的时效性;2)应用软件方面,直接面向用户的数字仿真软件不断推陈出新,各种专家系统与智能化技术将更深入地应用于仿真软件开发中,事之在人机界面、结果输出、综合评判等方面达到更理想的境界。

运动控制实验报告2讲解

运动控制实验报告2讲解

电压空间矢量控制仿真1. 实验目的与要求异步电机结构简单,运行可靠,维修方便,在日常生活和工业生产中得到了越来越广泛的应用,但交流异步电机的数学模型是一个高阶、非线性、强耦合的多变量系统 [1], 在交流电机调速中 ,V/f控制对于需要快速动态响应的应用场合则效果欠佳 ,特别是在速度或转矩发生快速变化时 , 会产生较高的转差率 ,从而导致较大的瞬态电流,异步电动机转差频率型矢量控制作,为高性能力矩控制正在逐渐广泛应用[2]。

与传统的正弦波脉宽调制 (SPWM 相比,空间矢量脉宽调制(SVPWM 具有线性调制范围宽、直流电压利用率高、输出电压谐波小和易于数字化实现的特点 , 因而在变频调速和无功补偿等电力电子变换器应用领域得到更加广泛的应用 [3]。

计算机仿真技术是现代科学研究和产品设计的新手段。

仿真时首先建立应用系统的仿真模型 , 然后利用计算机去求解 , 因而较其它方法容易、快捷、经济。

其具有应用的可重复性针 , 对不同的系统 , 有时只需要更改个别环节或修改参数即可。

由于以上的优点 , 计算机仿真技术作为强有力的研究工具 , 正在控制领域获得广泛的应用 [4]。

随着生产技术的不断发展,直流拖动的薄弱环节逐步显露出来,而异步电动机结构简单、坚固耐用、便于维修, 受到人们的欢迎。

近年交流电动机的控制技术取得了突破性的进展,与传统的正弦波脉宽调制相比,空间矢量脉宽调制(SVPWM 具有线性调制范围宽直流电压利用率高输出电压谐波小和易于数字化实现的特点,因而在变频调速和无功补偿等电力电子变换器应用领域得到更加广泛的应用但对于电机控制系统的研究,但传统的解析方法是分析研究周期长、投资大而且不宜分析系统的各种性能,因此,采用数字仿真的方法是必要的 [5]。

2. 实验原理2.1电压空间矢量 PWM (SVPWM 控制技术把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,这种控制方法称作“磁链跟踪控制” ,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的,所以又称“电压空间矢量 PWM (SVPWM , Space Vector PWM控制”空间电压矢量脉宽调制 (SVPWM 是满足圆形气隙磁场要求的控制方法 ,具有降低转矩脉动 ,减小波形畸变 ,提高直流电压利用率 ,易于数字化实现等优点 ,目前广泛用于交流电机调速控制系统中 [7]。

运动控制仿真实验报告

运动控制仿真实验报告

运动控制仿真实验报告实验11,晶闸管单相交流调压仿真实验一,实验原理1.1原理图该实验是通过晶闸管的调压触发控制电路来控制晶闸管导通,以此来实现不同导通角时,输出电压不同。

该实验的原理电路如图1所示。

图1通过两个触发脉冲来触发VT1与VT2,触发电路的原理框图如图2所示。

图2该触发电路两个触发脉冲相差180°,以此来实现正半周和负半周都进行调压,而且调压的脉冲角是相同。

1.2 仿真模型1.3 脉冲发生器子模块参考模型其中斜率限制器上升斜率=1;下降斜率=-inf;放大器增益=1000;Relay 使能过0 检测。

Fcn=10*u(1)/180 完成指令角度到比较电压的转换。

指令通过常数按触发角设定。

二.实验内容根据原理框图构建 Matlab 仿真模型。

所需元件参考下表:仿真元件库:Simulink Library Browser示波器 Simulink/sink/Scope交流电源 SimPowerSystems/Electrical Sources/AC Voltage Source设定电压=220*1.414V晶闸管 SimPowerSystems/Power Electronics/ ThyristorFcn Simulink/User-Defined Functions/Fcn设定为10*u(1)/180Relay Simulink/Discontinuities/RelayRate Limiter Simulink/Discontinuities/ Rate LimiterSubsystem Simulink/Commonly Used Block/Subsystem电阻、电容、电感 SimPowerSystems/Elements/Series RLC Branch设定参数负载电阻2 欧姆、串联电感2mH。

