新人教版九年级数学上册教材分析

合集下载

九年级数学上册第25章第二十五章学情与教材分析(人教版)

九年级数学上册第25章第二十五章学情与教材分析(人教版)

第25章概率初步本章学情分析与教材分析(一)学情分析:“概率初步”是《课程标准》“统计与概率”的重要内容. 本章是学生在已经了解了统计知识的相关知识,掌握了方差、频率等知识的基础上继续学习概率的相关知识. 由于学生初学概率,面对概率意义的描述,学生容易产生困惑:概率是什么?概率是否就是频率?何时用列表法,何时用树状图等等问题都有待师生一起去探索. 因此,学生对这部分内容学习是一大难点. 但这部分内容在人们的生活和生产建设中有着广泛的应用,也是今后运用概率知识解决实际问题的预备知识,所以它在教材中处于非常重要的地位.本章共包含三部分内容,分别是:随机事件与概率、用列举法求概率、用频率估计概率. 本章既有理论知识,又有实验研究,内容丰富. 本章的教学,无论是在知识上,还是对学生能力的培养上,都有着十分重要的作用.须注意的是,本学段的概率内容还处在一个比较初级的水平,就《课程标准》来看,这个阶段的学生并没有学习概率中的乘法,所以他们还只能用列表法和树形图法计算一些简单的概率问题.因此,如果问题超过3步的难度,学生完成起来就会非常吃力.所以一般来说,不宜将问题的难度超过3步.(二)教材分析:1.核心素养在随机事件的学习中,通过抽样体会样本及估计结果的随机性,培养学生的随机观念;在用概率解决日常生活中遇到的问题时(如抽奖等),培养学生的概率思想;通过用列表和画树状图求概率,提高学生用枚举的数学思想方法解决问题的能力;通过频率估计概率,进一步培养学生“用样本估计总体”的统计思想.2.本章学习目标(1)了解必然事件、不可能事件和随机事件的概念;(2)在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义;(3)能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率;(4)能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系;(5)通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.3.课时安排本章教学时间约需6课时,具体分配如下(仅供参考):25.1 随机事件与概率2课时25.2 用列举法求概率 2课时25.3 用频率估计概率1课时章末回顾+检测题1课时4.本章重点(1)随机事件的特点;(2)在具体情境中了解概率意义;(3)运用列表法或树状图法计算事件的概率.5.本章难点(1)对生活中的随机事件作出准确判断;(2)对频率与概率关系的初步理解;(3)能根据不同情况选择恰当的方法进行列举,解决较复杂的事件概率的计算问题.。

人教版数学九年级上册《用列表法求概率》教学设计1

人教版数学九年级上册《用列表法求概率》教学设计1

人教版数学九年级上册《用列表法求概率》教学设计1一. 教材分析人教版数学九年级上册《用列表法求概率》是学生在学习了概率的基本知识后,进一步学习如何利用列表法求解概率的一节课。

通过本节课的学习,学生能够掌握列表法求概率的基本步骤,并能应用于实际问题中。

本节课的内容与生活实际紧密相连,有助于培养学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的概率知识,对概率的基本概念和求法有所了解。

但是,学生在运用列表法求概率方面还存在一定的困难,需要通过本节课的学习来进一步掌握。

此外,学生对于实际问题的解决能力有待提高,需要通过实例来培养。

三. 教学目标1.知识与技能:使学生掌握列表法求概率的基本步骤,能够运用列表法解决实际问题。

2.过程与方法:通过实例分析,培养学生运用列表法解决概率问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。

四. 教学重难点1.重点:列表法求概率的基本步骤。

2.难点:如何将实际问题转化为列表法求概率的问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考;通过案例分析,让学生学会运用列表法求概率;通过小组合作学习,培养学生解决问题的能力。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:笔记本、练习题。

七. 教学过程1.导入(5分钟)教师通过一个简单的实例,如抛硬币实验,引导学生回顾概率的基本知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过多媒体展示教材中的案例,让学生观察和分析案例中的问题,引导学生思考如何利用列表法求解概率。

3.操练(10分钟)教师给出一个实际问题,让学生分组讨论,运用列表法求解概率。

学生在小组内分工合作,共同完成任务。

4.巩固(10分钟)教师挑选几组学生的成果,进行点评和讲解。

同时,给出一些类似的题目,让学生独立完成,巩固所学知识。

5.拓展(10分钟)教师引导学生思考:列表法求概率的应用范围有哪些?让学生举例说明,进一步拓展学生的知识面。

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册《24.1.3弧、弦、圆心角》是本册教材的重要内容之一。

它主要介绍了弧、弦、圆心角的定义及其相互关系。

这部分内容对于学生来说,有助于深化对圆的理解,为后续学习圆的性质和应用打下基础。

教材通过生动的实例和丰富的练习,引导学生探索和发现弧、弦、圆心角之间的规律,培养学生的观察能力、思考能力和动手能力。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。

