奥数图形计数

合集下载

四年级奥数第二讲图形的计数问题含答案

四年级奥数第二讲图形的计数问题含答案

四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。

练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。

图形的计数奥数拓展

图形的计数奥数拓展

千里之行,始于足下。

图形的计数【奥数拓展】
【例1】
下面的图形有多少个?你会数吗?
【例2】
你能按照这个侧面图算算砌好这面墙一共需要多少块砖吗?
【例3】
数一数,下面的方块各有多少?
如图所示为一堆转,中央最高一摞是10块,它的左右两边各是9块,再往两边是8块、7块、6块、5块、4块、3块、2块、1块。

问:这堆砖共有多少块?
第 1 页/共 3 页
朽木易折,金石可镂。

【例4】
下面这堆木方块共有多少块?(中间画阴影的部分从上到下是空心)
这堆木方块共有多少块?(中间画阴影的部分从上到下是空心)
【例5】
用10个小正方体摆成一个“工”字形(如下图),然后又将表面涂成粉色(下面也被涂色),最后又把小正方体分开,数一数;
⑴3面涂成粉色的小正方体有( )个。

⑵4面涂成粉色的小正方体有( )个。

⑶5面涂成粉色的小正方体有( )个。

千里之行,始于足下。

将8个小立方块组成“丁”字型,再将表面都涂成粉色,然后再把小立方块分开。

⑴3面被涂成粉色的小立方块有( )个。

⑵4面被涂成粉色的小立方块有( )个。

⑶5面被涂成粉色的小立方块有( )个。

第 3 页/共 3 页。

七年级数学奥数《几何图形的计数问题》教学课件

七年级数学奥数《几何图形的计数问题》教学课件
• 4×8+5×16+6×4+10×4+8×4+11×4+16×1
=268(个).
• 例6、(1)、图1-70(a)中有多少个三角形? • (2)、图1-70(b)中又有多少个三角形?
• 解: • (1) 图1-70(a)中有6条直线.一般来说,每3条直
线能围成一个三角形,但是这3条直线如果相交 于同一点,那么,它们就不能围成三角形了. • 从6条直线中选3条, • 有 6 5 4 20 种选法(见说明),
有三个最小的尖向上的三角形(左、右、下各一个), • 所以最小的三角形不是21个而是24个. • 于是尖向上的三角形共1+3+6+10+15+24=59(个). • 图中共有三角形59×2=118(个).
• 例5、图1-69中有多少个等腰直角三角形?
• 解:图1-69中有5×5+4×4=41个点.在每点标 一个数,它等于以这点为直角顶点的等腰直角三 角形的个数.因此,共有等腰直角三角形
• (1)、若点Pn在某个小三角形的内部,如图1-73(a),则原 小三角形的三个顶点连同Pn将这个小三角形一分为三, 即增加了两个小三角形;
• (2)、若点Pn在某两个小三角形公共边上,如图1-73(b).
• 则这两个小三角形的顶点连同点Pn将这两个小三角形分 别一分为二,即也增加了两个小三角形.
• 4个圆最多将平面分成8+6=14个部分.
• 5个圆最多将平面分成14+8=22个部分.
• 所以,5个圆最多将平面分成22个部分.
• 说明:用上面类似的方法,我们可 以计算出n个圆最多分平面的部分 数为:
• 2+1×2+2×2+…+(n-1)×2

五年级奥数专题:图形的计数

五年级奥数专题:图形的计数

五年级奥数专题:图形的计数A 3A 1OA 2A 4A 5A 7A 6A 8A 9A 10A 11 A 12九图形的计数(A)年级班姓名得分⼀、填空题1.下图中⼀共有()条线段.2. 如右上图,O 为三⾓形A 1A 6A 12的边A 1A 12上的⼀点,分别连结OA 2,OA 3,…OA 11,这样图中共有_____个三⾓形.3. 下图中有_____4. 右上图中共有_____个梯形.5.数⼀数(1)⼀共有( )个长⽅形. (2)6. 在下图中,所有正⽅形的个数是______.AC E7. 在⼀块画有4?4⽅格⽹⽊板上钉上了25颗铁钉(如下图),如果⽤线绳围正⽅形,最多可以围出_____个.8. ⼀块相邻的横竖两排距离都相等的钉板,上⾯有4?4个钉(如右图).以每个钉为顶点,你能⽤⽪筋套出正⽅形和长⽅形共_____个.9. 如下图,⽅格纸上放了20枚棋⼦,以棋⼦为顶点的正⽅形共有_____个.10. 数⼀数,下图是由_____个⼩⽴⽅体堆成的.要注意那些看不见的.⼆、解答题11. 右图中共有7层⼩三⾓形,求⽩⾊⼩三⾓形的个数与⿊⾊⼩三⾓形的个数之⽐.12. 下图中,AB 、CD 、EF 、MN 互相平⾏,则图中梯形个数与三⾓形个数的差是多少?13.现在都是由边长为1厘⽶的红⾊、⽩⾊两种正⽅形分别组成边长为2厘⽶、4厘⽶、8厘⽶、9厘⽶的⼤⼩不同的正⽅形、它们的特点都是正⽅形的四边的⼩正⽅形都是涂有红颜⾊的⼩正⽅形,除此以外,都是涂有⽩⾊的⼩正⽅形,要组成这样4个⼤⼩不同的正⽅形,总共需要红⾊正⽅形多少个?⽩⾊正⽅形多少个?14ABC的每⼀边4等分,过各分点作边的平⾏线,在所得下图中有多少个平⾏四边形?九图形的计数(B)年级班姓名得分⼀、填空题1. 下图中长⽅形(包括正⽅形)总个数是_____.2. 右上图中有正⽅形_____个,三⾓形_____个,平⾏四边形_____个,梯形_____个.3. 下图中共出现了_____个长⽅形.4. 先把正⽅形平均分成8个三⾓形.再数⼀数,它⼀共有_____个⼤⼩不同的三⾓形.5. 图形中有_____个三⾓形.6.如右上图,⼀个三⾓形分成36个⼩三⾓形.把每个⼩三⾓形涂上红⾊或蓝⾊,两个有公共边的⼩三⾓形要涂上不同的颜⾊,已知涂成红⾊的三⾓形⽐涂成蓝⾊的三⾓形多,那么多_____个.7. 下图是由⼩⽴⽅体码放起来的,其中有⼀些⼩⽅体看不见.图中共有_____个⼩⽴⽅体.8. 右上图中共有_____个正⽅形.9. 有九张同样⼤⼩的圆形纸⽚,其中标有数码“1”的有1张;标有数码“2”的有2张;标有数码“3”的有3张,标有数码“4”的也有3张。