电流傅立叶分解 SimPowerSystems/Extra Library/Discrete Measurements/Discrete Fourier设定输出为50Hz,基波显示 Simulink/sinks/Display电压检测SimPowerSystems/Measurements/Voltage Measurement电流检测SimPowerSystems/Measurements/Current Measurement仿真设定:Configuration Parameters/Solver optionsType Variable-step Solver Ode23sRelative tolerance 1e-5其它不变仿真时间0.1 秒。

运动控制实训报告

运动控制实训报告

成绩批阅教师日期运动控制实训系统实训报告课程名称运动控制技术与运用专业班级学号学生姓名指导教师2013 年 12 月 5 日目录项目一 (1)1.1项目名称 (1)1.2电梯模型设计内容及要求 (1)1.3电梯模型设计分析及设计思路 (1)1.4电梯模型设计方案设计说明 (2)1.5电梯模型设计完整电路原理分析 (3)1.6电梯模型设计制作、调试情况 (10)1.7电梯模型设计实训成果 (10)项目二 (11)2.1项目名称 (11)2.2步进电机驱动设计内容及要求 (11)2.3步进电机驱动设计题目分析及设计思路 (11)2.4步进电机驱动设计方案设计说明 (11)2.5步进电机驱动设计完整电路原理分析 (12)2.6步进电机驱动设计制作、调试情况 (13)2.7实训成果 (13)实训心得体会 (14)附录 (14)项目一1.1项目名称电梯模型控制1.2电梯模型设计内容及要求内容:一、接收并登记电梯在楼层以外的所有呼叫指令信号,给予登记并输出登记信号;二、根据最早登记的信号,自动判断电梯是上行还是下行,这种逻辑判断称为电梯的定向。