他们对圆的概念和性质有一定的认识,但弧、弦、圆心角的概念和关系可能还比较模糊。

因此,在教学过程中,教师需要从学生的实际出发,通过直观的教具和生动的实例,帮助学生理解和掌握弧、弦、圆心角的定义和相互关系。

三. 教学目标1.理解弧、弦、圆心角的定义,掌握它们的相互关系。

2.能够运用弧、弦、圆心角的性质解决实际问题。

3.培养学生的观察能力、思考能力和动手能力。

四. 教学重难点1.弧、弦、圆心角的定义及其相互关系。

2.运用弧、弦、圆心角的性质解决实际问题。

五. 教学方法1.直观演示法:通过实物演示和动画展示,让学生直观地理解弧、弦、圆心角的定义和相互关系。

2.引导发现法:教师引导学生观察、思考和探索,发现弧、弦、圆心角之间的规律。

3.练习法:通过丰富的练习题,巩固学生对弧、弦、圆心角的理解和应用。

六. 教学准备1.准备相关的实物教具,如圆板、量角器等。

2.制作课件,包括弧、弦、圆心角的定义和相互关系的动画演示。

3.准备练习题,涵盖各种类型的题目,以便进行巩固和拓展。

七. 教学过程1.导入(5分钟)教师通过实物演示,如拿一个圆板,让学生观察和描述圆板上的弧、弦和圆心角。

引导学生回顾圆的基本概念,为新课的学习做好铺垫。

2.呈现(15分钟)教师利用课件,生动地展示弧、弦、圆心角的定义和相互关系。

通过动画演示,让学生直观地理解弧、弦、圆心角之间的关系。

人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1

人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1

人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1一. 教材分析人教版数学九年级上册第24.4节《弧长和扇形的面积》是本册教材中的重要内容,它是在学生已经掌握了圆的性质、圆的周长和面积的基础上进行授课的。

本节课主要介绍了弧长的计算方法和扇形的面积计算方法,旨在让学生理解和掌握弧长和扇形面积的计算公式,并能够运用这些知识解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的性质、周长和面积的概念已经有了初步的了解。

但是,对于弧长和扇形面积的计算方法,他们可能还比较陌生。

因此,在教学过程中,我需要从学生的实际出发,循序渐进地引导他们理解和掌握这些概念和方法。

三. 说教学目标1.知识与技能目标:让学生理解和掌握弧长和扇形的面积的计算方法,能够运用这些方法解决实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索弧长和扇形面积的计算方法,培养他们的观察能力和思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们的自主学习能力和团队合作精神。

四. 说教学重难点1.教学重点:弧长和扇形面积的计算方法。

2.教学难点:弧长和扇形面积计算公式的推导过程。

五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、案例教学法和小组合作法等教学方法,结合多媒体课件和黑板等教学手段,引导学生主动参与课堂,提高他们的学习兴趣和积极性。

六. 说教学过程1.导入新课:通过一个实际问题,引出弧长和扇形面积的概念,激发学生的学习兴趣。

2.自主探究:让学生通过观察、分析、归纳等方法,自主探索弧长和扇形面积的计算方法。

3.讲解与演示:讲解弧长和扇形面积的计算公式,并通过多媒体课件和黑板进行演示。

4.练习与巩固:让学生通过课堂练习和小组讨论,巩固所学知识。

5.拓展与应用:引导学生运用弧长和扇形面积的知识解决实际问题。

6.课堂小结:总结本节课的主要内容和知识点。

七. 说板书设计板书设计如下:1.弧长的计算方法–弧长 = 半径 × 弧度2.扇形面积的计算方法–扇形面积 = 1/2 × 弧长 × 半径八. 说教学评价教学评价将从学生的知识掌握、能力培养和情感态度三个方面进行。

人教版数学九年级上册《24.1.1圆》说课稿3

人教版数学九年级上册《24.1.1圆》说课稿3

人教版数学九年级上册《24.1.1圆》说课稿3一. 教材分析人教版数学九年级上册《24.1.1圆》这一节的内容,主要介绍了圆的定义、圆心、半径等基本概念,以及圆的性质。

这是学生学习圆相关知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的基础。

但是,对于圆这一概念,学生可能在生活中有所接触,但对其精确的数学定义和性质可能还不够清晰。

因此,在教学过程中,需要引导学生从生活实例中抽象出圆的数学定义,进一步理解和掌握圆的性质。

三. 说教学目标1.知识与技能目标:使学生了解圆的定义、圆心、半径等基本概念,掌握圆的性质,能够运用圆的知识解决一些简单的问题。

2.过程与方法目标:通过观察、实验、推理等方法,培养学生空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 说教学重难点1.重点:圆的定义、圆心、半径等基本概念,圆的性质。

2.难点:圆的性质的证明和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等,引导学生主动探究,合作学习。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的空间想象能力和理解能力。

六. 说教学过程1.导入:通过展示生活中常见的圆的实例,引导学生思考圆的数学定义,激发学生的学习兴趣。

2.新课导入:介绍圆的定义、圆心、半径等基本概念,引导学生理解圆的性质。

3.实例分析:通过几何画板展示圆的性质,引导学生观察、实验、推理,加深对圆的理解。

4.小组讨论:让学生分组讨论圆的性质,培养学生的团队合作意识和解决问题的能力。

5.总结提升:对圆的性质进行总结,引导学生掌握圆的知识。

6.课堂练习:布置一些相关的练习题,让学生巩固所学知识。

7.课堂小结:对本节课的内容进行总结,引导学生反思学习过程。

九年级数学上册第23章季第二十三章《旋转》教材分析(人教版)

九年级数学上册第23章季第二十三章《旋转》教材分析(人教版)

第二十三章《旋转》教材分析一、本章知识的地位与作用“图形与变换”是义务教育阶段数学课程中“空间与图形”领域的一个重要内容,在教材中占有重要的地位.与平移、轴对称一样,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简洁形式之一,同时旋转变换较之前两种变换理解难度稍大,需要的直观想象和抽象能力更强,所以在教学中应更注重这方面循序渐进的培养。

旋转是工具性的知识,旋转变换在平面几何中有着广泛的应用。

在学习基本图形的旋转的过程中,既是为发现旋转的基本性质做准备,也是为后期旋转的应用做铺垫,所以要调动学生的主观能动性,切忌以大量的练习代替对概念的探究与分析。

旋转本章的教学还可以作为初中全等变换教学的一个总结,可以通过引导学生归纳之前学习的平移、轴对称变换的基本性质来总结几何要素,从而明确研究旋转变换的研究对象。

还可以引申探究三种变换的内部关系以帮助学生对这三种变换有一个统领性的,更深刻的认识。

同时在旋转的学习中,也是为后续圆的学习进行铺垫。

值得注意的是,由于知识水平的限制,对于平移变化,在平面直角坐标系中我们可以进行全方位的研究;对于轴对称变换,课标和考试说明中只要求了横平竖直的对称轴,对关于任意直线的对称只是作为拓展内容;而对于旋转,除了中心对称为课标要求,30°,45°,60°,90°的旋转可转化为几何问题来解决,对于任意角度的旋转往往涉及高中知识太多,在初中解析几何中往往以圆为载体出现。

