实际问题与一元二次方程(含答案)
人教版数学九年级上册《实际问题与一元二次方程》(第一课时)同步练习含答案
实际问题与一元二次方程(第一课时)附答案◆随堂检测1、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( )A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元2、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A .2002(1%)a +=148 B .2002(1%)a -=148 C .200(12%)a -=148 D .2002(1%)a -=148 3、某商场的标价比成本高p %,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d %,则d 可用p 表示为( ) A .100p p + B .p C .1001000p p - D .100100pp+4、某农户的粮食产量,平均每年的增长率为x ,第一年的产量为m 千克,•第二年的产量为_______千克,第三年的产量为_______千克,三年总产量为_______千克.5、据报道,我国农作物秸杆的资源巨大,但合理利用量十分有限,某地区2011年的利用率只有30%,大部分秸杆被直接焚烧了,假定该地区每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2013年的利用率提高到60%,求每年的增长率.(≈1.41)◆典例分析某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(•用代数式来表示)(注:年获利率=年利润年初投入资金×100%)(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.分析:列一元二次方程解一元二次方程的一般步骤(1)审题,(2)设设出未知数,(3)找等量关系列出方程,(4)用适当方法解方程,(5)检验方程的解是否符合题意,将不符合题意的解舍去,(6)答题.要注意各个环节的准确性. 解:◆课下作业 ●拓展提高1、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人. A .12 B .10 C .9 D .82、县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产%x ,则第三季度化肥增产的吨数为( ) A .2)1(x a + B .2%)1(x a + C .2%)1(x + D .2%)(x a a +3、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x ,则可列出方程为________________________.4、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.5、某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额平均增长率是多少?(分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是10(1)x +,三月份的营业额应是102(1)x +.)6、上海甲商场七月份利润为100万元,九月份的利润为121万元,乙商场七月份利润为200万元,九月份的利润为288万元,那么哪个商场利润的月平均上升率较大?7、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
实际问题与一元二次方程(传播问题)
x
1
2.要组织一场篮球联赛,赛制为单循环形式,即每两 队之间都赛一场,计划安排15场比赛,应邀请多少个 球队参加比赛? 3.要组织一场篮球联赛, 每两队之间都赛2场,计划 安排90场比赛,应邀请多少个球队参加比赛? 4.参加一次聚会的每两人都握了一次手,所有人共 握手10次,有多少人参加聚会?
…… ……
被 传 染 人
被 传 染 人
被 传 染 人
被 传 染 人
x
被传染人
x
被传染人
……
……
……
x
开始传染源
x
开始传染源
1
设每轮传染中平均一个人传染了x个人,
则第一轮的传染源有 1 人,有 x 人被传染, 第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
x+1+x(x+1) 人患 用代数式表示,第二轮后共____________ 了流感
x+1+x(x+1)=121
解方程,得 10 -12 (. 不合题意,舍去) _____, ______ x1 x2
10 答:平均一个人传染类问题是传播问题. 2,计算结果要符合问题的实际意义.
思考:如果按照这样的传播速度,n轮后 有多少人患流感?
(1 x)
实际问题与一元二次方程
(传播问题)
传播问题
例 1: 有一人患了流感 经过两轮传染后共 有121人患了流感, 每轮传染中平均一 个人传染了几个人?
设每轮传染中平均一个人传染了x个人,
则第一轮的传染源有 1 人,有 x 人被传染, 第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
被 传 染 人 被 传 染 人
实际问题与一元二次方程习题含问题详解
323 5337 9 113413 1517 1922.2实际问题与一元二次方程(1)1.一个多边形有70条对角线,则这个多边形有________条边.2.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x 名同学,依题意,可列出的方程是( ) A .x (x+1)=240 B .x (x-1)=240 C .2x (x+1)=240 D .12x (x+1)=240 3.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ). A .12人 B .18人 C .9人 D .10人4.有一人患了流感,经过两轮传染后,共有121人患了流感,若设每轮传染中平均每人传染了x 人,那么可列方程为 .5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有几个球队参加了这次比赛?6、32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( ) A 、41 B 、39 C 、31 D 、297.某商店将甲、乙两种糖果混合运算,并按以下公式确定混合糖果的单价:单价=112212a m a m m m ++(元/千克),其中m 1,m 2分别为甲、乙两种糖果的重量(千克),a 1,a 2分别为甲、乙两种糖果的单价(元/千克).已知a 1=20元/千克,a 2=16元/千克,现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,•又在混合糖果中加入5千克乙种糖果,再出售时混合糖果的单价为17.5元/千克,问这箱甲种糖果有多少千克?8.(2008.福建南平市)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A .8人B .9人C .10人D .11人 9.(2008年聊城市)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( ) A .54个B .90个C .102个D .114个答案:1.10 2.B 3。
中考中的实际问题与一元二次方程及答案
实际问题与一元二次方程(1)1.经过多年努力,广东省已经建立了比较完善的家庭经济困难学生资助政策体系,某校去年上半年发放给每个家庭经济困难学生390元,今年上半年发放了450元,设每半年发放的资助金额的平均增长率为x,则方程为?2.在某次聚会上,每两个人握一次手,所有人共握手10次,设有x人参加这次聚会,则可列出方程是?3.某房地产公司经过几年努力,开发建设住房面积由前年的4万平方米增加到今年的7万平方米,设这两年该房地产开发公司开发建设住房面积的年平均增长率为X,则可列出方程为?4.市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128,求这种药品平均每次降价的百分率是多少?5.某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250㎡因为准备工作不足,第一天少拆迁20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440㎡.(1)求该工程队第一天拆迁的面积;(2)若该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数. 6.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后共有81台电脑被感染。
请问每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?7春游旅行社为吸引市民组团去广州旅行,推出了如下收费标准①如果人数不超过25人,人均旅游费用为1000元;②如果人数超过25人,每增加1人,人均旅游费降低20元,但人均旅游费用不得低于700元。
某单位组织员工去广州旅游,共支付给春秋旅行社旅游费用27000。
请问该单位这次共有多少名员工去广州旅游?8.某水果批发商场经销一种号称‘天然VC之王’和‘生命之果’的水果——樱桃,如果每千克盈利10元,每天可销售500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
九年级数学实际问题与一元二次方程(基础)(含答案)
实际问题与一元二次方程(基础)一、单选题(共10道,每道10分)1.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则根据题意,列出的方程是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——循环制2.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,已知全班共送了2070张相片,如果设全班有x名学生,根据题意可列方程为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——循环制3.某品牌服装原售价为173元,经过连续两次降价后售价为127元,设平均每次降价x%,则下面所列方程中正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——增长率型4.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——增长率型5.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )A.10×6-4×6x=32B.C. D.10×6-4x2=32答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——面积型6.如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为77m2,设道路的宽为xm,则根据题意,可列方程为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——面积型7.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每千克的售价每降价0.1元,每天可多售出40千克.另外,每天的房租等固定成本共24元.若该经营户要想每天盈利200元,设应将每千克小型西瓜的售价降低x元,则根据题意可列方程为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——经济型8.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——经济型9.如图,在△ABC中,∠ABC=90°,AB=4cm,BC=3cm.动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为cm/s,点Q的速度为1 cm/s,点Q移动到点C 后停止,点P也随之停止运动.若使△PBQ的面积为cm2,则点P运动的时间是( )A.2 sB.3 sC.4 sD.5 s答案:B解题思路:试题难度:三颗星知识点:实际问题与一元二次方程10.某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,并且尽可能让利于顾客,则每千克核桃的售价应为( )元.A.6B.4或6C.54D.54或56答案:C解题思路:试题难度:三颗星知识点:实际问题与一元二次方程——经济型。