电梯的定向根据首先登记信吃的性质可分为两种。

一种是指令定向,指令定是把指令指出的目的地与当前电梯位置比较得出“上行”或“下行”结论。

例如,电梯在二楼,指令为一楼则向下行;指令为四楼则向上行。

第二种是呼梯定向,呼梯定向是根据呼梯信号的来源位置与当前电梯位置比较,得出“上行”或“下行”结论。

例如,电梯在二楼,三楼乘客要向下,则按AX3,此时电梯的运行应该是向上到三楼接该乘客,所以电梯应向上。

三、电梯接收到多个信号时,采用首个信号定向,同向信号定向,同向信号先执行,一个方向任务全部执行完后再换向。

例如,电梯三楼,依次输入二楼指令信号、四楼指令信号、一楼指令信号。

如用信号排队方式,则电梯下行至二楼—上行至四楼—下行至一楼。

而用同向先执行方式,则为电梯下行至一楼—上行至二楼—上行至四楼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设定为50kHz,Time values=[0 5e-6 10e-6 15e-6 20e-6] , Output values=[0 1 0 -1 0]
常数Simulink/Sources/Constant
设定范围可在(-1,1)区间变化,初始设定值=-0.5,对应占空比0.25
加法器Simulink/Math/add设定为-+。
过零比较器Simulink/Logic and Bit operations/Compare To Zero
电阻、电容、电感SimPowerSystems/Elements/Series RLC Branch
设定参数
负载切换开关SimPowerSystems/Elements/Breaker
设定动作时间
仿真时间0.6秒。
在MATLAB搭建的仿真电路如图:
仿真电路解释:
:代表6个晶闸管全控桥。
:代表触发角为30度,和6路脉冲分配。
:代表负载部分,R=20Ω,R1=2Ω,R4=0.1H(R4为电感),step为阶跃信号,0.3秒后产生阶跃,闭合开关。
:代表测量值。Ia代表a相电流有效值。I1代表输入电流的基波幅值,angle代表触发角,Vo输出电压有效值。
平均值SimPowerSystems/Extra Library/Discrete Measurements/Mean value
2、仿真设定:Configuration Parameters/Solver options
Type Variable-step SolverOde23s
Max step size 1e-6 Relative tolerance 1e-5,其它不变
输出电压的平均值:
由图可知,输出电压平均值为87.56V,由于占空比为50%,所以理论值为100V
实际输出出电压小于理论输出电压。
原因:电感L并不可能无穷大,所以在电感L上存在压降。
6、增加检测观察场效应管和二极管在开关过程中的工作电压;
由上面图,导通时,场效应管的电压为23V,二极管的电压为-177V;断开后,电感L和电容C通过二极管续流,此时二极管的工作电压就为0V,而场效应管的工作电压为200V。
设定为50Hz,双脉冲
利用电压检测构造线电压输入。Block端输入常数0.
输出通过信号分离器分为6路信号加到晶闸管门极,分离器输出脉冲自动会按顺序从1到6排列,注意按号分配给主电路对应晶闸管。
电阻、电容、电感SimPowerSystems/Elements/Series RLC Branch
设定参数
增益Simulink/Math Operations/Gain
乘除运算Simulink/Math/Divide
显示Simulink/sinks/Display
电压检测SimPowerSystems/Measurements/Voltage Measurement
电流检测SimPowerSystems/Measurements/Current Measurement
3>输出电压平均值在轻载和重载下的稳态值:
有效值为:127.4V,平均值大约为:63.1V
理论值Ud=2.34U2(1+COS(140))=85.16V
由于电感不可能无穷大,电感上存在压降,所以实际输出电压小于理论电压
4、将电感减小到1mH,重复上述实验,分析与大电感时的异同。(触发角30°)输出电压ud波形。
5、改变占空比到50%(对应常数0)重复上述实验,分析实验结果;
场效应管的稳态工作电流、二极管电流、电感电流、电感电压、输出电流、输出电压;
场效应管的稳态工作电流:
放大后:
二极管电流:
放大后:
电感电流:
放大后:
电感电压:
放大后:
输出电流与输出电压:
3>分析加载前后输出电压电流的变化。对输出电压的平均值与理论计算值的误差进行讨论
仿真元件库:Simulink Library Browser
示波器Simulink/sink/Scope
要观察到整个仿真时间段的结果波形必须取消对输出数据的5000点限制。
要观察波形的FFT结果时,使能保存数据到工作站。仿真结束后即可点击仿真模型左上方powergui打开FFT窗口,设定相关参数:开始时间、分析波形的周期数、基波频率、最大频率等后,点Display即可看到结果。