二、主要内容三、课程学习目标(一) 课标要求1.通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等.2.了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.3.探索线段、平行四边形、正多边形、圆的中心对称性质.4.认识并欣赏自然界和现实生活中的中心对称图形.(二) 2019年中考说明要求基本要求:认识平面图形关于旋转中心的旋转;理解旋转的基本性质;了解中心对称、中心对称图形的概念;理解中心对称的基本性质.在平面直角坐标系中,知道已知顶点坐标的多边形,经过中心对称(对称中心)为原点后的对应顶点坐标之间的关系,略高要求:能画出简单平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.在平面直角坐标系中,能写出已知顶点坐标的多边形,经过中心对称(对称中心为原点后)的图形的顶点坐标.较高要求:运用旋转的有关内容解决有关问题.运用坐标与图形运动的有关内容解决有关问题.(三)教学要求1.基本要求①了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心的连线所成角彼此相等(等于旋转角) 的性质;②通过具体实例认识旋转,能依据旋转前后的图形,指出旋转中心和旋转角及旋转前后的对应点;③能够按要求作出简单平面图形旋转后的图形,利用旋转进行简单的图案设计;④通过具体实例认识中心对称,掌握作与已知图形中心对称的图形的方法,并能指出图形的对称中心;⑤了解中心对称图形的概念,能识别中心对称图形.了解线段、平行四边形是中心对称图形,了解中心对称与中心对称图形的区别.⑥了解关于原点对称的点的坐标之间的关系.2.略高要求①探索它们的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质,旋转前、后的图形全等;②探索中心对称的基本性质,理解对应点所连线段被对称中心平分的性质;③能运用旋转的知识解决简单的计算问题.3.较高要求①能运用旋转的知识进行图案设计;②能综合运用平移、对称、旋转等变换解决相对复杂的问题.四、课时安排本章教学时间约需8课时,具体分配如下(仅供参考) :23.1 图形的旋转2课时23.2 中心对称2课时23.3 课题学习图案设计1课时(补充) 旋转的应用2课时数学活动、小结1课时五、教学重点难点重点: 1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标之间的关系.难点: 1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.六、具体教学建议1.注重与学生已学的图形变换(平移、轴对称)的联系,类比学习(可以类比定义的要素,探究性质等),所以在本章学习中不妨花费一些时间来复习。

人教版九年级上册(新)第23章《旋转》教材分析 (文字稿)

人教版九年级上册(新)第23章《旋转》教材分析 (文字稿)