实际问题与一元二次方程-九年级数学人教版(上)(原卷版+解析版)
第二十一章一元二次方程21.3实际问题与一元二次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.某商品原价100元,连续两次涨价x%后售价为120元,则下面所列方程正确的是A.100(1+2x%)2=120 B.100(1+x2)2=120C.100(1−x%)2=120 D.100(1+x%)2=1202.为执行“均衡教育”政策,某区2016年投入教育经费2500万元,预计到2018年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是A.2500(1+2x)=12000 B.2500(1+x)2=12000C.2500+2500(1+x)+2500(1+2x)=12000 D.2500+2500(1+x)+2500(1+x)2=120003.已知菱形ABCD的一条对角线长为6,边AB的长是方程x2−7x+12=0的一个根,则菱形ABCD的周长为A.16 B.12C.16或12 D.244.祁中初三(6)班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为A.=930 B.=930C.x(x+1)=930 D.x(x−1)=9305.为改善办学条件,某县加大了专项资金投入,2016年投入房屋改造专项资金3000万元,预计2018年投入房屋改造专项资金5000万元.设投入房屋改造专项资金的年平均增长率为x,根据题意,下面所列方程正确的是A.3000(1+x)2=5000 B.3000x2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=50006.现有一块长方形绿地,它的短边长为20 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m2,设扩大后的正方形绿地边长为x m,下面所列方程正确的是A.x(x−20)=300 B.x(x+20)=300C.60(x+20)=300 D.60(x−20)=300二、填空题:请将答案填在题中横线上.7.某工厂两年内产值翻了一番,求该工厂产值年平均增长的百分率.若设该工厂产值年平均增长的百分率为x,则可列方程为________.8.如图,某小区有一块长为36 m,宽为24 m的矩形空地,计划在其中间修建两块形状相同的矩形绿地,它们的面积之和为600 m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.9.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是________元(结果用含m的代数式表示).三、解答题:解答应写出文字说明、证明过程或演算步骤.10.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少....库存..,商场决定采取适当的降价措施.假设在一定范围内,衬衫的单价每降低1元,商场平均每天可多售出2件.设衬衫的单价降了x元:(1)该商场降价后每件盈利___________元,每天可售出________件;(2)如果商场通过销售这批衬衫每天盈利1200元,那么衬衫的单价降了多少元?11.用如图所示矩形纸片的四个角都剪去一个边长为的正方形(阴影部分).并制成一个长方体纸盒.(1)用a,b,x表示纸片剩余部分的面积和纸盒的底面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.12.果农田丰计划将种植的草莓以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.为了加快销售,减少损失,田丰对价格进行两次下调后,以每千克9.6元的单价对外批发销售.(1)如果每次价格下调的百分率相同,求田丰每次价格下调的百分率;(2)小李准备到田丰处购买3吨该草莓,因数量多,田丰准备再给予两种优惠方案供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金400元.试问小李选择哪种方案最优惠?请说明理由.第二十一章一元二次方程21.3实际问题与一元二次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.某商品原价100元,连续两次涨价x%后售价为120元,则下面所列方程正确的是A.100(1+2x%)2=120 B.100(1+x2)2=120C.100(1−x%)2=120 D.100(1+x%)2=120【答案】D【名师点睛】本题主要考查的是一元二次方程的应用,属于基础题型.根据题意得出等量关系是解决这个问题的关键.2.为执行“均衡教育”政策,某区2016年投入教育经费2500万元,预计到2018年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是A.2500(1+2x)=12000 B.2500(1+x)2=12000C.2500+2500(1+x)+2500(1+2x)=12000 D.2500+2500(1+x)+2500(1+x)2=12000【答案】D【解析】由题意可得:2500+2500(1+x)+2500(1+x)2=12000.【名师点睛】此题主要考查了一元二次方程的应用—增长率问题,确定问题的等量关系是解题关键. 3.已知菱形ABCD的一条对角线长为6,边AB的长是方程x2−7x+12=0的一个根,则菱形ABCD的周长为A.16 B.12C.16或12 D.24【答案】A【解析】(x−3)(x−4)=0,x−3=0或x−4=0,所以x1=3,x2=4,∵菱形ABCD的一条对角线长为6,∴边AB的长是4,∴菱形ABCD的周长为16.4.祁中初三(6)班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为A.=930 B.=930C.x(x+1)=930 D.x(x−1)=930【答案】D【名师点睛】此题主要考查了由实际问题抽象出一元二次方程,其中x(x−1)不能和握手问题那样除以2,另外这类问题转化为一元二次方程求解时应注意考虑解的合理性,即考虑解的取舍.5.为改善办学条件,某县加大了专项资金投入,2016年投入房屋改造专项资金3000万元,预计2018年投入房屋改造专项资金5000万元.设投入房屋改造专项资金的年平均增长率为x,根据题意,下面所列方程正确的是A.3000(1+x)2=5000 B.3000x2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=5000【答案】A【解析】设教育经费的年平均增长率为x,则2017的房屋改造专项资金为:3000×(1+x)万元,2018的房屋改造专项资金为:3000×(1+x)2万元,那么可得方程:3000×(1+x)2=5000.故选A.【名师点睛】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.6.现有一块长方形绿地,它的短边长为20 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m2,设扩大后的正方形绿地边长为x m,下面所列方程正确的是A.x(x−20)=300 B.x(x+20)=300C.60(x+20)=300 D.60(x−20)=300【名师点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.二、填空题:请将答案填在题中横线上.7.某工厂两年内产值翻了一番,求该工厂产值年平均增长的百分率.若设该工厂产值年平均增长的百分率为x,则可列方程为________.【答案】(x+1)2=2【解析】设工厂产值年平均增长的百分率为x,原产值为a,由题意得:整理得:故答案为:8.如图,某小区有一块长为36 m,宽为24 m的矩形空地,计划在其中间修建两块形状相同的矩形绿地,它们的面积之和为600 m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.【答案】2【解析】设人行道的宽度为x米,根据题意得,(36−3x)(24−2x)=600,化简整理得,(12−x)2=100.解得x1=2,x2=22(不合题意,舍去).答:人行通道的宽度是2 m.故答案为:2.【名师点睛】本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为600 m2得出等式9.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是________元(结果用含m的代数式表示).【答案】100(1−m)2三、解答题:解答应写出文字说明、证明过程或演算步骤.10.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少....库存..,商场决定采取适当的降价措施.假设在一定范围内,衬衫的单价每降低1元,商场平均每天可多售出2件.设衬衫的单价降了x元:(1)该商场降价后每件盈利___________元,每天可售出________件;(2)如果商场通过销售这批衬衫每天盈利1200元,那么衬衫的单价降了多少元?【答案】(1)(40−x),(20+2x);(2)20【解析】(1)∵每件衬衫降价1元,商场平均每天可多售出2件,∴每件衬衫降价x元,商场平均每天可多售出2x件,∵原来每件的利润为40元,现在降价x元,∴现在每件的利润为(40−x)元,每天可以售出件.故答案为:(40−x),.(2)由题意,得(40−x)(20+2x)=1200,解得:x1=10 ,x2=20 ,为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20.答:如果商场通过销售这批衬衫每天盈利1200元,那么衬衫的单价降了20元.11.用如图所示矩形纸片的四个角都剪去一个边长为的正方形(阴影部分).并制成一个长方体纸盒.(1)用a,b,x表示纸片剩余部分的面积和纸盒的底面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.【答案】(1);;(2)【名师点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)利用长方形的面积减去四个正方形的面积,列出代数式;(2)根据剩余部分与减去部分面积间的关系,列出一元二次方程.12.果农田丰计划将种植的草莓以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.为了加快销售,减少损失,田丰对价格进行两次下调后,以每千克9.6元的单价对外批发销售.(1)如果每次价格下调的百分率相同,求田丰每次价格下调的百分率;(2)小李准备到田丰处购买3吨该草莓,因数量多,田丰准备再给予两种优惠方案供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金400元.试问小李选择哪种方案最优惠?请说明理由.【答案】(1)田丰每次价格下调的百分率是20%;(2)小李选择方案一购买更优惠.【解析】(1)设田丰每次价格下调的百分率为x.由题意得:15(1−x)2=9.6.解这个方程,得:x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:田丰每次价格下调的百分率是20%.(2)小李选择方案一购买更优惠.理由:方案一所需费用为:9.6×0.9×3000=25920(元),方案二所需费用为:9.6×3000−400×3=27600(元).∵25920<27600,∴小李选择方案一购买更优惠.。
