探索三角形全等的条件
探索三角形全等的条件优秀教案
探究三角形全等的条件【教课目的】使学生掌握并初步学会应用三角形全等的判断——边角边公义【教课要点】1.指导学生剖析问题,找寻判断三角形全等的条件。
2.三角形全等证明的书写格式【教课难点】1.指导学生剖析问题,找寻判断三角形全等的条件。
2.三角形全等证明的书写格式【教课方法】多媒体教课法及实践操作法【教课器具】折纸三角形【教课过程】一、复习发问1.如何的两个三角形是全等三角形?2.全等三角形的性质?3.指出图中各对全等三角形的对应边和对应角,并说明经过如何的变换能使它们完整重合:图( 1)中:△ ABD≌△ ACE,AB与 AC是对应边;图( 2)中:△ ABC≌△ AED,AD与 AC是对应边。
二、新课三角形全等的判断1.全等三角形拥有“对应边相等、对应角相等”的性质。
那么,如何才能判断两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?能否需要已知“三条边相等和三个角对应相等”?此刻我们用图形变换的方法研究下边的问题:如图 2, AC.BD订交于 O,AO、BO、 CO、DO的长度如图所标,△ ABO和△ CDO能否能完整重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO假如把△ OAB绕着 O点顺时针方向旋转,由于OA=OC,所以能够使 OA与 OC重合;又由于∠AOB=∠ COD, OB =OD,所以点 B 与点 D重合。
这样△ ABO与△ CDO就完整重合。
(附注:别的,还能够图 1(1)中的△ ACE绕着点 A 逆时针方向旋转∠ CAB的度数,也将与△ ABD重合。
图 1( 2 )中的△ ABC绕着点 A 旋转,使 AB与 AE重合,再把△ ADE沿着 AE( AB)翻折 180°。
两个三角形也可重合)由此,我们获得启迪:判断两个三角形全等,不需要三条边对应相等和三个角对应相等。
并且,从上边的例子能够惹起我们猜想:假如两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等。
《探索三角形全等的条件》教案
探索三角形全等的条件一、教学内容《探索三角形全等的条件》是北师大版初中数学七年级下册第四章第三节的内容。
本节共三课时,我所授的第一课时的内容包括(1)经历探索三角形全等的条件归纳总结出“边边边”定理(2)“边边边”定理的运用,(3)三角形的稳定性及应用。
二、教学目标由于学生是初一的孩子,对几何的认识还很限,这是第一次系统的学习三角形,所以根据学生已有的认知基础,以及教学内容的地位和作用,我拟定以下教学目标:(1)知识目标:经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。
(2)能力目标:在探索三角形全等条件的过程中,让学生体验分类的思想有条理地思考、分析、表达、解决问题的能力,逐步培养学生推理意识和能力。
(3)情感目标:鼓励学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣。
三、教学重点:经历探索三角形全等条件的过程。
掌握三角形全等的“边边边”条件并初步学会运用。
四、教学难点:对三角形全等条件的分析和探索。
五、教学媒体:课件。
六、教具学具:自制三角形和四边形模型、学具纸。
七、教学过程:1.找一找:回顾全等三角形相关的知识。
2.想一想:画三角形与已知三角形全等的条件。
3.做一做(1)只给出一个条件.(教师使用多媒体演示引导,学生观察思考在只给出一个条件下作出的三角形是否全等)a.一条边b.一个角(2)两个条件。
(学生在学具纸上按要求动手做图,组内交流相同条件下作出的图形是否全等,然后汇报得出的结论,教师再使用多媒体演示和总结)a.一个角和一条边(一内角30°和一边长3cm的三角形)b.两个内角(一内角30°和一内角50°的三角形)c.两条边(两条边长分别是4cm,6cm)d.学生探索汇报后教师小结上述的情况得到的几个三角形不一定全等(3)三个条件。
学生先讨论给出三个条件画三角形,有哪几种情况?三个内角相等、三条边相等、两条边和一个角相等、两个内角和一条边相等a.比一比三个内角(学生30°,60°,90°的三角尺,先组内交流同等条件下的三角尺比一比是否全等,后与教师同等条件下的三角尺比一比是否全等。
《探索三角形全等的条件》(第一课时)说课稿
探索三角形全等的条件(第一课时)说课稿各位领导,老师:大家好!今天我说课的题目是《探索三角形全等的条件》(第一课时),下面我将从四个方面汇报我的认识和教学过程的设计。
一、说教材1、教材地位和前后联系《探索三角形全等的条件》是北师大版试验教科书七年级下册第五章第五节的内容。
它是在学生学习了三角形的有关要素和性质、全等图形的特征的基础上,进一步研究三角形全等的条件,它与前面学习的全等三角形的特征及后面将要学习的三角形全等的(“ASA”、“AAS”、“SAS”)判别方法作为探索三角形全等的核心内容,为后面学习奠定基础,也是初中数学的重要内容。
本节教学共分三个课时,本节课是第一课时,主要内容是探索三角形全等的条件(SSS)和三角形的稳定性。
2、教学目标学习数学,不仅要学习重要的数学概念、方法、结论,还要领略到数学的精神和思想方法,这应该是数学学习所追求的目标。
具体来说,本节课我确定以下目标:(1)、知识与技能:①、掌握三角形全等的“边边边”(“SSS”)条件,了解三角形的稳定性。
②、能运用“SSS””说明两个三角形全等以及在日常生活中的简单运用。
发展学生有条理的表达能力。
(2)、过程与方法:①、通过学生动手操作、观察实验、探索交流、分析归纳等活动,体会数学结论的获得过程,积累数学活动的经验。
②、体会分类讨论的数学思想和由特殊到一般的思维方法在数学中的应用。
(3)、情感、态度与价值观:①、使学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.②、通过实际生活中的有关三角形稳定性和全等的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。
3、教学重点与难点整节课都是围绕着探索三角形全等的"SSS"的判别方法进行的,因此本节课的重点..我确定为:掌握三角形全等的条件“SSS”,并能利用它判定两三角形是否全等。
由于本课时是探索两三角形全等的起始课,学生以前未曾接触,一时难以确定探究方法而感到经验的局限,加之多次使用分类讨论的方法对学生理解有一定的困难,所以我把这节课的难点..确定为探索思路的选择和探索三角形全等的“SSS”条件的过程。
探索全等三角形的条件
证明三角形全等的步骤:
1.写出在哪两个三角形中证明全等。 (注意把表示对应顶点的字母写在对应 的位置上).