第二十三章 《旋转》教材分析一、本章知识的地位与作用“图形与变换”是义务教育阶段数学课程中“空间与图形”领域的一个重要内容,在教材中占有重要的地位.和平移、轴对称一样,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简洁形式之一.旋转是工具性的知识. 学习旋转的基本性质, 欣赏并体验旋转在现实生活中的广泛应用, 不仅是初中学习的重要目标之一, 也是密切数学与现实之间联系的重要桥梁之一.旋转变换在平面几何中有着广泛的应用, 特别是在解(证)有关等腰三角形(主要是等腰直角三角形、等边三角形)以及正方形等问题时, 更是经常用到的思维方法. 此前, 学生已学习了平移、轴对称两种图形变换, 对图形变换已具有一定的认识, 通过本章的学习, 学生对图形变换的认识会更完整, 同时, 也能对平移、轴对称有更深的认识. 进一步建立的几何变换的意识可帮助我们用运动的观点认识图形,从而使解决问题的思路更加简明、清晰.二、主要内容三、课程学习目标(一)课标要求1. 通过具体实例认识平面图形关于旋转中心的旋转, 探索旋转的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等.2. 能够按要求画出简单平面图形旋转后的图形, 欣赏旋转在现实生活中的应用.3. 通过具体实例认识中心对称、中心对称图形的概念,探索它们的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 了解线段、平行四边形是中心对称图形.,认识并欣赏自然界和现实生活中的中心对称图形.4. 探索图形之间的变化关系(轴对称、平移、旋转及其组合),会运用轴对称、平移、旋转的组合进行图案设计.旋转及其性质 中心对称 关于原点对称的点的坐标图案设计中心对称图形旋转的基本知识特殊的旋转 --中心对称 平移、旋转、轴对称的综合运用平移及其性质 轴对称及其性(二)实际教学要求1.基本要求:①了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心的连线所成角彼此相等(等于旋转角)的性质;——什么是旋转?旋转的三要素是什么?旋转前、后图形之间对应元素具有哪些性质?②通过具体实例认识旋转, 能依据旋转前后的图形,指出旋转中心和旋转角及旋转前后的对应点;——怎样确定旋转中心与旋转角?③能够按要求作出简单平面图形旋转后的图形,利用旋转进行简单的图案设计;④通过具体实例认识中心对称,掌握作与已知图形中心对称的图形的方法,并能指出图形的对称中心;⑤了解中心对称图形的概念,能识别中心对称图形.了解线段、平行四边形是中心对称图形,了解中心对称与中心对称图形的区别.——旋转与中心对称之间具有怎样的联系?中心对称与中心对称图形之间具有怎样的关系?⑥了解关于原点对称的点的坐标之间的关系.2.略高要求:①探索它们的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质,旋转前、后的图形全等;②探索中心对称的基本性质,理解对应点所连线段被对称中心平分的性质;③能运用旋转的知识解决简单的计算问题.3.较高要求:①能运用旋转的知识进行图案设计;②能综合运用平移、对称、旋转等变换解决相对复杂的问题.(三)2015中考说明中对旋转的要求基本要求:认识平面图形关于旋转中心的旋转;理解旋转的基本性质;了解中心对称、中心对称图形的概念;理解中心对称的基本性质.略高要求:能画出平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.较高要求:运用旋转的有关内容解决有关问题.四、课时安排本章教学时间约需9课时, 具体分配如下(仅供参考):23.1图形的旋转2课时23.2中心对称2课时23.3课题学习图案设计1课时(补充)旋转的应用(计算与证明) 2- 3课时数学活动、小结1课时五、教学重点难点重点:1. 图形旋转的基本性质.2. 中心对称的基本性质.3. 两个点关于原点对称时, 它们坐标之间的关系.难点:1. 图形旋转的基本性质的归纳与运用.2. 中心对称的基本性质的归纳与运用.六、教学建议:1、注重与学生已学的图形变换的经验联系,类比学习.在本章学习前,学生已经学习了平移、轴对称,对图形变换已经有所认识,一般地,学习一种图形变换大致包括以下内容⑴通过具体实例认识图形变换; ⑵探索图形变换的性质;⑶作出一个图形变换后的图形⑷利用图形的变换进行图案设计;⑸用坐标表示图形变换.本章“旋转”的学习也是从以上几个方面展开的. 关于⑸,本章正文中只涉及一些特殊旋转用坐标表示的问题,如以原点为对称中心的中心对称的坐标表示,在数学活动和习题中则涉及用坐标表示以原点为旋转中心,旋转角为直角的旋转.2、注意揭示旋转概念的实际背景与广泛应用旋转与现实生活联系紧密, 为此, 在教学中应列举大量实例来使学生认识和感受它们, 增强学生对旋转的理解. 利用图形变换进行图案设计、解决实际问题既可以进一步促进学生对知识的理解,又加强了图形变换与现实生活的联系.3、注意培养动手操作的意识教材在探索旋转的性质、中心对称的性质以及如何设计图案最美观等问题时, 安排了转动硬纸板、转动三角板、转动模板等应用动手操作来探索结论的内容. 动手操作是解决问题的一种方法, 应给学生操作的时间和体验,加强学生主动进行动手操作的意识.4、注意安排对重要结论的探究教材在发现旋转的性质、中心对称的性质、关于原点对称的点的坐标特征、图形之间的变换关系、如何设计图案最美观、从坐标的角度揭示中心对称与轴对称的关系等问题中,教科书注意安排画图、分析、归纳等探究活动.教学中,应充分利用这些资源,进行开放式探究,重视培养学生观察、发现、比较、归纳、说理等综合能力,从而逐步提高学生的探究能力.5、注意概念之间的区别与联系⑴平移、旋转、轴对称学习旋转变换与学习平移、轴对称的过程基本一致, 主要都是研究变换过程中的不变量, 是研究几何问题、发现几何结论的有效工具. 平移、轴对称、旋转都是全等变换, 只改变图形的位置, 不改变图形的形状和大小. 由于变换方式的不同, 故变换前后具有各自的性质.⑵旋转与中心对称中心对称是一种特殊的旋转(旋转180°), 满足旋转的性质, 由旋转的性质可以得到中心对称性质⑶中心对称与轴对称教材中P74的数学活动1还从坐标的角度揭示了中心对称与轴对称的关系. 作点A关于x轴的对称点B,作点B关于y轴的对称点C,则点A与点C关于原点对称. 由此可知,将一点作上述两次轴对称变换相当于作出这个点关于原点的对称点.⑷两个图形成中心对称与中心对称图形6、注意用计算机辅助教学利用几何画板的旋转功能, 可以方便地作出一个图形绕某一点旋转某个角度后的图形.利用几何画板的度量功能, 可以发现旋转变换中的不变量; 关于原点对称的点的坐标特征. 进行图案设计时, 利用计算机, 可以让学生直观地看到改变旋转中心、旋转角会出现不同的效果. 同时利用计算机, 可以直观地看到图形运动变换的过程,对图形性质的探究和发现会很有帮助.7、培养学生良好的作图习惯,加强学生对图形的认识和理解.几何作图是本章教学过程中不可缺少的重要组成部分. 通过作图可以加深学生对旋转的认识和理解. 旋转的过程中, 实际上其运动轨迹均为圆, 利用圆规构造旋转变换的图形是学生应该掌握并熟练应用的. 在教学中,教师应当指导学生利用尺规和其它工具规范作图, 培养学生良好的作图习惯.本章主要作图有:OA'①按要求作旋转后的图形;②已知旋转前后的图形,确定旋转中心、旋转角;③作一个图形关于一点成中心对称的图形;④已知成中心对称的两个图形(或已知某一图形是中心对称图形), 确定对称中心;⑤在平面直角坐标系中, 作一个图形关于原点对称的图形.上述五种作图是本章的基本技能. 在教学中一定要让学生动手完成.8、从三个层面理解借助旋转移动图形:①从旋转的角度认识静态图形,发现图形关系,实际不需要移图;②图形按指令语言(题干)要求移动,解决在图形移动过程中形成的问题;③根据题目需要和图形特征有目的的旋转图形的某一部分,形成新的图形关系,从而将分散的条件集中,使知识与知识之间形成紧密的联系,产生新的信息,有利于解决问题。

新人教版初中数学教材解读

新人教版初中数学教材解读

新人教版初中数学教材解读标题:新人教版初中数学教材解读新人教版初中数学教材在2021年秋季正式启动使用,旨在为学生提供更加优质的教育资源,全面提升学生的数学素养。