实际问题与一元二次方程练习题含答案
实际问题与一元二次方程1.(2021.铜仁)某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克。
经市场调查发现,在进货价不变的情况下,假设每千克涨价1元,日销售量将减少20千克。
现商场要保证每天盈利6000元,那么每千克应涨价多少元?解:设每千克应涨价x元,依题意列方程(500-20x)(10+x)=6000 整理得:x2-15x+50=0〔x-5〕〔x-10〕=0 x1=5 x2=10 答:---------。
2.假设方程(m+1)x2m1 +4x+2=0是关于x的一元二次方程,那么m= 1 。
3.如右图,将边长为4的正方形,沿两边剪去两个边长为矩形,剩余局部的面积为9,可列出方程为 (4-x)2=94.某工厂2021年的年产值为200万元,由于技术改良,产值有所增长,预计到2021 年该工厂的年产值为242求每年平均增长率。
解:设每年平均增长率为x,依题意列方程 200(1+x)2=242x1=0.1=10% x2=-2.1 (舍去) 答:--------------。
5.(2021.凤阳)某学校方案在一块长8米,宽6米的矩形草坪的中央划出面积为16平方米的矩形地块栽花,使这矩形草坪四周的草地宽度都一样,求四周草地的宽度应为多少?。
解:设四周草地的宽度为x米,依题意列方程 (8-2x)(6-2x)=16化为一般形式为 x2-7x+8=0 解:略答:-------。
6.某百货商店服装柜在销售中发现:“宝乐〞牌童装平均每天可售出20件,每件盈利40元。
为了迎接“〞国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。
经市场调查发现,每件童装每降价4元,平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?。
解:设每件童装应降价x元,依题意列方程 (40-x)(20+2x)=1200x2-30x+200=0 解得:x1=20 x2=10为了尽量减少库存,所以取x1=20 答:--------。
九年级数学《实际问题与一元二次方程》附答案
《解一元二次方程》同步练习一、选择题1.某种植物主干长出若干数目的分支,每个分支长出相同数目的小分支,主干、分支、小分支的总数为241,求每个分支长出多少个小分支?若设主干有x 个分支,依题意列方程正确的是( )A .1+x +x (x +1)=241B .1+x +x 2=241C .1+(x +1)+(x +1)2=241D .1+(x +1)+x 2=2412.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,则3月份到5月份营业额的平均增长率是 ( )A .10%B .20%C .22%D .25%3.新年到了,某班同学每人向其他同学赠送1张自己的照片,全班共互赠了2450张照片,若全班有x 名同学,则根据题意所列方程是 ( )A .x(x+1)=2450B .x(x-1)=2450C .2x(x+1)=2450D .x(x-1)=2450×24.利用13 m 的铁栅栏和一面墙(长超过13 m),围成一个面积为20 m²的矩形菜园,矩形的短边与墙垂直,设矩形的长为x m ,则可列方程 ( )A .x(13-x)=20B .2021321=-⋅x x C .20213=-⋅x x D.202213=-⋅x x 5.为治理大气污染,保护人民健康,某市调整产业结构,压减钢铁生产总量,2014年某市钢铁生产量为9700万吨,计划到2016年钢铁生产量设定为5000万吨,设该市每年钢铁生产量平均降低率为x ,依题意,下面所列方程正确的是 ( )A .9700(1-2x)=5000B .5000(1+x)²=9700C .5000(1-2x)=9700D .9700(1-x)²=50006.在一个QQ 群里有n 个网友在线,每个网友都向其他网友发出一条信息,共有20条信息,则n 为( )A .10B .6C .5D .47.从一块正方形的木板上锯掉2 m 宽的长方形木条,剩下的面积是48m²,则原来这块木板的面积是 ( )A .100 m²B .64 m²C .121 m²D .144 m²8.目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发给每个经济困难学生398元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A .438(1+x )2=389B .389(1+x )2=438C .389(1+2x )=438D .438(1+2x )=389二、填空题1.若两个连续偶数的积为168,设较小的偶数为x ,则另一个偶数为_________,由题意列方程为________________.2.某种商品原价是100元,降价10%后,销售量急剧增加,于是决定提价25%,则提价后的价格是_________.3.某电脑销售公司今年每个月的销售量都比上个月增长相同的百分数.已知该公司今年4月份的电脑销售量为500台,6月份比5月份多售出120台,该公司今年销售量的月增长率是多少?若设今年销售量的月增长率为x ,则可得方程为_______________.4.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的72,则这个两位数是_________. 5.有一块长方形的铁片,把它的四角各剪去一个边长是4 cm 的小正方形,然后把四边折起来,做成一个没有盖的盒子,已知铁片的长是宽的2倍,做成盒子的容积是1536cm 3,则这块铁片的长为_________cm ,宽为_________cm.6.用一条长24 cm 的铁丝围成一个斜边长是10 cm 的直角三角形,则两条直角边的长分别为_________、_________.7.有一间长20 m 、宽15 m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的21,四周未铺地毯的留空宽度相同,则留空的宽度为_________m . 8.已知三角形两边长分别为2和9,第三边的长为一元二次方程x²-14x+48=0的一根,则这个三角形的周长为_________.三、解答题1.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次降价的百分率的2倍,结果以每件240元的价格迅速售出.求每次应标价几折销售.2.李明准备进行如下操作实验:把一根长40cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm ²,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48c m².你认为他的说法正确吗?请说明理由.3.某商店如果将进价8元的商品按每件10元售出,每天可销售200件,现采用提高售价、减小进货量的方法来增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,问:将售价定为多少元时,才能使每天所获利润为640元?4.华润商场销售某种电视机,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台,而当售价每降低50元时,平均每天就能多售出4台,商场要想使这种电视机的每天销售利润达到5000元,每台电视机的实际售价应为多少元?5.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现每月10 000元的销售利润,商场决定采取调控价格的措施,扩大销售量,减少库存,这种台灯的售价应定为多少?这时应进台灯多少个?6.某商场销售一种品牌羽绒服和防寒服,其中羽绒服的售价比防寒服售价的5倍还多100元,2016年1月份(春节前期)共销售500件,羽绒服与防寒服销量之比是4:1,销售总收人为58.6万元.(1)求羽绒服和防寒服的售价;(2)春节后销售进入淡季,2016年2月份羽绒服销量下滑了6 m%,售价下滑了4m%,防寒服销量和售价都维持不变,结果销售总收入下降至16.04万元,求m的值.参考答案一、1.B 2.B 3.B 4.C 5.D 6.C 7.B 8.B二、1.(x+2) x(x+2)=168 2.112.53. 500(1+x)²-500(1+x)=1204.635. 40 206.6 cm 8 cm7.2.58.19三、1.解:设第一次降价的百分率为x ,则第二次降价的百分率为2x . 由题意,得500(1-x)(1-2x)=240.即50x²-75x+13=0.解得x=51或x=1.3(舍去).即第一次打八折销售,第二次打六折销售. 2.解:解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm .由题意,得x²+(1O-x)²=58.解得x ₁=3,x ₂=7.∴这两个正方形的周长分别为4×3=12(cm),4×7=28(cm).答:李明应该把铁丝剪成12 cm 和28 cm 的两段.(2)李明的说法正确,设其中一个正方形的边长为y cm.由题意,得y ²+(10-y)²=48.整理,得y²-10y+26=0.∵b²-4ac=(-10)²-4×1×26=-4<0,∴方程无实数解,∴李明的说法是正确的.3.解:设定价为x 元,根据题意列方程,得(x-8)(200-5.010 x ×10)=640.解得x ₁=12,x ₂=16.因为采用提高售价、减少进货量的办法增加利润,故应将每件售价定为16元时,才能使每天利润为640元.4.解:设每台电视机降价x 元(x ≤400).由题意,得(2900-x-2500)(8+4×50x )=5000,解得x ₁=x ₂=150.2900-150=2750(元).5.解:设售价为x 元,根据题意,得(x-30)[600-(x-40)×10]=10000.解得x ₁=50,x ₂=80.因需扩大销售量,减少库存,所以x ₂=80舍去.当x=50时,600-(x-40)×10=500.即售价为50元时进500个.6.解:(1)设防寒服的售价为x 元,则羽绒服的售价为(5x+100)元,∵2016年1月份(春节前期)共销售500件,羽绒服与防寒服销量之比是4:1,∴羽绒服与防寒服销量分别为400件和100件.根据题意,得400(5x+100)+100x=586000.解得x=260.∴5x+100=1400.(2)根据题意,得400(1-6m%)×1400×(1-4m%)+100×260=160400. 解得m ₁=10,m ₂=395(不合题意,舍去).∴m 的值为10.。
《21.3实际问题与一元二次方程》测试题(含答案解析)