7、设计电压闭环,采用pi调节器通过闭环自动控制使输出电压平均值在负载变化前后自动保持为50伏电压输出。
电路原理图为:
如图所示:调节P为0.1,I为5,采样频率为500Khz,
得到的输出电压如图:
结论:
P的影响:增大P可以加快系统的响应速度,但是当P过大时,系统可能会变得不稳定。当只有比例环节时,系统会有稳态误差
输出电流加载前后变化:
放大后如图:
由于电感太小,无法使负载电流连续。
1号晶闸管电压、电流;
输入电流的有效值、输入电流基波幅值、相角和输入功率因数由系统检测元件检测如下:
由图可知:输入电流的有效值141.5A,输入电流基波幅值190.8A,相角29.25°,输入功率因数cos29.25=0.872
输出电压平均值大约为为314.8V
增益Simulink/Math Operations/Gain
显示Simulink/sБайду номын сангаасnks/Display
电压检测SimPowerSystems/Measurements/Voltage Measurement
电流检测SimPowerSystems/Measurements/Current Measurement
I的影响:积分环节可以消除稳态误差,当I过大时,系统的超调会过大,响应速度变慢。
实验结论:本实验仿真了实用Buck变换仿真实验,讨论了不同占空比和不同负载下的二极管电流、电感电流、电感电压、输出电流、输出电压,场效应管的稳态工作电流波形。得到的实验结果在误差范围内验证了理论分析的结果。同时也设计的电压环的闭环PI调节,增加了该次实验的应用性,与自控原理相结合,体现了学科交叉性。
分析下列波形:
1)输入相电压、相电流;
a相的电流ia和三相电压波形如下:
2)输出电流(滤波前、后;突加负载前后)、输出电压;
输出电流:
输出电压:
3)1号晶闸管电压、电流;
4)输入电流的有效值、输入电流基波幅值、相角和输入功率因数。可以利用仿真库中相应检测元件自动检测、计算。
由图可知:输入电流的有效值140A,输入电流基波幅值189.1A,相角30.01°,输入功率因数cos30.01=0.866
3、
1>改变触发角大于60度,重复以上实验,分析实验结果。将触发角改为80°时,输出电压波形
输出电压平均值变小。由于电感的作用,出现了负的部分
输出电流波形:
放大后如图:
1号晶闸管电压、电流:
2>输入电流的有效值、输入电流基波幅值、相角和输入功率因数由系统检测元件检测如下:
由图可知:输入电流的有效值28.09A,输入电流基波幅值37.94A,相角79.98°,输入功率因数1+cos(140)=0.234
交流电源SimPowerSystems/Electrical Sources/AC Voltage Source
设定频率、幅值、相角,相位依次滞后120度。
晶闸管SimPowerSystems/Power Electronics/Thyristor
6脉冲触发器SimPowerSystems/Extra Library/Control Blocks/Synchronized 6-Pulse Generator
5)输出电压平均值在轻载和重载下的稳态值。
输出电压平均值在轻载和重载下的有效值都为319.9V,平均值大约为为314.6V
6)将功率因数、输出电压平均值与教材公式计算的理论值比较。
有效值为U2=220/ ,Ud=2.34U2cos30=315.2V
由于电感不可能无穷大,电感上存在压降,所以实际输出电压小于理论电压
示波器Simulink/sink/Scope
要观察到整个仿真时间段的结果波形必须取消对输出数据的5000点限制。
要观察波形的FFT结果时,使能保存数据到工作站。仿真结束后即可点击仿真模型左上方powergui打开FFT窗口,设定相关参数:开始时间、分析波形的周期数、基波频率、最大频率等后,点Display即可看到结果。
——实用
原理电路
实验内容:
1、依照原理电路搭建仿真模型。VT采用场效应管。选择开关频率为50Hz,输入直流电压200V,电感0.2mH,电容100uF,负载基本电阻20欧姆,加载并联电阻2欧姆。
3、根据原理框图构建Matlab仿真模型。所需元件参考下表:
仿真元件库:Simulink Library Browser
仿真时间0.1秒。加载时间0.07秒。
仿真电路图如下图:
2>实验结果分析:场效应管的稳态工作电流、二极管电流、电感电流、电感电压、输出电流、输出电压;
场效应管的稳态工作电流:
放大后:
二极管电流:
放大后:
电感电流:
放大后:
电感电压:
放大后:
输出电流与输出电压:
3>分析加载前后输出电压电流的变化。对输出电压的平均值与理论计算值的误差进行讨论
理论计算值Ud=2.34U2COSα=315.2V
由于电感不可能无穷大,电感上存在压降,所以实际输出电压小于理论电压
实验总结:
本实验仿真了晶闸管三相全控桥式整流在带阻感负载下的波形,讨论了不同电阻,不同电感,不同触发角对实验结果的影响,通过计算和对负载波形的观察可以得出,实验结果在误差范围内与理论上一致。
直流电源SimPowerSystems/Electrical Sources/DC Voltage Source
相关文档
最新文档