本文将对新人教版初中数学教材进行解读,探讨其特点、内容、教学方法等方面。

一、教材特点1、注重基础:新人教版初中数学教材强调学生对数学基础知识的掌握,注重培养学生的数学基本能力,如计算、推理、归纳等。

2、实践性强:教材注重数学与实际生活的联系,通过具有实践性的例题和习题,帮助学生理解数学的应用价值,提高解决实际问题的能力。

3、突出思维:教材在内容设计上注重培养学生的数学思维能力,通过具有启发性的问题,引导学生自主思考,提高学生的数学思维能力。

二、教材内容1、数与代数:教材从学生的认知特点出发,系统介绍了整数、分数、小数等数的基本概念和计算方法,同时介绍了代数的基本概念和运算法则。

2、几何与图形:教材通过丰富的几何图形和图形性质的内容,帮助学生建立几何感,提高学生的空间想象能力。

3、统计与概率:教材介绍了统计的基本方法和概率的基本概念,帮助学生理解数据的重要性,提高分析数据的能力。

三、教学方法1、多样化教学:教材通过丰富的例题、习题和实践活动,使教学形式多样化,提高学生的兴趣和学习效果。

2、探究式教学:教材通过具有启发性的问题,引导学生自主探究,让学生在探究过程中掌握知识,提高解决问题的能力。

3、个性化学习:教材注重学生的个性化学习需求,通过多样化的学习资源,满足不同学生的学习需求,提高学生的学习积极性。

四、总结新人教版初中数学教材在内容设计上注重基础知识的掌握和实践能力的培养,同时突出数学思维的重要性。

教材的多样化教学、探究式教学和个性化学习等特点,为教师提供了更多的教学选择和发挥空间,同时也为学生提供了更加丰富的学习资源。

教师需要根据学生的实际情况,灵活运用教材,不断提高教学质量,全面提升学生的数学素养。

人教版初中数学教材大纲人教版初中数学教材大纲一、前言人教版初中数学教材大纲是为了确保初中数学教育的质量和连贯性而制定的。

人教版数学九年级上册23.1《图形的旋转》说课稿

人教版数学九年级上册23.1《图形的旋转》说课稿

人教版数学九年级上册23.1《图形的旋转》说课稿一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第23.1节的内容。

本节内容是在学生已经掌握了图形的平移、翻转的基础上,引入图形的旋转概念,让学生进一步理解图形的变换,提高学生的空间想象力。

教材通过丰富的实例,引导学生探究图形的旋转性质,培养学生的观察能力、操作能力和推理能力。

二. 学情分析九年级的学生已经掌握了图形的平移、翻转知识,具备一定的学习基础。

但是,对于图形的旋转,学生可能在生活中接触较少,对其理解和掌握可能存在一定的困难。

因此,在教学过程中,教师需要通过生动的实例,让学生感受图形的旋转,帮助学生建立直观的空间观念。

三. 说教学目标1.知识与技能目标:让学生理解图形的旋转概念,掌握图形旋转的性质,能够运用旋转知识解决实际问题。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象力,提高学生的观察能力和操作能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:图形的旋转概念及其性质。

2.教学难点:图形的旋转在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受,帮助学生理解和掌握知识。

六. 说教学过程1.导入新课:通过一个生活中的实例,如风车的旋转,引导学生思考图形的旋转现象,激发学生的学习兴趣。

2.探究新知:引导学生观察和操作实物模型,让学生亲身体验图形的旋转,从而引导学生总结出图形的旋转性质。

3.深化理解:通过几何画板演示图形的旋转过程,让学生更直观地理解旋转性质,帮助学生建立空间观念。

4.应用拓展:设计一些实际问题,让学生运用旋转知识解决,巩固所学知识,提高学生的应用能力。

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。

教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。

学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。

二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。

但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。

三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。

2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。

四. 教学重难点1.重点:配方法的原理和步骤。

2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。

2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。

3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。

六. 教学准备1.准备相关教案和教学资料。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。

例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。

人教版九年级数学上册24.3.2《正多边形和圆(2)》教案

人教版九年级数学上册24.3.2《正多边形和圆(2)》教案

人教版九年级数学上册24.3.2《正多边形和圆(2)》教案一. 教材分析人教版九年级数学上册第24章《圆》中的第3节《正多边形和圆(2)》是本章的重要内容。

本节主要让学生了解并掌握圆的性质,以及正多边形与圆的关系。

通过本节的学习,学生能够更深入地理解圆的性质,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何基础,对圆的概念有一定的了解。