一元二次方程的应用测试题时间:90分钟总分: 100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A. 20(1+2x)=28.8B. 28.8(1+x)2=20C. 20(1+x)2=28.8D. 20+20(1+x)+20(1+x)2=28.82.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A. 12x(x−1)=45 B. 12x(x+1)=45 C. x(x−1)=45 D. x(x+1)=453.如图,在矩形ABCD中,AB=1,BC=2,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为()A. √2−12B. √3−12C. √5−12D. √6−124.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A. (x+1)(x+2)=18B. x2−3x+16=0C. (x−1)(x−2)=18D. x2+3x+16=05.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A. 560(1+x)2=1850B. 560+560(1+x)2=1850C. 560(1+x)+560(1+x)2=1850D. 560+560(1+x)+560(1+x)2=18506.某市计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A. 19%B. 20%C. 21%D. 22%7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A. (32−2x)(20−x)=570B. 32x+2×20x=32×20−570C. (32−x)(20−x)=32×20−570D. 32x+2×20x−2x2=5708.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A. 16(1+2x)=25B. 25(1−2x)=16C. 16(1+x)2=25 D. 25(1−x)2=169.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A. 10.8(1+x)=16.8B. 16.8(1−x)=10.8C. 10.8(1+x)2=16.8D. 10.8[(1+x)+(1+x)2]=16.810.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于()A. 0.5cmB. 1cmC. 1.5cmD. 2cm二、填空题(本大题共10小题,共30.0分)11.如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______ cm.12.红米note手机连续两次降价,由原来的1299元降688元,设平均每次降价的百分率为x,则列方程为______ .13.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为______ 米.14.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为______ .15.如图,在边长为6cm正方形ABCD中,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC和CD边向D点以2cm/s的速度移动,如果点P、Q分别从A、B同时出发,其中一点到终点,另一点也随之停止.过了______ 秒钟后,△PBQ的面积等于8cm2.16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.17.如图,EF是一面长18米的墙,用总长为32米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块.若要围成的矩形面积为60平方米,则AB的长为______ 米.18.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同且设为x,则列出的方程是______ .19.去年2月“蒜你狠”风潮又一次来袭,某市蔬菜批发市场大蒜价格猛涨,原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%,恰好与涨价前的价格相同,则2月,3月的平均增长率为______ .20.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是______.三、计算题(本大题共4小题,共24.0分)21.商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?22.如图,在△ABC中,∠B=90∘,点P从点A开始,沿AB向点B以1cm/s的速度移动,点Q从B点开始沿BC以2cm/s的速度移动,如果P、Q分别从A、B同时出发:(1)几秒后四边形APQC的面积是31平方厘米;(2)若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.23.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为11米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45平方米的花圃,那么AD的长为多少米?(2)能否围成面积为60平方米的花圃?若能,请求出AD的长;若不能,请说明理由.24.“白马服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.(1)要使每天的利润为4000元,裤子的定价应该是多少元?(2)如何定价可以使每天的利润最大?最大利润是多少?四、解答题(本大题共2小题,共16.0分)25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.26.如图所示,已知在△ABC中,∠B=90∘,AB=6cm,BC=12cm,点Q从点A开始沿AB边向点B以1cm/s 的速度移动,点P从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2?(2)在(1)中,△PBQ的面积能否等于10cm2试说明理由.答案和解析【答案】1. C2. A3. C4. C5. D6. B7. A8. D9. C10. B11. 1112. 1299×(1−x)2=1299−68813. 114. 10%15. 2或10316. 50(1−x)2=3217. 1218. 10(1+x)2=12.119. 25%20. 10%21. 解:(1)当每件商品售价为55元时,比每件商品售价50元高出5元,即55−50=5(元),则每天可销售商品450件,即500−5×10=450(件),商场可获日盈利为(55−40)×450=6750(元).答:每天可销售450件商品,商场获得的日盈利是6750元;(2)设商场日盈利达到8000元时,每件商品售价为x元.则每件商品比50元高出(x−50)元,每件可盈利(x−40)元,每日销售商品为500−10(x−50)=1000−10x(件).依题意得方程(1000−10x)(x−40)=8000,整理,得x2−140x+4800=0,解得x=60或80.答:每件商品售价为60或80元时,商场日盈利达到8000元.22. 解:(1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据题意得:12BP⋅BQ=12AB⋅BC−31,即12(6−x)⋅2x=12×6×12−31,整理得(x−1)(x−5)=0,解得:x1=1,x2=5.答:经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;(2)依题意得,S四边形APQC=S△ABC−S△BPQ,即S=12AB⋅BC−12BP⋅BQ=12×6×12−12(6−x)⋅2x=(x−3)2+27(0<x<6),当x−3=0,即x=3时,S最小=27.答:经过3秒时,S取得最小值27平方厘米.23. 解:(1)设AD的长为x米,则AB为(24−3x)米,根据题意列方程得,(24−3x)⋅x=45,解得x1=3,x2=5;当x=3时,AB=24−3x=24−9=15>11,不符合题意,舍去;当x=5时,AB=24−3x=9<11,符合题意;答:AD的长为5米.(2)不能围成面积为60平方米的花圃.理由:假设存在符合条件的长方形,设AD的长为y米,于是有(24−3y)⋅y=60,整理得y2−8y+20=0,∵△=(−8)2−4×20=−16<0,∴这个方程无实数根,∴不能围成面积为60平方米的花圃.24. 解:(1)设裤子的定价为每条x元,根据题意,得:(x−50)[50+5(100−x)]=4000,解得:x=70或x=90,答:裤子的定价应该是70元或90元;(2)销售利润y=(x−50)[50+5(100−x)]=(x−50)(−5x+550)=−5x2+800x−27500,=−5(x−80)2+4500,∵a=−5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;答:定价为每条80元可以使每天的利润最大,最大利润是4500元.25. 解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=−2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.26. 解:(1)设t秒后,△PBQ的面积等于8cm2,根据题意得:1×2t(6−t)=8,2解得:t=2或4.答:2秒或4秒后,△PBQ的面积等于8cm2.(2)由题意得,1×2t(6−t)=10,2整理得:t2−6t+10=0,b2−4ac=36−40=−4<0,此方程无解,所以△PBQ的面积不能等于10cm2.【解析】1. 【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)增长的次数,一般形式为a(1+x)n=b,a为起始时间的有关数量,b为终止时间的有关数量,n为增长的次数.设这两年观赏人数年均增长率为x,根据“2014年约为20万人次,2016年约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8.故选C.2. 解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为12x(x−1),∵共比赛了45场,∴12x(x−1)=45,故选:A.先列出x支篮球队,每两队之间都比赛一场,共可以比赛12x(x−1)场,再根据题意列出方程为12x(x−1)=45.此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3. 试题分析:根据对称性可知:BE=FE,∠AFE=∠ABE=90∘,又∠C=∠C,所以△CEF∽△CAB,根据相似的性质可得出:EFAB =CEAC,BE=EF=CEAC×AB,在△ABC中,由勾股定理可求得AC的值,AB=1,CE=2−BE,将这些值代入该式求出BE的值.设BE的长为x,则BE=FE=x、CE=2−x在Rt△ABC中,AC=√AB2+BC2=√5∵∠C=∠C,∠AFE=∠ABE=90∘∴△CEF∽△CAB(两对对应角相等的两三角形相似)∴EFAB =CEAC∴FE=x=CEAC ×AB=√5×1,x=√5−12,∴BE=x=√5−12,故选:C.4. 解:设原正方形的边长为xm,依题意有(x−1)(x−2)=18,故选:C.可设原正方形的边长为xm,则剩余的空地长为(x−1)m,宽为(x−2)m.根据长方形的面积公式方程可列出.