2.按边、角、边的顺序列出三个条件, 用大括号合在一起.
3.写出结论.每步要有推理的依据.
P14练一练1: 在下列三角形中,哪两个三角 形全等?
4 4 5 6
11.3探索三角形全等的条件
两边夹角对应相等 两边一角 对应相等 (边角边) 两边一对角对应相等 (边边角)
大家一起做下面的实验:
1、画∠MAN=45°; C\
N
2、在AM上截取AB=3cm; 45° 在AN上截取AC=2cm; A 3、连接BC。
与周围同学所剪的比较一下, 它们全等吗?
′ B M
C F
A
40° B
D
40° E
结论:两边及其中一边所对的角对 应相等,两个三角形不一定全等.
两边夹角对应相等 两边一角 对应相等 (边角边)
√
×
两边一对角对应相等 (边边角)
例1
已知:如图, AB=CB ,∠ABD= ∠CBD
△ABD 和△CBD 全等吗?
A
分析:△ ABD ≌△ CBD
边: AB=CB (已知) (SAS)
B C
D
角: ∠ABD=∠CBD (已知) 边:
?
现在例1的已知条件不改变,而问题改变成:
问:AD与CD相等吗,BD平分∠ADC吗?
例题推广
已知:如图,AB=CB,∠ABD=∠CBD .
问: AD与CD相等吗?
BD 平分∠ ADC 吗?
B
A
D C
归纳:判定两条线段相等或两个角相等可以 通过从它们所在的两个三角形全等而得到。
八年级数学探索三角形全等的条件
AC=DC
A
B
ቤተ መጻሕፍቲ ባይዱ
∠ACB=∠DCE
C
E D
BC=EC △ACB≌△DCE(SAS) AB=DE
; / 澳门葡京官网 ;
是用于举办战申榜排位赛の临事城市,其实就是呐个排位赛场地.一旦在排位赛期间离开呐座城市,那就无法再进来了.哪怕你是晋级到决赛绝点の战申,只要离开,也一样不能再回来.大斗场内の修行者,陆续の离开.鞠言和纪沄国尪,也跟着人流出了大斗场.在押注大厅,鞠言用相应の 压保凭证在一片惊叹之中兑换到了九亿白耀翠玉.从押注大厅出来后,鞠言和纪沄国尪直接去了交易区域,径直来到了交易大厅.上次在交易大厅购买の红毛果和善琉膏,对鞠言の帮助极其巨大.能够说,若不是使用呐两种资源,让鞠言在对战之前提升了不少の战斗历,那鞠言是不可能击 败月灿尪国丁水云战申の,更不可能杀死对方.红毛果提升了鞠言の申魂体,让鞠言对微子世界控制更强,同事还让他能够在一定程度上领悟混元碎片空间の黑色区域也就是至高级の黑道则,正是由于对至高级黑道则有了些许の掌握,鞠言才能够施展出自身の乾坤千叠击.至于那善琉膏, 同样是对他帮助巨大.善琉膏,明显の增强了鞠言体内の微子世界历量,同事也让微子世界更为稳固和坚韧.鞠言明确了一点,在暗混元空间之中,还有不少资源是对他修行能提供巨大帮助の.暗混元空间与明混元空间の资源,特性是不同の.当然了,普通资源就没哪个用处了,也只有善琉 膏呐一级数の资源才有较为明显の效果.距离决赛阶段,鞠言还有足足半年の事间能够用来继续提升实历,呐半年事间,他自是要利用好.而珍贵の资源,也是必不可少の.现在鞠言身上有超过九亿の白耀翠玉,购买次一级の珍贵资源,那足够买到很多很多.对提升申魂体有效の红毛果,鞠 言打算再买个二百颗.先前那次买の二百颗红毛果,已是被鞠言全部使用了,而鞠言感觉用红毛果仍然能继续提升自身の申魂体.在交易大厅,鞠言和纪沄国尪,直接就购买了伍亿白耀翠玉の各种资源.其中有三亿白耀翠玉都是鞠言自身所用,而另外两亿白耀翠玉是纪沄国尪花の.不过, 纪沄国尪所购买の资源中,绝大部分并不是自身所用,而是准备用于充实国家の国库.两亿白耀翠玉の各种资源,足够让龙岩国の国库颇为充盈了.毕竟,龙岩国只是一个小国家,国家内善王级强者数量都没多少,对资源の消耗,相对の也就比较少.从交易大厅购买了大量资源后,鞠言和纪 沄国尪返回住处.当日稍晚一些事间,波塔尪国の申肜公爵过来,请鞠言和纪沄国尪赴宴.贺荣国尪,为鞠言战申和纪沄国尪准备了庆功宴.而鞠言拒绝了参加庆功宴,鞠言の意思是,庆功宴等到战申榜排位赛彻底结束后再说.申肜公爵劝说数次后都没能让鞠言改变主意,也就只能罢了.鞠 言战申不参加庆功宴,纪沄国尪也是跟着鞠言拒绝了.申肜公爵回到波塔尪国の居所,向贺荣国尪复命.“陛下,鞠言战申和纪沄国尪の意思是,等战申榜排位赛全部结束,再行庆功.”申肜公爵对贺荣国尪道.“哦?”贺荣国尪轻‘哦’了一声.他准备庆功宴,是为了感谢鞠言.鞠言三轮全 胜进入了战申榜排位赛の决赛,给波塔尪国带来了难以想象の好处.光是在几场对战中波塔尪国在押注大厅所赢取の白耀翠玉,都令贺荣呐位尪国の国尪心潮澎湃了.设宴庆功,另一方面也是为了进一步与鞠言战申和纪沄国尪拉近关系.“陛下,鞠言战申和纪沄国尪都很坚持.”申肜公 爵又说道.“嗯,俺知道了.俺们,尊叠鞠言战申和纪沄国尪の意思.”贺荣国尪点点头道.“对了申肜公爵,俺们波塔尪国,通过鞠言战申呐一盘口,得到了多少积分?押注大厅那边,具体の信息应该出来了吧?”贺荣国尪转而问道.“信息已经出来了,鞠言战申呐个盘口得到の积分超过二 拾八亿之巨.”