但是,对于圆的性质和正多边形与圆的关系的理解还有待提高。

因此,在教学过程中,教师需要引导学生通过观察、思考、操作、讨论等方式,自主探索并掌握圆的性质,以及正多边形与圆的关系。

三. 教学目标1.了解圆的性质,掌握圆的基本概念。

2.理解正多边形与圆的关系,提高解决问题的能力。

3.培养学生的观察能力、思考能力和合作能力。

四. 教学重难点1.圆的性质的理解和运用。

2.正多边形与圆的关系的理解。

五. 教学方法采用问题驱动法、合作学习法和操作实践法。

通过提出问题,引导学生思考和探索;通过合作学习,培养学生之间的交流和合作能力;通过操作实践,让学生亲身体验和理解圆的性质和正多边形与圆的关系。

六. 教学准备1.准备相关的教学材料,如课件、黑板、粉笔等。

2.准备一些实际的例子,以便引导学生进行观察和操作。

七. 教学过程1.导入(5分钟)通过提出问题,如“什么是圆?圆有哪些性质?”引导学生回顾圆的基本概念,激发学生的学习兴趣。

2.呈现(10分钟)通过课件或黑板,呈现圆的性质,如圆的直径、半径、圆心等。

同时,给出一些实际的例子,让学生观察和理解圆的性质。

3.操练(10分钟)让学生进行一些实际的操作,如画圆、测量圆的直径、半径等。

通过操作,让学生更深入地理解圆的性质。

4.巩固(10分钟)通过一些练习题,让学生巩固所学的圆的性质。

同时,引导学生将这些性质与正多边形联系起来,理解正多边形与圆的关系。

5.拓展(10分钟)引导学生思考和探索正多边形与圆的更深层次的关系。

例如,讨论在给定边长的情况下,如何找到一个正多边形,使其与给定的圆相切。

人教版九年级数学上册说课稿本《一元二次方程实际问题-面积问题》

人教版九年级数学上册说课稿本《一元二次方程实际问题-面积问题》

人教版九年级数学上册说课稿本《一元二次方程实际问题-面积问题》一. 教材分析《一元二次方程实际问题-面积问题》是人教版九年级数学上册的一节内容。

本节课的主要内容是让学生学会运用一元二次方程解决实际问题中的面积问题。

教材通过引入实际问题,让学生感受数学与生活的紧密联系,培养学生的数学应用能力。

教材内容由浅入深,循序渐进,使学生能够逐步掌握一元二次方程在实际问题中的应用。

二. 学情分析九年级的学生已经具备了一定的代数基础,对一元二次方程有了初步的了解。

但在实际问题中的应用,还需要进一步的培养和指导。

学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,进而运用一元二次方程进行解答。

因此,在教学过程中,需要引导学生正确将实际问题转化为数学问题,培养学生运用数学知识解决实际问题的能力。

三. 说教学目标1.知识与技能目标:学生能够理解一元二次方程在实际问题中的应用,学会将实际问题转化为数学问题,熟练运用一元二次方程解决面积问题。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力,提高学生的数学应用意识。

3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,培养学生热爱数学、运用数学的积极情感。

四. 说教学重难点1.教学重点:学生能够将实际问题转化为数学问题,熟练运用一元二次方程解决面积问题。

2.教学难点:引导学生正确将实际问题转化为数学问题,培养学生运用数学知识解决实际问题的能力。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,激发学生兴趣,引导学生主动参与学习。

2.教学手段:利用多媒体课件、教学卡片、黑板等,直观展示教学内容,帮助学生理解和掌握知识。

六. 说教学过程1.导入:通过展示生活中的面积问题,引发学生对面积问题的关注,激发学生学习兴趣。

2.新课导入:介绍一元二次方程在面积问题中的应用,引导学生理解一元二次方程与面积问题的关系。

人教版九年级数学上册

人教版九年级数学上册

人教版九年级数学上册一【教材分析】地位和作用:本节课是人教版九年级上册24章第2节的第3课时,是学生已掌握了点与圆、直线与圆的位置关系等知识的基础上,来研究平面上两圆的不同位置关系,是学生对圆的知识应用的基础,也是今后到高中继续研究平面与球的位置关系,球与球的位置关系的基础。

因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

二【教学目标】知识技能目标:1、积极探索并介绍圆与圆的边线关系。

2、探索圆与圆的位置关系中两圆圆心距与两圆半径间的数量关系。

3、能利用圆与圆的边线关系和数量关系解题。

过程与方法:学生经历积极探索圆与圆的边线关系的过程,培育学生的观测、分析、概括、归纳的能力;学会“投影”、“分类探讨”、“数形融合”的数学思想;提升运用科学知识和技能解决问题的能力,发展应用领域意识。

情感态度目标:学生经过操作方式、实验、证实等数学活动,体会运动变化的观点,质变产生量变的方剂唯物主义观点,体会数学中的美感。

教学重点与难点:教学重点:积极探索并介绍圆和圆的边线关系。

教学难点:探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系。

三【教法与学法分析】1、课堂上本着人人学有用的数学,人人获得有价值的数学的新课程理念,从生活中的图形实例出发引入新课,并用动画演示,直观形象的展示圆与圆的位置关系,经过探索、讨论、观察、总结、再运用的学习过程,逐步深入地探索知识和掌握知识,非常符合这个年龄段学生的认知特点;2、改为死板的传授和呆板的授课,立足于直观认知和操作方式重新认识,从学生熟识的实际启程,使学生看看、想一想重新认识图形的主要特征与图形变化的基本性质,学会辨识相同的圆与圆的边线关系的图形;3、在课堂上赋予适当的教学说理,达到把知识由浅入深;从无规律到有规律;从直观认识到理性认识的数学学习过程,培养学生一定的合理推理能力以及增强学生的严密的思考能力,同时培养学生适当的数学素养。

四【教学程序设计】1.创设情境,激发兴趣2.提出问题,引导探究3.动画模拟,积极探索新知4.概括总结,整体认知5.应用新知,拓展提高6.布置作业,巩固加深五【教学过程】1.创设情境,激发兴趣设计意图:鼓励学生观赏图片,唤起学生对积极探索两圆边线关系的兴趣,由此导入至必须研究的课题。

人教版九年级数学上册教材分析

人教版九年级数学上册教材分析

人教版九年级数学上册教材分析一、教材概述人教版九年级数学上册教材是根据《义务教育数学课程标准(2022年版)》编写的,旨在培养初中生的数学基础知识和基本技能,提高其数学素养和思维能力。