本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.5. 解:依题意得二月份的产量是560(1+x),三月份的产量是560(1+x)(1+x)=560(1+x)2,∴560+560(1+x)+560(1+x)2=1850.故选D.增长率问题,一般用增长后的量=增长前的量×(1+增长率),根据二、三月份平均每月的增长为x,则二月份的产量是560(1+x)吨,三月份的产量是560(1+x)(1+x)=560(1+x)2,再根据第一季度共生产钢铁1850吨列方程即可.能够根据增长率分别表示出各月的产量,这里注意已知的是一季度的产量,即三个月的产量之和.6. 解:设原来的绿地面积为a,两年平均每年绿地面积的增长率是x.a×(1+x)2=a×(1+44%),解得:x=0.2或x=−2.2,∵x>0,∴x=0.2=20%,故选B.等量关系为:原来的绿地面积×(1+这两年平均每年绿地面积的增长率)2=原来的绿地面积×(1+绿地面积增加的百分数),把相关数值代入即可求解.考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7. 解:设道路的宽为xm,根据题意得:(32−2x)(20−x)=570,故选:A.六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.8. 解:第一次降价后的价格为:25×(1−x);第二次降价后的价格为:25×(1−x)2;∵两次降价后的价格为16元,∴25(1−x)2=16.故选:D.等量关系为:原价×(1−降价的百分率)2=现价,把相关数值代入即可.本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9. 解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2= b.10. 解:设AC交A′B′于H,∵∠A=45∘,∠D=90∘∴△A′HA是等腰直角三角形设AA′=x,则阴影部分的底长为x,高A′D=2−x∴x⋅(2−x)=1∴x=1即AA′=1cm.故选B.根据平移的性质,结合阴影部分是平行四边形,△AA′H与△HCB′都是等腰直角三角形,则若设AA′=x,则阴影部分的底长为x,高A′D=2−x,根据平行四边形的面积公式即可列出方程求解.解决本题关键是抓住平移后图形的特点,利用方程方法解题.11. 解:设这块铁片的宽为xcm,则铁片的长为2xcm,由题意,得3(2x−6)(x−6)=240解得x1=11,x2=−2(不合题意,舍去)答:这块铁片的宽为11cm.设这块铁片的宽为xcm,则铁片的长为2xcm,剪去一个边长为3cm的小方块后,组成的盒子的底面的长为(2x−6)cm、宽为(x−6)cm,盒子的高为3cm,所以该盒子的容积为3(2x−6)(x−6),又知做成盒子的容积是240cm3,盒子的容积一定,以此为等量关系列出方程,求出符合题意的值即可.本题主要考查的是一元二次方程的应用,关键在于理解清楚题意找出等量关系,列出方程求出符合题意得解.12. 解:设平均每次降价的百分率为x,由题意得,1299×(1−x)2=1299−688.故答案为:1299×(1−x)2=1299−688.设平均每次降价的百分率为x,则可得:原价×(1−x)2=现价,据此列方程即可.本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.13. 解:设小道进出口的宽度为x米,依题意得(30−2x)(20−x)=532,整理,得x2−35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.故答案为:1.设小道进出口的宽度为x米,然后利用其种植花草的面积为532平方米列出方程求解即可.本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为532m2找到正确的等量关系并列出方程.14. 解:设这两次的百分率是x,根据题意列方程得100×(1−x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1−x),第二次降价后的售价是原来的(1−x)2,再根据题意列出方程解答即可.本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15. 解:设经过x秒,△PBQ的面积等于8cm2,当0<x<3秒时,Q点在BC上运动,P在AB上运动,PB=6−x,BQ=2x,所以S△PBQ=12PB⋅BQ=12×2x×(6−x)=8,解得x=2或4,又知x<3,故x=2符合题意,当3<x<6秒时,Q点在CD上运动,P在AB上运动,S△PBQ=12(6−x)×6=8,解得x=103.故答案为:2或103.设经过x秒,△PBQ的面积等于8cm2,分类讨论当0<x<3秒时,Q点在BC上运动,P在AB上运动,求出面积的表达式,求出一个值,当3<x<6秒时,Q点在CD上运动,P在AB上运动,根据条件列出一个一元一次方程,求出一个值.本题主要考查一元二次方程的应用的知识点,解答本题的关键是Q点的运动位置,此题很容易漏掉一种情况,此题难度一般.16. 解:由题意可得,50(1−x)2=32,故答案为:50(1−x)2=32.根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.17. 解:∵与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=32−AD−MN−PQ−BC=32−4x(米),根据题意得:x(32−4x)=60,解得:x=3或x=5,当x=3时,AB=32−4x=20>18(舍去);当x=5时,AB=32−4x=12(米),∴AB的长为12米.故答案为:12.由与墙头垂直的边AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB的长;根据题意可得方程x(32−4x)=60,解此方程即可求得x的值,又由AB=32−x(米),即可求得AB的值,注意EF是一面长18米的墙,即AB<18米.考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.18. 解:设每年的增长率为x,根据题意得10(1+x)2=12.1,故答案为:10(1+x)2=12.1.如果设每年的增长率为x,则可以根据“住房面积由现在的人均约为10m2提高到12.1m2”作为相等关系得到方程10(1+x)2=12.1.本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“−”.19. 解:设2月,3月的平均增长率为x,根据题意得:4(1+x)2(1−36%)=4,解得:x=25%或x=−2.25(舍去)故答案为:25%.根据“原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%”可列出关于x的一元二次方程,解方程即可得出结论;本题考查了一元二次方程的应用,解题的关键是能够根据增长率问题列出方程,难度不大.20. 解:设平均每次降价的百分率为x,根据题意列方程得100×(1−x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.设平均每次降价的百分率为x,那么第一次降价后的售价是原来的(1−x),那么第二次降价后的售价是原来的(1−x)2,根据题意列方程解答即可.本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.21. (1)首先求出每天可销售商品数量,然后可求出日盈利;(2)设商场日盈利达到8000元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.本题考查了一元二次方程的实际应用,根据每件商品的盈利×销售的件数=商场的日盈利,列出方程是关键.22. (1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据面积为31列出方程,求出方程的解即可得到结果;(2)根据题意列出S关于x的函数关系式,利用函数的性质来求最值.此题考查了一元二次方程的应用、二次函数的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23. (1)设出AD的长,表示出AB的长,利用长方形面积公式列方程解答,再据墙的最大可用长度为11米即可;(2)利用(1)中的方法列出方程解答,利用根的判别式进行判定即可.此题的关键是利用长方形的面积计算公式列方程解答问题,注意结合图形.24. (1)根据“利润=(售价−成本)×销售量”列出方程求解可得;(2)根据(1)中的相等关系列出二次函数解析式,再转化为顶点式,利用二次函数图象的性质进行解答.本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程.25. (1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.26. (1)分别表示出线段PB和线段BQ的长,然后根据面积为8列出方程求得时间即可;(2)根据面积为10列出方程,判定方程是否有解即可.本题考查了一元二次方程的应用,三角形的面积,能够表示出线段PB和QB的长是解答本题的关键.。
实际问题与一元二次方程-(含答案)
实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似,都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.主要学习下列两个内容:1. 列一元二次方程解决实际问题。
一般情况下列方程解决实际问题的一般步骤:审、设、列、解、验、答六个步骤,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.2. 一元二次方程根与系数的关系。
一般地,如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是1x 和2x ,那么ac x x a b x x =•,=+2121-.知识链接点击一: 列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力,列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程.概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案.一般情况下列方程解决实际问题的一般步骤如下:(1)审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系.(2)设:是在理清题意的前提下,进行未知量的假设(分直接与间接). (3)列:是指列方程,根据等量关系列出方程. (4)解:就是解所列方程,求出未知量的值.(5)验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去.(6)答:即写出答案,不要忘记单位名称.总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.针对练习1: 某城市2006年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2008年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=300点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
实际问题与一元二次方程试卷(含答案)