申肜公爵道.积分与盘口压保额直接相关!“啧啧……”贺荣国尪听到呐个数字,忍不住咋了咋舌.“哈哈,下一届战申榜排位赛,俺们波塔尪国获得の压保盘口,至少能比呐次多一倍.”贺荣国尪振奋の语气说道.“是の陛下,按照过往の例子看,仅仅鞠言战申呐一个盘口 获得の押注积分,就足以让俺们波塔尪国在下一届战申榜排位赛中得到至少伍个压保盘口了.而接下来,还有决赛阶段.鞠言战申在决赛中,应该也能获得一些押注积分.”申肜公爵道.“嗯,等战申榜排位赛结束后,俺一定要好好感谢鞠言战申和纪沄国尪.”贺荣国尪叠叠の点了点头.与 此同事,玄秦尪国人员の居所,廉心国尪和尪国の众人员都在一个房间中,房间内气氛异常の安静.似乎,已是有一段事间没有人开口说话了.玄秦尪国在呐一届战申榜排位赛中,损失惨叠.获得の押注积分,也比预料中の少很多.别の不说,单单一个丁水云战申の盘口,就损失了大量の押 注积分.(本章完)第三零零思章王国招揽丁水云战申の呐个盘口,本应该是能够帮助玄秦尪国必得大量押注积分の,可惜……从大斗场回到居所之后,廉心国尪の心仍然没能平复下来.她の心情,此事是极其の复杂,后悔、愤怒、忧虑等等情绪皆有.“怎么都不说话了?”“应哗公爵,你 の主意不是一直都很多の吗?怎么也不说话了?”廉心国尪环视房间内の众人,声音冰冷.应哗公爵,身体都在发抖.淘汰阶段第二轮对战中,他代表玄秦尪国压保伍千万白耀翠玉,赔了.第三轮对战中,他代表玄秦尪国压保两亿白耀翠玉,又血本无归.他应哗公爵,还能找哪个借口.“陛下, 现在不是追究某个人责任の事候.损失の白耀翠玉,就目前の局势,已算不上最无法想象,善王の申魂体还能有呐样幅度の提升!”“不错,真是不错.申魂体增强之后,俺对微子世界の控制更加精妙了.”“还有对黑道则の掌控!俺の申魂体所增强の部分,与在明混元空间不同,在呐里 所增强の那部分申魂体,与暗混元空间更加契合.呐也让俺,对暗混元黑道
4.3探索三角形全等的条件教案
1.理论介绍:首先,我们要了解三角形全等的基本概念。三角形全等是指两个三角形的三个角和三条边完全相同。它是解决几何问题的重要工具,可以帮助我们计算角度和边长。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何使用SSS和SAS条件判断两个三角形是否全等,以及全等三角形在实际问题中的应用。
2.教学难点
-难点在于理解全等三角形的本质,即不仅仅是外观相似,而是每一个角和每一条边都完全相同。
-学生在理解SAS全等条件时,可能会对夹角的概念感到困惑,不清楚如何准确地判断两个角的相等性。
-在实际操作中,如何正确使用直尺和圆规进行全等三角形的作图,尤其是当条件不完整时。
-难点还在于如何将全等三角形的性质应用到解决复杂几何问题中,如四边形的不规则图形中。
举例:
a)难点解释:在SAS全等条件中,学生需要理解“夹角”是指两条边的公共端点所对的角,而不是任意两条边之间的角。
b)实际操作难点:在作图时,学生可能难以准确地通过给定的一边和夹角来确定另一边的位置,需要教师引导如何利用已知信息进行作图。
c)应用难点:在解决综合几何问题时,学生可能不知道如何将问题简化为全等三角形的判定问题,需要教师通过具体案例分析来帮助学生理解。
4.解决实际问题,运用三角形全等的条件判断生活中的物体形状是否相同。
二、核心素养目标
本节课旨在培养学生的几何直观、逻辑推理和问题解决能力,具体目标如下:
1.通过探索三角形全等的条件,提高学生对几何图形的观察、分析和推理能力,发展几何直观;
2.引导学生运用逻辑推理方法证明SSS和SAS全等条件,培养严谨的逻辑思维和推理能力;
4.3探索三角形全等的条件教案
一、教学内容
探索三角形全等的条件
在ΔABC和ΔDEF中 ∠A=∠D(…) ∠B=∠E(…) BC=EF (…) ∴ΔABC≌ΔDEF(AAS)
作业:P102(1,2,3) 本上
册:第7课时
P102:3.如图,D是线段BE的中点,∠C=∠F, ∠B=∠E, 请你在图中找出一对全等的三角形,并 说明理由。
解: ΔBDC≌ΔEDF 理由如下: E ∵ D是线段BE的中点(已知) ∴ED=BD(中点的定义) 在ΔBDC和ΔEDF中 D ∠C=∠F (已知) ∠B=∠E (已知) ED=BD (已证) B ∴ ΔBDC≌ΔEDF (AAS)
C
F
D O
E
C
例2:已知点D在AB上,点E在AC上,BE和CD相交于点O, AB=AC,∠B=∠C. 问:(2)BD与CE相等吗?为什么? (2)解:BD=CE ∵ΔABE≌ΔACD(已知) ∴AE=AD(全等三角形对应边相等) ∵AB=AC, BD=AB-AD CE=AC-AE(已知) B ∴BD=CE (等式的性质)
1
O 2 D
B
例2:已知点D在AB上,点E在AC上,BE和CD相交于点O, AB=AC,∠B=∠C. 问:(1)ΔABE≌ΔACD对吗?为什么? (2)BD与CE相等吗?为什么?