本教材内容丰富,结构清晰,注重实际应用和问题解决,适合初中生学习使用。

二、教学目标通过本册教材的学习,学生将达到以下目标:1.掌握一元二次方程、二次函数、圆等基本概念和性质,能够进行简单的推理和证明。

2.掌握一元二次方程的解法、二次函数的图像和性质、圆的性质和定理等,能够进行简单的应用。

3.经历观察、实验、推理等过程,培养初步的推理能力和解决问题的能力。

4.体验数学与日常生活的密切联系,培养数学学习的兴趣和自信心。

三、内容结构本册教材主要包括以下内容:一元二次方程、二次函数、圆等。

这些内容涵盖了初中数学的主要知识点,旨在帮助学生掌握数学基础知识和基本技能。

具体而言,每一章的内容结构如下:1.引言:介绍本章的主要内容和背景知识,激发学生的学习兴趣。

2.概念与性质:详细介绍一元二次方程、二次函数、圆等的基本概念和性质,帮助学生建立正确的数学观念。

3.例子与探究:通过丰富的实例和探究活动,引导学生深入理解概念和性质,培养其解决问题的能力。

4.练习与拓展:提供多种层次的练习题,包括基础题、提高题和拓展题等,以满足不同学生的学习需求。

同时,还提供了一些拓展知识和应用实例,以开阔学生的视野。

5.小结与复习:对本章所学内容进行总结和复习,帮助学生巩固所学知识。

四、知识点解析1.一元二次方程:重点掌握一元二次方程的解法,包括直接开平方法、配方法、公式法和因式分解法等。

同时,还需理解一元二次方程的根与系数的关系,能够进行简单的应用。

2.二次函数:重点掌握二次函数的图像和性质,包括开口方向、顶点和对称轴等。

同时,还需理解二次函数与一元二次方程的联系和区别,能够进行简单的应用。

3.圆:重点掌握圆的基本性质和定理,包括圆心角定理、圆周角定理、切线长定理等。

人教版九年级数学上册教学设计(全册教案)

人教版九年级数学上册教学设计(全册教案)
人教版九年级数学上册(全册)教案
九年级数学上册教学计划
一、指导思想
坚持贯彻党十八大教育方针,以《初中数学新课程标准》为准绳,继续深入开展新课程教学改革。以提高学生中考成绩为出发点,注重培养学生基础知识和基本技能,提高学生解题答题的能力。同时通过本学期课堂教学,完成九年级上册数学教学任务。并根据实际情况,计划完成九年级下册新授教学内容。
二、学情分析
通过对上期末检测分析,发现本班学生存在很严重的两极分化。一方面是平时成绩比较突出的学生基本上掌握了学习的数学的方法和技巧,对学习数学兴趣浓厚。另一方面是相当部分学生因为各种原因,数学已经落后很远,基本丧失了学习数学的兴趣。
三、教材分析
第二十一章 一元二次方程(13课时)
本章的主要学习一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法),运用一元二次方程分析和解决实际问题。其中解一元二次方程的基本思路和具体解法是本章的重点内容。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。指导成立“课外兴趣小组”,开展丰富多彩的课外活动,带动班级学生学习数学,同时发展这一部分学生的特长。
第二十五章 概率初步(12课时)
理解概率的意义及其在生活中的广泛应用。本章的重点是理解概率的意义和应用,掌握概率的计算方法。本章的难点是会用列举法求随机事件的概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册教材分析《义务教育课程标准实验教科书·数学》九年级上册包括一元二次方程、二次函数、旋转、圆、概率初步五章内容,学习内容涉及到了《全日制义务教育数学课程标准(实验稿)》(以下简称《课程标准》)的四个领域“数与代数”“空间与图形”“统计与概率”“课题学习”。

本书供义务教育九年级上学期使用,全书共需约64课时,具体分配如下:第21章一元二次方程约13课时第22章二次函数约12课时第23章旋转约8课时第24章圆约17课时第25章概率初步约14课时一、教科书内容安排1. 一元二次方程学生已经掌握了用一元一次方程解决实际问题的方法。

在解决某些实际问题时还会遇到一种新方程──一元二次方程。

“一元二次方程”一章就来认识这种方程,讨论这种方程的解法, 并运用这种方程解决一些实际问题。

本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。

然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,“22.2 降次──解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。

下面分别加以说明。

(1)在介绍配方法时,首先通过实际问题引出形如的方程。

这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。

进而举例说明如何解形如的方程。

然后举例说明一元二次方程可以化为形如的方程,引出配方法。

最后安排运用配方法解一元二次方程的例题。

在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。

对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。

然后安排运用公式法解一元二次方程的例题。

在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。

由此引出一元二次方程的解的三种情况。

(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。

然后安排运用因式分解法解一元二次方程的例题。

最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

“22.3实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

2.二次函数本章共分三节。

首先介绍二次函数及其图象,并从图象得出二次函数的有关性质。

然后探讨二次函数与一元二次方程的联系。

最后通过设置探究栏目展现二次函数的应用。

在第一节中,首先从实例中引出二次函数,进而给出二次函数的定义。

关于二次函数的图象和性质的讨论分为以下几部分。

(1)从最简单的二次函数函数y=x出发,通过描点画出它的图象,从而引出抛物线的有关概念。

(2)讲述二次函数y=ax的图象的画法,并归纳出这类抛物线的特征。

(3)讨论形如y=ax+k和y=a(x-h)的函数的图象,然后讨论形如y=a(x-h)+k的函数的图象。

(4)讨论函数y=ax+bx+c的图象。

3.旋转学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。

本书中图形变换又增添了一名新成员――旋转。

“旋转”一章就来认识这种变换,探索它的性质。

在此基础上,认识中心对称和中心对称图形。

“23.1 旋转”一节首先通过实例介绍旋转的概念。

然后让学生探究旋转的性质。

在此基础上,通过例题说明作一个图形旋转后的图形的方法。

最后举例说明用旋转可以进行图案设计。

“23.2 中心对称”一节首先通过实例介绍中心对称的概念。

然后让学生探究中心对称的性质。

在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。

这些内容之后,通过线段、平行四边形引出中心对称图形的概念。

最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。

“23.3 课题学习图案设计”一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。

4.圆圆是一种常见的图形。

在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。

通过这一章的学习,学生的解决图形问题的能力将会进一步提高。

“24.1 圆”一节首先介绍圆及其有关概念。

然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。

接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。

最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。

“24.2与圆有关的位置关系”一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明“在同一直线上的三点不能作圆”引出了反证法。

然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。

最后介绍圆和圆的位置关系。

“24.3 正多边形和圆”一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。

“24.4 弧长和扇形面积”一节首先介绍弧长公式。

然后介绍扇形及其面积公式。

最后介绍圆锥的侧面积公式。

5.概率初步将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了“概率”一章,学生就能更好地认识这个问题了。