21.3实际问题与一元二次方程基础闯关全练1.(2019广东深圳光明新区月考)从一块正方形木板上锯掉3m宽的长方形木条,剩下的面积是54 m²,则原来这块木板的面积是( )A.9 m²B.64m²C.81 m²D.121m²2.(2018四川宜宾期中)毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两名同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为________________.3.(2019湖北武汉武昌期中)有两个人患了流感,经过两轮传染后总共有162人患了流感,每轮传染中平均一个人传染了________个人.4.(2018四川眉山中考)我市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方米4860元的均价开盘销售,则平均每次下调的百分率是( )A.8%B.9%C.10%D.11%5.(2018辽宁大连中考)如图21-3-1.有一张矩形纸片,长10cm,宽6 cm.在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32 cm²,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )图21-3-1A.10x6-4x6x= 32B.(10-2x)(6-2x)= 32C.(10-x)(6-x)=32D.10x6-4x²= 326.(2018浙江宁波期中)学校课外生物小组的试验园地是长20米,宽15米的长方形,为了便于管理,现要在中间开辟一横两纵等宽的小道(如图21-3 -2所示).要使种植面积为252平方米,则小道的宽是_______米.图21-3 -2能力提升全练1.近年来某市不断加大对城市绿化的经济投入,使全市绿地面积不断增加,从2017年年底到2019年年底的城市绿地面积变化如图21-3 -3所示,则这两年绿地面积的年平均增长率是( )图21-3 -3A.10%B.15%C.20%D.25%2.(2017湖北黄冈蕲春月考)有一个两位数,它的各个数位上的数字和等于8,交换数字位置后,得到的新的两位数与原两位数之积为1612,则原来的两位数为( )A.26B.62C.26或62D.以上均不对3.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件商品售价a元,则可卖出( 320-10a)件,但物价部门限定每件商品加价不能超过进货价的25%.若商店计划要获利400元,则每件商品的售价应定为__________元.4.(2018浙江温州期中)准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路(如图21-3 -4所示),四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为________米.三年模拟全练图21-3-4一、选择题1.(2019湖北武汉黄陂期中,8,★☆☆)某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,主干、支干和小分支的总数是57,设每个支干长出x个小分支,根据题意列出方程为( )A.1+x+x( 1+x)= 57B.1+x+x²= 57C.x+x(1+x)=57D.1+2x²= 57二、解答题2.(2017宁夏中卫海原期中.22,★★☆)如图21-3 -5,在宽为20 m、长为30 m的矩形地面上修建两条同样宽的道路,余下部分作为耕地,若耕地面积需要551 m ²,则修建的道路的宽应为多少?图21-3-5五年中考全练选择题(2018黑龙江龙东中考,15,★☆☆)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?( )A.4B.5C.6D.7核心素养全练1.从前有一个醉汉拿着竹竿进城,横拿竖拿都进不去,横着比城门宽m ,竖着比城门高m ,一个聪明人告诉他沿着城门的两对角斜着拿杆,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?设竹竿的长度为xm ,则可列出方程为________________.2.(2019山东菏泽东明期中)十一黄金周期间,海洋中学决定组织部分优秀老师去北京旅游,天马旅行社推出如图21-3 -6所示的收费标准.图21-3 -6(1)学校规定,人均旅游费用高于700元,但又想低于1000元,求该校所派人数应在什么范围内;(2)已知学校已付旅游费用27000元,求该校安排了多少名老师去北京旅游。
人教版 九年级数学 实际问题与一元二次方程讲义 (含解析)
第3讲实际问题与一元二次方程知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们重点学习根与系数的关系以及一元二次方程在实际问题中的应用,能够熟练使用根与系数的关系进行代数式的求解,对常见的一元二次方程的应用有一定的了解,本节课的难点在于实际问题中的一元二次方程的构造,是中学阶段关于应用题部分常考的一个知识点,希望同学们认真学习,为后面的二次函数的学习奠定良好的基础。
知识梳理讲解用时:25分钟根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:△当△>0时,方程有两个不相等的两个实数根;△当△=0时,方程有两个相等的两个实数根;△当△<0时,方程无实数根.上面的结论反过来也成立。
课堂精讲精练【例题1】已知x1,x2是关于x的方程x2+nx+n-3=0的两个实数根,且x1+x2=﹣2,则x1x2=。
【答案】﹣1【解析】本题主要考查了根与系数的关系,△x1,x2是关于x的方程x2+nx+n﹣3=0的两个实数根,且x1+x2=﹣2,△﹣n=﹣2,即n=2,△x1x2=n﹣3=2﹣3=﹣1.讲解用时:2分钟解题思路:利用根与系数的关系求出n的值,再利用利用根与系数的关系求出两根之积即可。
教学建议:熟练运用根与系数的关系。
难度:3 适应场景:当堂例题例题来源:潜江模拟年份:2018 【练习1】设x1、x2是方程x2-x-2017=0的两实数根,则x12+x1x2+x2-2=。
【答案】﹣1【解析】本题主要考查了根与系数的关系,△x1、x2是方程x2﹣x﹣2017=0的两实数根,△x12﹣x1﹣2017=0,x1+x2=1,x1•x2=﹣2017,△x12=x1+2017,△x12+x1x2+x2﹣2=x1+2017+x1x2+x2﹣2=x1+x2+x1x2+2015=1﹣2017+2015=﹣1.讲解用时:5分钟解题思路:根据一元二次方程的解的定义得到:x 12=x 1+2017,结合根与系数的关系得出与系数的关系得出x 1+x 2=a b ,x 1•x 2=ac ,代入求出即可。
2022-2023学年九年级上数学:实际问题与一元二次方程(附答案解析)
【分析】设每轮传染中平均一个人传染的人数为 ,根据“一个人患了流感,经过两轮传染后共有64人患了流感”,即可得出关于 的一元二次方程,解之即可得出 的值,再将其正值代入 中即可求出结论.
【答案】D
【解析】解:设每轮传染中平均一个人传染的人数为 ,
依题意得: ,
解得: , (不合题意,舍去),
,
经过三轮传染后患流感的人数共有512个.
故选: .
【精讲2】襄阳市要组织一次少年足球联赛,要求参赛的每两队之间都要进行两场比赛,共要比赛90场,则共有个队参加比赛.
【分析】设共有 个队参加比赛,利用比赛的总场数 参加比赛的队伍数 (参加比赛的队伍数 ,即可得出关于 的一元二次方程析】设这种商品每件涨价 元,则销售量为 件,根据“总利润 每件商品的利润 销售量”列出一元二次方程.
【答案】C
【解析】解:设这种商品每件涨价 元,则销售量为 件,
根据题意,得: ,
故选: .
【精讲2】某水果店销售一种新鲜水果,平均每天可售出120箱,每箱盈利60元,为了扩大销售减少库存,水果店决定采取适当的降价措施,经调查发现,如果每箱水果每降价5元,水果店平均每天可多售出20箱.
2022-2023学年九年级上数学第21章一元二次方程
21.3实际问题与一元二次方程
自学笔记:
设基准数为a,两次增长(或下降)后为b;增长率(下降率)为x,第一次增长(或下降)后为 ;第二次增长(或下降)后为 .可列方程为 =b.
命题方向:
与增长率或下降率有关的一元二次方程的应用.
名师点拨:
列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.
一元二次方程应用题含答案整理版
一元二次方程应用题含答案整理版一、汽车长途行驶问题问题描述:某辆汽车以每小时60公里的速度行驶,已经过两个小时,此时与起点相距180公里。
问汽车行驶多少小时能与起点相距510公里?解决方法:设汽车行驶的小时数为x。
根据题意可得方程:60x + 180 = 510。
将方程变为一元二次方程的标准形式:60x = 510 - 180。
化简得:60x = 330。
通过移项可得:x = 330 ÷ 60 = 5.5。
答案:汽车需要行驶5.5小时才能与起点相距510公里。
二、商品折扣问题问题描述:一件商品原价300元,商场进行打折促销,最终价格为192元。
问打了多少折扣?解决方法:设打折的折扣率为x。
根据题意可得方程:300 × (1 - x) = 192。
将方程变为一元二次方程的标准形式:300 - 300x = 192。
通过移项可得:300x = 300 - 192 = 108。
化简得:x = 108 ÷ 300 = 0.36。
答案:商品打了36%的折扣。
三、跳水运动员问题问题描述:某跳水运动员从3米高的平台跳下,每次跳水后下一次的距离比上一次距离减少2米。
已知他一共跳了5次,最后一次跳了9米。
问他第一次跳了多高?解决方法:设他第一次跳的高度为x米。
根据题意可得方程:x + (x - 2) + (x - 4) + (x - 6) + (x - 8) = 9。
将方程变为一元二次方程的标准形式:5x - 20 = 9。
通过移项可得:5x = 9 + 20 = 29。
化简得:x = 29 ÷ 5 = 5.8。
答案:该跳水运动员第一次跳了5.8米。
四、炒股问题问题描述:小明通过购买股票进行炒股,他买入了股票A,每股价格为30元。
经过一段时间后,股票A涨了10%,小明决定抛售,以每股33元的价格卖出。
问小明一共赚了多少钱?解决方法:设小明买入的股票A的数量为x股。
根据题意可得方程:30x × 1.1 = 33x。
实际问题与一元二次方程(传播、球赛问题)作业及答案)
21.3 实际问题与一元二次方程(传播、球赛问题)作业一、选择题1.(2021.毕节)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则八年级的球队个数为()A. 5B. 6C. 7D.82.学校初二级组织足球联赛,赛制为单循环形式(每两队之间都赛一场),共进行了28场比赛,问初二年级有几个参赛班级,设初二参赛班级有x 个班,根据题意列出方程正确的是()A. 228xB.11282x xC.21282x D.128x x3.参加一次绿色有机农产品交易分的每两空公司之间都签订了一份合同,所有公司共签订了45份合同,参加这次商品交易会共有公司()A.9 家B.10家C.10 家或9家D.19家4.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A. 128x xB.11282x xC.128x xD.11282x x5.2020年12月29日,贵阳轨道交通2号线实现试运行,从白云区到观山湖区轨道公司共设计了132种往返车票,则这段线路有多少站点?设这段线路有x 个站点,根据题意,下面列出的方程正确的是()A. X(x+1)=132B.X(x -1)=132C.111322x xD.111322x x6.某小组有若干人,新年大家互相发一条微信祝福,已知全组共发微信72条,则这个小组的人数为()A.7人B.8人C.9 人D.10人7.在国庆期间,某微信群规定:群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包。