A
(1)解: ΔABE≌ΔACD 在ΔABE和ΔACD中 ∠A=∠A (公共角) AB=AC (已知) ∠B=∠C (已知) B ∴ΔABE≌ΔACD(ASA)
4.3探索三角形全等的条件
第二课时
回顾: 1、知道角的大小 一个角 × × 两个角 × 三个角 2、知道边的大小
一条边 √ SSS × 两条边 × 三条边
3、既要知道角的大小又要知道边的大小
一边一角 一边两角 两边一角
《探索三角形全等的条件》说课稿
《探索三角形全等的条件》说课稿《探索三角形全等的条件》优秀说课稿《探索三角形全等的条件》说课稿1一、说教材全等三角形是八年级上册人教版数学教材第十一章的教学内容。
本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习的,通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
根据课程标准,确定本节课的目标为:1、知道什么是全等形,全等三角形以及全等三角形对应的元素;2、能用符号正确地表示两个三角形全等;3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;4、知道全等三角形的性质和判定,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。
通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
二、说教法本节课以学生练习为主,教室归纳总结为辅的教学方法。
教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。
积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。
1、教学生观察、归纳的方法为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
2、通过设疑,启发学生思考根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。
三、说学法学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。
教师要做到教法与指导学习的学法有机统一。
通过幻灯片演示,学生用学具操作体会,最终完成学习过程,达到教学目标。
1、看听结合,形成表象。
看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
《探索三角形全等的条件》教案
《探索三角形全等的条件》教案教案:探索三角形全等的条件教学目标:1.了解三角形全等的概念和条件;2.能够运用全等条件判断三角形是否全等;3.发展逻辑思维和推理能力。
教学重点:1.三角形全等的条件;2.运用全等条件进行判断。
教学准备:1.教师准备:白板、马克笔、教材《数学七年级上册》;2.学生准备:课本、笔和纸。
教学过程:Step 1:引入新知识(10分钟)1.教师用白板上画出两个全等的三角形,让学生观察并提出它们之间的特点;2.引导学生思考,询问三角形全等的条件是什么;3.学生提出自己的想法,教师鼓励并给予肯定。
Step 2:探索全等的条件(20分钟)1.将学生分为小组,每个小组由3-4人组成,并给每个小组发放纸和笔;2.学生讨论,尝试构造一些具有共同性质的全等三角形,寻找它们之间的共同特点;3.学生通过讨论和实例的方式,发现三角形全等的条件。
Step 3:归纳总结(15分钟)1.教师引导学生汇总各组的发现,呈现在白板上;2.全班讨论并筛选出最为普遍和具有代表性的三角形全等条件。
Step 4:巩固练习(25分钟)1.教师将教材中的相关练习题呈现在白板上,让学生完成;2.学生在小组中互相讨论,梳理各步推理过程和答案;3.全班共同讨论,解答并纠正错误。
Step 5:拓展延伸(15分钟)1.教师给学生提供一些延伸题目,让学生进一步巩固和拓展所学知识;2.学生可以以小组形式完成,互相检查答案并讨论解题思路;3.学生可以将拓展题目的解题思路和结果汇报给全班,展示和分享自己的思考过程。
Step 6:课堂小结与反思(5分钟)1.教师对本节课的内容进行复盘总结,强调三角形全等的条件和运用;2.教师鼓励学生对这节课的学习进行思考和反思,提出自己的感受和问题。
教学反思:通过本节课的教学,我采用了探索式教学的方式,让学生围绕三角形全等的条件进行自主探索和讨论。
这种方式既可以调动学生的学习积极性,又能够培养学生的逻辑思维和推理能力。
探索三角形全等的条件
①两边及夹角对应相等的两 个三角形全等(SAS); ②两边及其中一边的的对角 对应相等的两个三角形不一 定全等. ③ 现在你知道哪些三角 形全等的判定方法?
SSS, SAS
1.在下列图中找出全等三角形,并把它们用 符号写出来.
30º
Ⅰ
Ⅱ
Ⅲ Ⅲ
Ⅳ Ⅳ
5 cm
30º
Ⅵ
Ⅶ
Ⅷ
Ⅴ
30º
2.在下列推理中填写需要补充 的条件,使结论成立:
(1)如图,在△AOB和△DOC中
A O
D
AO=DO(已知)
B
C
∠ AOB ∠ DOC 对顶角相等 ) ______=________(
BO=CO(已知)
∴ △AOB≌△DOC( SAS )
1.若AB=AC,则添加什么条件可得 △ABD≌ △ACD? A
△ABD≌ △ACD
D B S AD=AD A S AB=AC C
C
′ C
B
如 何 用 符 号 语 言 来 表 达 呢
A
′ A
B′
证明:在△ABC与△A ′B′ C′ 中 ′ AB=A B′ ′ ∠A=∠A ′ AC=A C′
∴△ABC≌△A’B’C’(SAS)
?
例1. 如图,AC=BD,∠CAB= ∠DBA,你能判断BC=AD吗? 说明理由。
C
D
A 分析:已知一边一角,观察图,还有什么条件? 证明:在△ABC与△BAD中
我两 们个 进三 行角 了形 哪的 些全 探等 索, ?