掌握了概率的初步知识,学生还会解决更多的实际问题。

“25.1 概率”一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。

“25.2用列举法求概率”一节首先通过具体试验引出用列举法求概率的方法。

然后安排运用这种方法求概率的例题。

在例题中,涉及列表及画树形图。

“25.3利用频率估计概率”一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。

“25.4 课题学习键盘上字母的排列规律”一节让学生通过这一课题的研究体会概率的广泛应用。

二、本书编写特点(一)注重知识间的联系与综合学生经过初中两年的学习,进一步积累了“数与代数”“空间与图形”“统计与概率”等领域的知识以及学习这些知识的经验。

本书内容都是以学生已学内容为基础的。

因此本书各章都注意从学生已有的知识和经验出发,帮助学生学好新内容。

在“二次根式”一章,教科书注意从算术平方根的意义得到与二次根式有关的结论,注意二次根式的加减与整式的加减,以及二次根式的混合运算与多项式乘法的类比,帮助学生掌握新内容。

在“一元二次方程”一章,突出解一元二次方程的关键是将一元二次方程转化为一元一次方程来解。

在讲配方法时,用框图的形式展示用配方法实现上述转化的过程,并强调其中的关键步骤是运用。

另外,为了加强与因式分解的联系,体现因式分解的作用,专门介绍了用因式分解法解一元二次方程。

在“旋转”一章,注意运用已学知识证明有关结论。

从学生熟悉的线段、平行四边形出发,引出中心对称图形的概念。

本章的第2个数学活动还从坐标的角度揭示了中心对称与轴对称的关系。

在“圆”一章,注意运用所学图形变换知识。

如从圆是轴对称图形的角度认识与垂直于弦的直径有关的结论;从旋转的角度认识弧、弦、圆心角的关系。

这一章也注意了运用已学知识证明有关结论,如证明圆周角与圆心角的关系。

在“概率”一章,从频率的稳定值出发引出概率的概念,介绍用频率估计概率的方法,都加强了概率与统计的联系。

此外,本书还注意了知识的综合运用,如在“旋转”一章安排了综合运用平移、轴对称、旋转的组合进行图案设计的内容。

在“圆”一章,圆的有关性质、直线与圆的位置关系等内容的讨论,实际上也是所学知识的综合运用。

总之,注意揭示知识之间的联系,易于学生学习和掌握新内容,注意知识的综合运用,有助于学生能力的提高。

(二)注重探索结论本书各章都注意揭示得出结论的过程,加深学生对相关结论的理解,提高学生分析问题、解决问题的能力。

在“二次根式”一章,让学生根据平方根的意义填空,进而得出≥0)以及(≥0)的结论。

让学生通过特殊数值的计算体会二次根式的乘除法则规定的合理性。

在“一元二次方程”一章,让学生思考各种类型的一元二次方程如何用配方法得解,讨论如何配方。

通过设置探究栏目加大了让学生探究解决实际问题的力度。

此外,本章中的选学内容“观察与猜想发现一元二次方程根与系数的关系”也是强调结论的探索过程。

在“旋转”一章,旋转的性质,中心对称的性质,在平面直角坐标系中,如果两个点关于原点对称,那么这两个点的坐标有什么关系,这些内容都是让学生进行探究的。

此外,本章还安排了许多探索和发现图形之间的变换关系的问题。

在“圆”一章,结论较多,也注意体现了结论的探索过程。

例如结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转发现圆中弧、弦、圆心角之间的关系;通过度量,发现圆心角与圆周角的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。

在“概率”一章,则注意通过解决具体问题获得对概率的理解,掌握用列举法求概率的方法以及用频率估计概率的方法。

(三)注重联系实际1. 从实际出发引入有关内容在本书中,二次根式的概念、二次根式的加减都是从实际问题引出的,体现了式在表示数量关系上的作用。

一元二次方程的概念则是通过雕像设计、制作方盒、排球比赛等问题引出的,体现了方程刻画现实世界的作用。

旋转的概念则是由时针、叶片等实例引入的,体现了图形变换与实际的紧密联系。

在“圆”一章,由赵州桥的主桥拱半径的问题引出垂径定理;由海洋馆中观景问题引出圆周角与圆心角、圆周角之间的关系。

概率的概念也是结合掷币试验帮助学生理解的。

2. 运用有关内容解决实际问题本书内容与实际联系紧密,在掌握了相关内容以后,又可以运用它们解决实际问题。

在本书中,一元二次方程的应用是这方面的一个重点。

教科书通过设置探究栏目,解决传播、成本下降率、面积、匀变速运动等问题,突出这一重点。

圆的内容可以用来解决许多实际问题,求赵州桥的主桥拱半径的问题,求正多边形亭子地基的周长与面积,计算蒙古包的用料都要借助圆的有关知识。

概率也有广泛的应用。

用列举法可以求出许多实际问题中的概率。

还特意安排课题学习的内容,使学生对概率的应用有进一步的体会。

三、几个值得关注的问题(一)把握好教学要求在本书中,既有一元二次方程、圆这样的传统的重要内容,又有概率初步知识这样的新增内容,需要对内容要求有一个很好的把握。

在“二次根式”一章,主要是了解二次根式的概念及其加、减、乘、除运算法则,并会用它们进行有关实数的简单四则运算。

有些内容,像分母有理化,在课程标准中是明确不作要求的。

这样可以突出二次根式概念和运算的重点。

在“一元二次方程”一章,主要是让学生能够根据具体问题中的数量关系,列出一元二次方程,进一步体会方程是刻画现实世界的一个有效的数学模型;理解配方法,会用配方法、公式法、因式分解法解简单的数字系数的一元二次方程。

相关文档
最新文档