若此次抢红包活动,群内所有人共收到42个红包,则该 群一共有()A.6人B.7人C. 8人D.9人8.(2020.河池) 某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A. 6B. 7C. 8D. 99.初三(1)班同学在临近毕业时,每一个同学都将自己的照片向全班其他同学各送一张以表示纪念,全班共送了1640张照片,如果设全班有x 名学生,则根据题意,可列方程()A.11640x xB.11640x xC.211640x xD.121640x x10.(2021.黑龙江省龙东地区)有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是()A. 14B. 11C. 10D. 9二、填空题11.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是_______.12. 参加一次聚会的每两人都握一次手,所有人共握手10次,有多少人参加聚会有___人。
人教版九年级上册数学实际问题与一元二次方程(含答案)
实际问题与一元二次方程一、基础练习。
1.制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的( )A .8.5%B .9%C .9.5%D .10%2.用13 m 的铁丝网围成一个长边靠墙面积为20 m 2的长方形,求这个长方形的长和宽,设平行于墙的一边为x m ,可得方程( )A .x (13-x )=20B .x ·13-x 2=20 C .x (13-12x )=20 D .x ·13-2x 2=20 3.某市2018年平均房价为每平方米4000元,连续两年增长后,2010年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( )A .5500(1+x )2=4000B .5500(1-x )2=4000C .4000(1-x )2=5500D .4000(1+x )2=55004.将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货( )A .400个B .200个C .400个或200个D .600个5.三个连续正偶数,其中两个较小的数的平方和等于第三个数的平方,则这三个数是( )A .-2,0,2B .6,8,10C .2,4,6D .3,4,56.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000 kg,2009年平均每公顷产9680 kg ,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x .(1)用含x 的代数式表示:①2008年种的水稻平均每公顷的产量为__________________;②2009年种的水稻平均每公顷的产量为__________________;(2)根据题意,列出相应方程________________;(3)解这个方程,得________________;(4)检验:_________________________________________________________________;(5)答:该村水稻每公顷产量的年平均增长率为____________%.二、提高训练。
九年级数学上册《实际问题与一元二次方程》测试题含答案
九年级数学上册《实际问题与一元二次方程》测试题复习巩固1.某种衬衣原价168元,连续两次降价a%后售价为128元.下面所列方程中正确的是()A.168(1+a%)2=128 B.168(1-a%)2=128C.168(1-2a%)=128 D.168(1-a2%)=1282.某农机厂4月份生产零件50万个,第二季度共生产零件182万个.设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=1823.初中毕业时,九年级(1)班的每个同学都将自己的相片向全班其他同学各送1张留作纪念,全班共送了2 070张相片,如果全班有x名学生,根据题意,列出方程为() A.x(x-1)=2 070 B.x(x+1)=2 070C.2x(x+1)=2 070 D.(1)2x x=2 0704.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,若小分支、支干和主干的总数目是73,则每个支干长出的小分支的数目为() A.7 B.8 C.9 D.105.兰州市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x,由题意可列方程为__________.6.一个多边形有9条对角线,则这个多边形的边数为__________.7.某种商品的进价为10元,当售价为x元时,能销售该商品(x+10)个,此时获利1 500元,则该商品的售价为__________元.8.一个两位数,十位数字与个位数字之和是5,把这个两位数的个位数字与十位数字对调后,所得的新两位数与原来两位数的乘积为736,求原来的两位数.能力提升9.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25 B.36 C.25或36 D.-25或3610.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的k(0<k<1)倍.已知一个钉子受击3次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,设铁钉的长度为1,那么符合这一事实的一个方程是( )A .2444=1777k k ++B .44=177k + C .244=177k k + D .48=177k + 11.某市为了增强学生体质,开展了乒乓球比赛活动.部分同学进入了半决赛,赛制为单循环式(即每两个选手之间都赛一场),半决赛共进行了6场,则共有__________人进入半决赛.12.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?13.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?14.据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.参考答案复习巩固1.B 2.B3.A 由题意可知,每名同学都送出(x -1)张照片,所以全班共送出x (x -1)张照片,于是有x (x -1)=2 070.故选A.4.B 设每个支干长出n 个小分支,则据题意得1+n +n 2=73,解得n =8.5.72(1-x )2=566.6 设这个多边形的边数为n ,则392n n (-)=,解得n =6. 7.40 由题意,得x (x +10)-10(x +10)=1 500.解得x 1=40,x 2=-40(舍去).8.解:设原来两位数的十位数字为x ,则个位数字为5-x .根据题意,得[10x +(5-x )]·[10(5-x )+x ]=736.整理,得x 2-5x +6=0.解得x 1=2,x 2=3.当x =2时,5-x =3,符合题意,原来的两位数是23.当x =3时,5-x =2,符合题意,原来的两位数是32.答:原来的两位数是23或32.能力提升9.C 设这个两位数的十位数字为x ,则个位数字为x +3.依题意,得10x +(x +3)=(x +3)2,解得x 1=2,x 2=3.故这个两位数为25或36.10.A 第一次进入木板的铁钉长度为47,第二次进入木板的铁钉长度为47k ,第三次进入木板的铁钉长度为247k , 所以24441777k k ++=.故选A. 11.4 设共有n 人进入半决赛,则需进行12n n (-)场比赛.因此12n (n -1)=6,解得n =4或n =-3(舍去).12.解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意,得1+x +(1+x )x =81.(1+x )2=81.x +1=9,或x +1=-9.解得x 1=8,x 2=-10(舍去).(1+x )3=(1+8)3=729>700.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.13.解:(1)设每千克核桃应降价x 元,根据题意,得(60-x -40)100202x ⎛⎫+⨯ ⎪⎝⎭=2 240. 化简,得x 2-10x +24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为60-6=54(元),5460×100%=90%. 答:该店应按原售价的九折出售.14.解:(1)设私家车拥有量的年平均增长率为x ,则125(1+x )2=180,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).故180(1+20%)=216(辆).答:该小区到2014年底私家车将达到216辆.(2)设该小区可建室内车位a 个,露天车位b 个,则1000200=300002 2.5a b a b a +⎧⎨≤≤⎩,①,② 由①得b =150-5a ,代入②得20≤a≤150,7因为a是正整数,所以a=20或21.当a=20时,b=50;当a=21时,b=45.所以方案一:建室内车位20个,露天车位50个;方案二:建室内车位21个,露天车位45个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似,都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.主要学习下列两个内容:1. 列一元二次方程解决实际问题。
一般情况下列方程解决实际问题的一般步骤:审、设、列、解、验、答六个步骤,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键. 主要设置了【典例引路】中的例1、例2、例4.【当堂检测】中的第1、2题,【课时作业】中的第1,2,11题.2. 一元二次方程根与系数的关系。
一般地,如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是1x 和2x ,那么acx x a b x x =•,=+2121-.主要设置了【典例引路】中的例3.【当堂检测】中的第4题,【课时作业】中的第6、7题.点击一: 列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力,列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程.概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案.一般情况下列方程解决实际问题的一般步骤如下:(1)审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系.(2)设:是在理清题意的前提下,进行未知量的假设(分直接与间接). (3)列:是指列方程,根据等量关系列出方程. (4)解:就是解所列方程,求出未知量的值.(5)验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去. (6)答:即写出答案,不要忘记单位名称.总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键. 针对练习1: 某城市2006年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2008年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=300【解析】B 设平均增长百分率为x ,由题意知基数为300公顷,则到2004年底的绿化面积为:300+300x =300(1+x )(公顷);到2008年底的绿化面积为:300(1+x )+300(1+x )x =300(1+x )2公顷,而到2008年底绿化面积为363公顷,所以300(1+x )2=363.点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