①一个条件 一边 一角
②两个条件 两边 两角 一边一角
③三个条件 三角 三边(SSS)
两边一角 两角一边
继续探讨三角形全等的条件: 两边一角
第03讲 探索三角形全等的条件(7种题型)(解析版)
第03讲 探索三角形全等的条件(7种题型)1.理解和掌握全等三角形判定方法“边角边”、“角边角”、“角角边”、“边边边”“HL ”定理.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.一、全等三角形判定1——“边角边”1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB = ,∠A =∠,AC = ,则△ABC ≌△. 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).''A B 'A ''A C '''A B C要点诠释:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.四、全等三角形判定4——“边边边”全等三角形判定4——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果=AB ,=AC ,=BC ,则△ABC ≌△.五.直角三角形全等的判定——“HL ”1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,'A ''A B 'B '''A B C ''A B ''A C ''B C '''A B C使用时应该抓住“直角”这个隐含的已知条件.六、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.七.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.八.全等三角形的应用(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.题型一、全等三角形的判定1——“边角边”例1、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD中AB AD BAC DAEAC AE =ìïÐ=Ðíï=î∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例2、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .90AB BC ABE CBD BE BD =ìïÐ=Ð=°íï=îAD DE ADB EDCBD CD ìïÐÐíïî===.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例3、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED.BD DE ADB=ADEAD AD ìïíïî=∠∠=AE D CB又∵∠B=2∠C=∠AED=∠C+∠EAC.∴∠C=∠EAC.∴AE=EC.∴AB=AE=EC=CD—DE=CD—BD.【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB=CD-BD,把CD-BD转化为一条线段,可利用翻折变换,把△ABD沿AD翻折,使线段BD运动到DC上,从而构造出CD-BD,并且也把∠B转化为∠AEB,从而拉近了与∠C的关系.【变式】已知,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且AE=(AB+AD),求证:∠B+∠D=180°.【答案】证明:在线段AE上,截取EF=EB,连接FC,∵CE⊥AB,∴∠CEB=∠CEF=90°在△CBE和△CFE中,1 2∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型二、全等三角形的判定2——“角边角”例4、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D=∠B.求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中CEB CEFEC =EC EB EF =ìïÐ=Ðíïî12(AF AD FAC DAC AC AC =ìïÐ=Ðíï=î角平分线定义)∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下: (1)找到以待证角(线段)为内角(边)的两个三角形; (2)证明这两个三角形全等; (3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B =∠DEF ,∠ACB =∠F ,再证明BC =EF ,然后根据“ASA ”可判断△ABC ≌△DEF .【解答】证明:∵AB ∥DE ,∴∠B =∠DEF ,∵AC ∥DF ,∴∠ACB =∠F ,∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (ASA ).【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用A C AD CBD B Ð=Ðìï=íïÐ=Ðî哪一种判定方法,取决于题目中的已知条件.例5、如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】ïîïíìÐ=Ð=Ð=ÐC DAC BCAD CBFADG证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,∴△MPQ ≌△NHQ (ASA )∴PM =HN题型三、全等三角形的判定3——“角角边”例6.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC =AD ,再由平行线的性质可得∠DAE =∠ACB ,由∠CED +∠B =180°,∠CED +∠AED =180°,得∠AED =∠B ,从而利用AAS 可判定△ADE ≌△CAB .【解答】证明:∵∠ADC =∠ACD ,∴AD =AC ,∵AD ∥BC ,∴∠DAE =∠ACB ,∵∠CED +∠B =180°,∠CED +∠AED =180°,∴∠AED =∠B ,在△ADE 与△CAB 中,,∴△ADE ≌△CAB (AAS ).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例7、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .12MQ NQMQP NQH Ð=Ðìï=íïÐ=Ðî【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【变式】已知:如图,,,是经过点的一条直线,过点、B 分别作、,垂足为E 、F ,求证:.【答案与解析】证明:∵ ,∴∴∵∴∴BAC EAD B ECB=DE Ð=ÐìïÐ=Ðíïî90ACB Ð=°AC BC =CD C A AE CD ^BF CD ^CE BF=CD AE ^CD BF ^°=Ð=Ð90BFC AEC °=Ð+Ð90B BCF ,90°=ÐACB °=Ð+Ð90ACF BCF BACF Ð=Ð在和中∴≌()∴【总结升华】要证,只需证含有这两个线段的≌.同角的余角相等是找角等的好方法.题型四、全等三角形的判定4——“边边边”例8、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.BCF ∆CAE ∆ïîïíì=Ð=ÐÐ=ÐBC AC B ACE BFC AEC BCF ∆CAE ∆AAS BF CE =BF CE =BCF ∆CAE∆()(),,RP RQ PM QM RM RM ì=ï=íï=î已知公共边【答案】证明:连接DC ,在△ACD 与△BDC 中∴△ACD≌△BDC(SSS )∴∠CAD=∠DBC(全等三角形对应角相等)例9、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型五.直角三角形全等的判定“HL ”例10.如图,AB ⊥BD ,CD ⊥BD ,AD =BC ,则能直接判断Rt △ABD ≌Rt △CDB 的理由是( )()AD BC AC BDCD DC ì=ï=íï=î公共边AB AC AD AEBD CE =ìï=íï=îA.HL B.ASA C.SAS D.SSS【分析】由“HL”可证Rt△ABD和Rt△CDB.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:A.【点评】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法是本题的关键.【变式1】.如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件 ,就可以根据“HL”得到Rt△ABC≌Rt△DEF.【分析】根据直角三角形全等的判定方法解决此题.【解答】解:补充条件:AB=DE.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故答案为:AB=DE.【点评】本题主要考查直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解决本题的关键.【变式2】如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件 ,使Rt△ABC和Rt△EDF全等.【分析】根据全等三角形的判定解答即可.【解答】解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC∥DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED(答案不唯一).【点评】此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.题型六.全等三角形的判定与性质例11.(2022•南通模拟)如图,在△ABC中,AB=AC,AD⊥BD,AE⊥EC,垂足分别为D,E,BD,CE 相交于点O,且∠BAE=∠CAD.(1)求证:△ABD≌△ACE;(2)若∠BOC=140°,求∠OBC的度数.【分析】(1)由“AAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,即可求解.【解答】(1)证明:∵∠BAE=∠CAD,∴∠BAD=∠CAE,∵AD⊥BD,AE⊥EC,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS);(2)解:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠OBC=∠OCB,∵∠BOC=140°,∴∠OBC=∠OBC=20°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.【变式1】.如图,已知AB=CB,AD=CD.求证:∠A=∠C.【分析】连接BD,利用边边边证明△ABD≌△CBD,由全等三角形的性质即可求解.【解答】证明:连接BD,在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠A=∠C.【点评】此题主要考查了全等三角形的性质与判定,此题主要利用边边边判定三角形全等.【变式2】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAD=∠CAE.求证:∠ABD=∠ACE.【分析】由“SAS”可证△ABD≌△ACE,可得结论.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.【点评】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.题型7.全等三角形的应用例12.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D.(DE≠CD)(1)线段 的长度就是A、B两点间的距离(2)请说明(1)成立的理由.【分析】(1)根据题意确定DE=AB;(2)根据已知条件得到两个三角形全等,利用全等三角形的性质得到结论即可.【解答】解:(1)线段DE的长度就是A、B两点间的距离;故答案为:DE;(2)∵AB⊥BC,DE⊥BD∴∠ABC=∠EDC=90°又∵∠ACB=∠DCE,BC=CD∴△ABC≌△CDE(ASA)∴AB=DE.【点评】本题考查了全等三角形的应用,是基础题,熟练掌握全等三角形的判定方法并确定出全等三角形是解题的关键.【变式】为了解学生对所学知识的应用能力,某校老师在七年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离.甲、乙两位同学分别设计出了如下两种方案:甲:如图①,先在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可.乙:如图②,先确定直线AB,过点B作直线BE,在直线BE上找可以直接到达点A的一点D,连接DA,作DC=DA,交直线AB于点C,最后测量BC的长即可.(1)甲、乙两同学的方案哪个可行?(2)请说明方案可行的理由.【分析】(1)甲同学作出的是全等三角形,然后根据全等三角形对应边相等测量的,所以是可行的;(2)甲同学利用的是“边角边”,乙同学的方案只能知道两三角形的两边相等,不能判定△ABD与△CBD全等,故方案不可行.【解答】解:(1)甲同学的方案可行;(2)甲同学方案:在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD;乙同学方案:在△ABD和△CBD中,只能知道DC=DA,DB=DB,不能判定△ABD与△CBD全等,故方案不可行.【点评】本题主要考查了全等三角形的应用,熟练掌握全等三角形判定的“SAS”定理是解决问题的关键.一.选择题(共8小题)1.(2022秋•南京期末)已知:如图,AC=DF,BC=EF,下列条件中,不能证明△ABC≌DEF的是( )A.AC∥DF B.AD=BEC.∠CBA=∠FED=90°D.∠C=∠F【分析】根据三角形的判定定理,结合题目所给条件进行判定即可.【解答】解:A、由AC∥DF可得∠A=∠FDB,再加上条件AC=DF,BC=EF,不能证明△ABC≌DEF,故此选项正确;B、AD=BE可得AB=DE,再加上条件AC=DF,BC=EF,可利用SSS定理证明△ABC≌DEF,故此选项错误;C、∠CBA=∠FED=90°可利用HL定理证明△ABC≌DEF,故此选项错误;D、∠C=∠F可利用SAS定理证明△ABC≌DEF,故此选项错误;故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2022秋•启东市校级月考)不能判定两个直角三角形全等的条件是( )A.两个锐角对应相等B.两条直角边对应相等C.斜边和一锐角对应相等D.斜边和一条直角边对应相等【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A、全等三角形的判定必须有边的参与,故本选项错误,符合题意;B、符合判定SAS,故本选项正确,不符合题意;C、符合判定AAS,故本选项正确,不符合题意;D、符合判定HL,故本选项正确,不符合题意.故选:A.【点评】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2022秋•阜宁县期末)如图,已知∠ABC=∠BAD,再添加一个条件,仍不能判定△ABC≌△BAD的是( )A.AC=BD B.∠C=∠D C.AD=BC D.∠ABD=∠BAC【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC ≌△BAD即可.【解答】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A.【点评】本题考查全等三角形的判定,解答本题的关键是明确全等三角形的判定方法:SSS、SAS、ASA、AAS.4.(2022秋•江都区期末)如图,已知AB=AD.下列条件中,不能作为判定△ABC≌△ADC条件的是( )A.BC=DC B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、AB=AD,BC=DC,再加上公共边AC=AC能判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC能判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.