一般地,如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是1x 和2x ,那么acx x a b x x =•,=+2121-.针对练习2: 先阅读,再填空解题:(1)方程:x 2-x -2=0 的根是:x 1=-1, x 2=2,则x 1+x 2=1,x 1·x 2=-2; (2)方程2x 2-7x+3=0的根是:x 1=12, x 2=3,则x 1+x 2=72,x 1·x 2=32; (3)方程x 2-3x+1=0的根是:x 1= , x 2= .则x 1+x 2= ,x 1·x 2= ; 根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程mx 2+nx+p=0(m≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、x 1、x 2与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由.【解析】本题首先请同学们阅读两个一元二次方程的两根之和、两根之积与系数之间的关系,再通过第3个方程的两根之和、两根之积与系数之间的关系特点,归纳猜想出一元二次方程的两个根与系数的关系.【解答】③.25—3,25321=+=x x .1,32121=•=+x x x x 猜想.,—2121mpx x m n x x =•=+ ∵一元二次方程mx 2+nx+p=0(m≠0,且m ,n ,p 为常数)的两个实数根是.24,242221mmpn n x m mp n n x —————=+=∴mnm mp n n m mp n n x x ——————=++=+24242221,.4)4()(242422222221m pmmp n n m mp n n m mp n n x x ==•+=•———————【评注】本题是探索一元二次方程根与系数之间的关系.关于x 的一元二次方程mx 2+nx+p=0(m≠0,且m ,n ,p 为常数)的两根为x 1,x 2,那么.,—2121mpx x m n x x =•=+由方程①,②,③的根与系数的关系特点,通过观察、比较、猜想发现一般性规律,并进行验证,培养同学们由特殊到一般的数学思想方法.类型之一:建立一元二次方程模型解应用题例1甲、乙两人分别骑车从A 、B 两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C 地相遇,相遇后两人按原来的方向继续前进.乙在由C 地到达A 地的途中因故停了20分钟,结果乙由C 地到达A 地时比甲由C 地到达B 地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度.【解答】设甲的速度为x 千米/时,则乙的速度为(x+4)千米/时.根据题意,得54(4)2040.460x x x x ++==+解之,得x 1=16,x 2=-2.经检验:x 1=16,x 2=-2都是原方程的根,但x 2=-2不合题意,舍去. ∴当x=16时,x+4=20.答:甲每小时行驶16千米,乙每小时行驶20千米.例2 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?【解析】设每件衬衫降价x 元,则每件衬衫盈利(40―x)元,降价后每天可卖出(20+2x)件,由关系式:总利润=每个商品的利润×售出商品的总量,可列出方程.【解答】设每件衬衫降价x 元, 依题意,得(40―x)(20+2x)=1200, 整理得:x 2―30x+200=0,解得:x 1=10,x 2=20,因为要尽快减少库存,所以x=10舍去. 答:每件衬衫应降价20元.类型之二:一元二次方程的根的判别式的应用 例3阅读材料:如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b cx x x x a a+=-=. 这是一元二次方程根与系数的关系,我们利用它可以用来解题,例如12,x x 是方程2630x x +-=的两根,求2212x x +的值.解法可以这样:126,x x +=-123,x x =-则222212112()2x x x x x x +=+-=2(6)2(3)42--⨯-=.请你根据以上解法解答下题:已知12,x x 是方程2420x x -+=的两根,求:(1)1211x x +的值; (2)212()x x -的值. 【解析】先由公式x 1+x 2=ab -,x 1x 2=a c ,求出x 1+x 2,x 1x 2,再化1x 1+1x 2化为x 1+x 2x 1x 2, (x 1-x 2)2化为(x 1+x 2)2-4x 1x 2.【答案】 ∵x 1+x 2=4, x 1x 2=2.(1)1x 1+1x 2=x 1+x 2x 1x 2=42=2. (2) (x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42-4×2=8. 【感悟】本题属于阅读理解题,解此类问题关键理解材料中知识与方法,从中获得知识迁移. 类型之三:综合应用例4. 某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元? (2)设后来该商品每件降价x 元,商场一天可获利润y 元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y 与x 之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x 取何值时,商场获利润不少于2160元?【解析】本题是以商场经营为素材的利润问题,解题的关键是理解降价与销售数量增加量之间的关系,根据每天盈利的计算,即“每天盈利=每件的利润×销售数量”作为等量关系列方程或列函数关系式,第(2)的第②小题,考查了函数及其图象,并用图象确定商场获利润不少于2160元的x的取值范围,体现了数形结合的数学思想。
【解答】⑴若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元)⑵①依题意得:(100-80-x)(100+10x)=2160即x2-10x+16=0解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=(100-80-x)(100+10x)∴y= -10x2+100x+2000=-10(x-5)2+2250画草图(略)观察图像可得:当2≤x≤8时,y≥2160∴当2≤x≤8时,商店所获利润不少于2160元.1.如果一个不为零的数的平方等于这个数的两倍,那么这个数是( )A.偶数B.奇数C.偶数或奇数D.不一定是整数【解析】A 设这个数为x.由题意,得x2=2x,解得x1=0,x2=2.故选A.2. 在一幅长80 cm,宽50 cm的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )A.x2+130x-1 400=0B.x2+65x-350=0C.x2-130x-1 400=0D.x2-65x-350=0【解析】B 上、下两条金色纸边的面积一样,左、右两条金色纸边的面积一样,∴2(80+x)·x+2(50+x)·x+80×50=5 400.3. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.【解析】这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.【解答】设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答:这两个月的平均增长率是10%.4.若αβ,是方程2220050x x+-=的两个实数根,则23ααβ++的值为()A.2005 B.2003 C.-2005 D.4010【解析】B 由于所求的两根代数式非对称,故只用韦达定理难于解决,结合根的定义,把23ααβ++化为对称式.因为α是方程2220050x x+-=的根,故2220050αα+-=,从而220052αα=-,所以23ααβ++=2005+α+β,而α+β=-2,故23ααβ++=2003.1. 从一块正方形的铁片上剪掉2 cm宽的长方形铁片,剩下的面积是48 cm2,则原来铁片的面积是( )A.64 cm2B.100 cm2C.121 cm2D.144 cm2【解析】A 本题用间接设元法较简便,设原铁片的边长为xcm.由题意,得x(x-2)=48,解得x1=-6(舍去),x2=8.∴x2=64,即正方形面积为64 cm2.2. 如图,某工厂直角墙角处,用可建60米长围墙的建筑材料围成一个矩形堆货场地,中间用同样的材料分隔成两间,问AB 为多长时,所围成的矩形面积是450平方米?【解析】等量关系为:长×宽=450,如果设AB 为x 米,那么BC 的长可表示为(60-2x)米,根据矩形的面积公式可列出方程.【解答】设AB 的长为x 米,则BC=(60-2x)米. 根据题意,得x(60-2x)=450.解得x=15.即AB=15米. 答:AB 为15米时,所围成的矩形面积是450平方米.3. 某厂制造某种商品,原来每件产品的成本是100元,由于不断改进设备,提高生产技术,连续两次降低成本,两次降价后的成本是81元,则平均每次降低成本的百分率是( )A.8.5%B.9%C.9.5%D.10%【解析】D 降低百分率与增长率问题类似,这里依据的基本等量关系为基础数×(1-降低率)降低次数=降低后的数量.5. 某厂制造某种商品,原来每件产品的成本是100元,由于不断改进设备,提高生产技术,连续两次降低成本,两次降价后的成本是81元,则平均每次降低成本的百分率是( )A.8.5%B.9%C.9.5%D.10%【解析】D 降低百分率与增长率问题类似,这里依据的基本等量关系为基础数×(1-降低率)降低次数=降低后的数量.设平均每次降低成本的百分率为x.由题意,得100(1-x)2=81.解得x 1=0.1=10%,x 2=1.9(舍去),∴x=10%.6. 已知1x 、2x 是方程,032=--x x 的两个根,那么2221x x +的值是( )A.1B.5C.7D.449【解析】C 根据根与系数的关系, 121=+x x ,321-=•x x ,又因为2212x x + =212212)(x x x x -+,所以2212x x +=7.7. 某两位数的十位数字是方程x 2-8x=0的解,则其十位数是___________. 【解析】解方程x 2-8x=0,得x 1=0,x 2=8,由于两位数的十位数字不能为0,∴x=0(舍去).∴十位数字为8. 【答案】88. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?【解析】人数×人均旅游费用=付给旅行社的总费用,可设这次共有x 名员工去天水湾风景区旅游,由于1000×25=2500<2700,所以员工人数肯定超过25人,由于人数比25增加了(x -25)人,因此每人均费用比1000元降低了20(x -25)元,即此时人均费用为[1000-20(x -25)]元。