(2022秋•扬州期中)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、3或3、4去均可【分析】带1、4可以用“角边角”确定三角形;带3、4也可以用“角边角”确定三角形.【解答】解:带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,故选:C.【点评】本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.6.(2022秋•宿豫区期末)如图,小明和小丽用下面的方法测量位于池塘两端的A、B两点的距离;先取一个可以直接到达点A的点C,量得AC的长度,再沿AC方向走到点D处,使得CD=AC;然后从点D 处沿着由点B到点A的方向,到达点E处,使得点E、B、C在一条直线上,量得的DE的长度就是A、B 两点的距离.在解决这个问题中,关键是利用了△DCE≌△ACB,其数学依据是( )A.SAS B.ASA C.AAS D.ASA或AAS【分析】直接利用全等三角形的判定方法,进而分析得出答案.【解答】解:由题意可得:AC=DC,∠ACB=∠DCE,∠ABC=∠DEC,∠BAC=∠EDC,故由AC=DC,∠ACB=∠DCE,∠ABC=∠DEC或AC=DC,∠ACB=∠DCE,∠BAC=∠EDC都可以得出△DCE≌△ACB,故其数学依据是ASA或AAS.故选:D.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.7.(2022秋•高邮市期末)如图,已知∠1=∠2,若用“AAS”证明△ACB≌△BDA,还需加上条件( )A.AD=BC B.BD=AC C.∠D=∠C D.∠DAB=∠CBA【分析】根据图形找出公共边AB=BA,再根据全等三角形的判定定理AAS得出即可.【解答】解:A.AD=BC,BA=AB,∠1=∠2不符合全等三角形的判定定理,不能推出△ACB≌△BDA,故本选项不符合题意;B.AB=BA,∠1=∠2,AC=BD,符合全等三角形的判定定理SAS,不符合AAS定理,故本选项不符合题意;C.∠D=∠C,∠1=∠2,AB=BA,符合全等三角形的判定定理AAS,能推出△ACB≌△BDA,故本选项符合题意;D.∠DAB=∠CBA,AB=BA,∠1=∠2,符合全等三角形的判定定理ASA,能推出△ACB≌△BDA,故本选项不符合题意;故选:C.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理是SAS,ASA,AAS,SSS,两直角三角形全等还有HL.8.(2022秋•邳州市期末)如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.∠A=∠A,AB=AC,∠B=∠C,符合全等三角形的判定定理ASA,能推出△ABE≌△ACD,故本选项不符合题意;B.AD=AE,∠A=∠A,AB=AC,符合全等三角形的判定定理SAS,能推出△ABE≌△ACD,故本选项不符合题意;C.AB=AC,BE=CD,∠A=∠A,不符合全等三角形的判定定理,不能推出△ABE≌△ACD,故本选项符合题意;D.∠A=∠A,∠AEB=∠ADC,AB=AC,符合全等三角形的判定定理AAS,能推出△ABE≌△ACD,故本选项不符合题意;故选:C.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.二.填空题(共4小题)9.(2022秋•泗洪县期中)如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件 AB=DE ,就可以根据“HL”得到Rt△ABC≌Rt△DEF.【分析】根据直角三角形全等的判定方法解决此题.【解答】解:补充条件:AB=DE.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故答案为:AB=DE.【点评】本题主要考查直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解决本题的关键.10.(2022秋•启东市校级月考)如图,在△ABC和△DEF中,∠A=∠D=90°,AC=DE,若要用“斜边直角边(H.L.)”直接证明Rt△ABC≌Rt△DEF,则还需补充条件: BC=EF .【分析】此题是一道开放型题目,根据直角三角形的全等判定解答即可.【解答】解:在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故答案为:BC=EF【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,题目比较典型,难度适中.11.(2022秋•江宁区校级月考)如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是 AB=DC或AC=DB ,理由是 “HL” (填简称).【分析】根据直角三角形全等的判定方法,即可解答.【解答】解:∵∠A=∠D=90°,BC=BC,∴再添加:AB=DC,∴Rt△ABC≌Rt△DCB(HL),∵∠A=∠D=90°,BC=BC,∴再添加:AC=BD,∴Rt △ABC ≌Rt △DCB (HL ),故答案为:AB =DC 或AC =BD ,HL .【点评】本题考查了直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解题的关键.12.(2022秋•江阴市期中)如图,在△ABC 中,AB =3,AC =5,AD 是边BC 上的中线,AD =2,则△ACB 的面积是 6 .【分析】延长AD 到E ,使DE =AD ,连接BE ,证△ADC ≌△EDB (SAS ),得BE =AC =5,∠CAD =∠E ,再由勾股定理的逆定理证∠EAB =90°,即可解决问题.【解答】解:如图,延长AD 到E ,使DE =AD ,连接BE ,∵D 为BC 的中点,∴CD =BD ,在△ADC 与△EDB 中,,∴△ADC ≌△EDB (SAS ),∴BE =AC =5,∠CAD =∠E ,又∵AE =2AD =4,AB =3,∴BE 2=AE 2+AB 2,∴△ABE 是直角三角形,∠EAB =90°,则S △ACB =2S △ABD =2××2×3=6,故答案为:6.【点评】此题考查了全等三角形的判定与性质、勾股定理的逆定理以及三角形面积等知识,熟练掌握全等三角形的判定与性质是解题的关键.三.解答题(共5小题)13.(2022秋•泗阳县期中)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可;(2)利用全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6(cm),BE=7×2=14(cm),∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.14.(2022秋•鼓楼区期中)如图,点B、C、E、F在同一条直线上,AF、DE相交于点G,∠B=∠C=∠AGD=90°,BF=CD.求证:AF=DE.。
1.3.1探索三角形全等的条件
“SSS”. 简写为:“边边边”或“SSS”
ቤተ መጻሕፍቲ ባይዱ
A
E
用数学语 B
C
F
G
言表述: 在 ABC 和 EFG中
AB=EF BC=FG
AC=EG
ABC ≌ EFG(SSS)
例:已知:如图,在△ABC中, AB=AC,AD是中线 求证:△ABD≌△ ACD .
分析:要证明△ABD≌△ACD,首先看这两个三角形
的三条边是否对应相等.
A
B
C
D
动手做一做 准备几根硬纸条
(1)取出三根硬纸条钉成一个三角形,你能 拉动其中两边,使这个三角形的形状发生变化 吗? (2)取出四根硬纸条钉成一个四边形,拉动 其中两边,这个四边形的形状改变了吗?钉成 一个五边形,又会怎么样? (3)上面的现象说明了什么?
三角形的框架,它的大小和形状是固定不 变的,三角形的这个性质叫做三角形的稳 定性。
探索三角形全等的条件
你如
能果 说给
①三角;
出出 有三
②三边;
哪个 几条
③两边一角;
种件 可画
④两角一边.
能三
的角
情形
况,
?
探索三角形全等的条件
三个条件 --三个角 1.已知三角形的三个角分别30°,60°,90°
3000
60o 60o 60o
结论:三个内角对应相等的两个三角形
不一定全等.
三角形全等判定定理一: 三边分别相等的两个三角形全等 , 简写为“边边边”或
(3)边边边公理:三边对应相等的两个三 角形全等,简写为“边边边”或“SSS”.
(4)三角形具有稳定性.
你还有什么想法吗?
课后作业
《探索三角形全等的条件》__教案
《探索三角形全等的条件》——精品教案省市县名称黑龙江省大庆市肇源县网络班级数学53班任职学校头台中学姓名范明双作业内容《探索三角形全等的条件》教学设计教学内容:北师大版数学七年级下册第五章《三角形》第四节《探索三角形全等的条件》第一课时。
教学目标:1、经历探索三角形全等条件的过程,掌握三角形全等的“边边边”条件并初步学会运用,了解三角形的稳定性及其应用。
2、在探索三角形全等条件的过程中,体验分类讨论的数学思想,体会利用操作、归纳获得数学知识;让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力,发展学生的空间观念。
3、培养学生敢于实践、勇于发现、大胆探索、合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。
教学重点、难点:重点:三角形全等条件的探索和应用。
难点:探究全等三角形条件的过程及其准确的分类。
教法学法:教法:启发、组织、引导、演示作业内容学法:自主探究、合作交流教学准备:教具:相关多媒体课件;学具:剪刀、纸片、直尺、一副三角板、木条、钉子等。
教学过程:(一)创设情境,引入新课首先,出示一个实际问题:小明不小心打破了一块三角形玻璃,碎片如图所示(课件出示):问能不能带图中某一块到商店做一块与原来三角形玻璃一样的玻璃?【设计意图:新课初始设计生活问题引发学生思考,激发学生的学习兴趣,又把数学与生活紧密相联系,引导学生学有用的数学。
】接着,教师组织学生讨论,分析,引导学生进入主题:探索三角形全等的条件。
(板书课题)(二)引导探究,实验操作,归纳总结。
活动一:让学生通过动手操作,只给一个条件,即一条边或一个角不能判断两个三角形全等并在黑板上展示。
师通过几何画板演示。
活动二:只给两个条件,先让学生展开讨论,分析有几种情况:即边边、边角、角角,再由各小组自行探索。
同样让学生通过动手操作,师进行指导,在黑板上展示,作业内容再观察几何画板动画,最终得到只给两个条件不能判断两个三角形全等。
探索三角形全等的条件教案
探索三角形全等的条件教案教案:探索三角形全等的条件一、教学目标:1.掌握三角形全等的条件;2.熟练运用三角形全等的条件解决相关问题;3.发展学生的逻辑思维和推理能力。
二、教学重点与难点:1.重点:三角形全等的条件;2.难点:培养学生的逻辑思维和推理能力。
三、教学准备:1.板书:三角形全等的条件;2.教具:直尺、量角器。
四、教学过程:1.复习导入(5分钟)通过提问、举例等方式复习三角形的基本概念、性质以及前几节课所学的内容。
2.引入新知(5分钟)教师引导学生思考:当两个三角形完全相同时,我们可以说这两个三角形是全等的。
那么,如何判断两个三角形是否全等,有哪些条件呢?3.学习新知(20分钟)教师板书三角形全等的条件,包括以下四个条件:a.两边和夹角相等;b.两角和边相等;c.任意两边和夹角相等;d.全等性质的推论。
教师通过示例和图示,逐步解释每个条件,并帮助学生理解和记忆。
4.练习与巩固(30分钟)a.学生个人练习:在作业本上完成练习题,熟练运用三角形全等的条件。
b.学生合作练习:分成小组,相互出题,互相考核,进一步巩固所学内容。
c.教师点评:针对学生的错误或疑惑进行解答和指导。
5.拓展应用(10分钟)教师提供一些拓展应用题,引导学生运用所学知识解决实际问题。
例如:给定两个三角形的一些条件,判断它们是否全等,并说明理由。
6.归纳总结(5分钟)教师与学生一起总结归纳三角形全等的条件,并强调每个条件的应用注意事项。
7.提高拓展(5分钟)对于拓展应用中出现的难题,教师引导学生思考更深层次的推理和解决方法,培养学生的逻辑思维和推理能力。
8.课堂小结(5分钟)教师对本节课所学知识进行简要总结,并提醒学生预习下节课内容。
五、课后作业:1.完成课堂练习不会的题目;2.思考并总结三角形全等的条件以及应用。
六、教学反思:通过设计本节课的教学,希望学生能够理解和掌握三角形全等的条件,并能够熟练运用这些条件解决问题。
在教学过程中,通过不同形式的练习,既可以提高学生的动手操作能力,又能够培养学生的逻辑思维和推理能力。
探索三角形全等的条件
D
C
3、 如图,已知AC=FE,BC=DE,点A,D,B, F在一条直线上 AD=FB,你觉得△ ABC和△ FDE全等吗?如果全等,请说明理由。
解: △ ABC≌△ FDE ,理由是: A ∵ AD=FB ∴ AD+DB=FB+DB 即 AB=FD 在△ ABC和△ FDE中 AC=FE(已知) BC=DE(已知) E AB=FD(已证) ∴ △ ABC≌ △ FDE (SSS)
∴ △ ABD≌ △ ACD (2)
1、写出在哪两个三角形中
由(1)知△ABD≌△ACD
∴ ∠B=∠C (全等三角形对应角相等)
2、摆出的三个条件用 大括号括起来 3、写出全等结论
☞ 探究活动(四)
三角形的稳定性
三角形具有稳定性
四边形不具有稳定性
你知道这是为什么吗?
理由:由上面的结论可知,只要三角 形三边长度确定了,这个三角形的形 状和大小就完全确定了,三角形的这 个性质叫做三角形稳定性。
C
D B F
请同学们谈谈本节课的收获与体会
本节课你学到了什么? 有什么收获?
布置作业
P160 习题5。7
当堂达标
1、试一试:四边形、五边形不具有稳定性,你能想出什么
方法让它们的形状不发生改变吗?
2、如图,AB=AD,BC=DC,试证明△ABC和 △ADC全等。 证明:在△ABC和△ADC中 A B AB=AD(已知) BC=CD(已知) __= __( ) AC AC 公共边 ∴ △ABC ≌ △ADC( SSS)
探索三角形全等的 条件(一)
东明 城关一中
复习回顾
A
D
全等三角形:
B C E F
定义:能够完全重合的两个三角形叫全等三角形 性质:全等三角形的对应边相等,对应角相等 思考:如何判断两个三角形全等呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D C
A B
A D
C
B
G
F E
六、当堂小测
如图所示:已知∠ 1=∠ 2, AC=AD, 增加以下条件,① AB=AE
E
② BC=ED ③ ∠C=∠D ④ ∠ B=∠ E 其中,能使△ ABC ≌△ AED
的条件有
,你能分别证明吗?
B
C
1 2A
D
三、预习自测(预习课本 P5~P6 ,然后作答)
1. 全等三角形的判定方法 “ SAS”:
及其
角边”或“ SAS”,用几何语言书写定理内容:
分别相等的两个三角形全等, 简写成“边
C
C'
A
2.如图,已知 AC 平分∠ BAD , AB=AD, 证明:△ ABC ≌△ ADC
B A'
B'
A
B
四、精讲精练: “ SAS”通过对应关系找出两条边及夹角 方法一 : 已知两边,通过加减角,证明夹角相等 ★☆☆例 1:已知 CE=CB,CD=CA, ∠ DCA= ∠ ECB 证明: DE=AB
D A
D
★☆☆练习 1:如图, AC ⊥ BC , DC ⊥EC, AC=BC,DC=EC , 求证:∠ D=∠ E
A
D C
C
B E
E
C
B
方法二 :已知一边和一角,通过加减线段,证明另一边相等 ★★☆例 2,:如图已知, AB//CD,AB=CD,CE=BF 求证:△ A1.3.3 探索三角形全等的条件
一、学习目标 ★★★★★☆☆☆☆☆ ①完成预习自测,牢记“ SAS”定理的内容 ②通过预习自测,初步掌握“ SAS”定理的应用 ③ 通过精讲精练,熟练掌握“ SAS”定理的应用 ④ 在精讲精练后,能总结出相关的方法,知识点 ⑤ 完成合作探究,加深对“ SAS”定理的记忆 二、 5 分钟素养训练
D
B
★★☆练习 2:已知, AD//BC,AD=BC,AE=CF, 求证 BE=DF
A
D
E
F
B
C
五、合作探究 ★★★例 3:如图已知△ ACE 和△ ECD 都是等腰直角三角形, ∠ ACB= ∠ ECD=90 °, D 是 AB 上的一点, 求证:△ ACE ≌△ BCD
E
★★★练习 3: 已知正方形 ABCD 和正方形 AEFG , 求证 DE=BG