一年级奥数-图形的计数

一年级奥数-图形的计数
2. 平 面 图 形 计 数 法 : 从 上 往 下 分
céngfǎ
层法
fāngfǎ yīcéngyīcéngshùqīngchǔ zuòhǎo jì suàn
方 法 :一hìguānjiàn
是关 键
qǐngláojì yìxiēchángyòngdejìsuànjiéguǒ ò
都 要 分 到 糖 ,但 分 到 的 糖 块 数 又
bùnéngyíyàngduō shuíhuìfēn jiéguǒxiǎohuǒbàn
不 能 一 样 多 , 谁 会 分 ?” 结 果 小 伙 伴
mendōubúhuìfēn wèishénmene rúguǒyàogòufēn
们 都 不 会 分 , 为 什 么 呢?如 果 要 够 分 ,
课 堂 小结
lì tǐ túxíngshùfāngkuài cóngshàngwǎngxiàfēn
1.立体 图 形 数 方 块 : 从 上 往 下 分
céngfǎ
层法
kǒujué shùtóudǐngjiālóushàng
口 诀:数 头 顶 加 楼 上
píngmiàntúxíng jì shùfǎ cóngshàngwǎngxiàfēn
有 一 天 小 猴 子 和 7 个 小 伙 伴 一起 出 去 玩 ,
xiǎohóuzináchūyībāotáng duìxiǎohuǒbànmenshuō
小 猴 子拿 出 一 包 糖 , 对 小 伙 伴 们 说 :
wǒmenláifēntángchība zhè lǐ miànyígòngyǒu kuài
“ 我 们 来 分 糖 吃 吧 , 这 里 面 一 共 有 35 块
táng xiànzàiwǒmenyígòngyǒu gèxiǎohuǒbàn měigè

小学一年级奥数题:图形计数练习题【五篇】

小学一年级奥数题:图形计数练习题【五篇】

小学一年级奥数题:图形计数练习题【五篇】2.小敏到商店买文具用品。

她用所带钱的一半买了1支铅笔,剩下的一半买了1支圆珠笔,还剩下1元钱。

小敏原来有多少钱?3.有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?4.小明从家到学校跑步来回要10分钟,如果去时步行,回来时跑步一共需要12分钟,那么小明来回都是步行需要几分钟?5.小红和小绿都有10块橡皮,小兰给小绿2块后,现在小绿比小兰多几块橡皮?【第二篇】1.有一本书,小华第一天看了2页,以后每一天都比前一天多看2页,第4天看了多少页?2.妈妈从家里到工厂要走3千米,一次,她上班走了2千米,又回家取一很重要工具,再到工厂。

这次妈妈上班一共走了多少千米?3.像18+81这样十位数字与个位数字顺序颠倒的一对两位数是好朋友,它们相加和是99,请问像这样的相加和是99的好朋友有几对?4.桌子上有三盘桃子,第一盘比第三盘多3只,第三盘比第二盘少5只。

问:哪盘桃子最少?5.13个小朋友玩"老鹰抓小鸡"的游戏,已经抓住了5只"小鸡",还有几只没抓住?6.修花坛要用94块砖,第一次搬来36块,第二次搬来38块,还要搬多少块?(用两种方法计算)7.海盗抓小孩去无人岛,一共抓了15个小孩,他让小孩排队报数,第一次把报单数的孩子都送去了无人岛,接着让剩下的孩子报数,又把报单数的孩子送去了无人岛,把其他孩子放回了家。

问强盗放多少个孩子回家?8.懒羊羊一次买来了30个苹果,它第一天吃了一些,第二天又吃了一些,这时还剩下12个苹果,懒羊羊两天一共吃了多少个苹果?9.5只兔子和4只猫一样重,那么一只兔重还是一只猫重?10.一只井底的蜗牛,白天能够爬2米,晚上下滑1米,已知井深5米,蜗牛多久能够爬到井外?【第三篇】1.小明把一根木棍锯成2段需要2分钟,那么依照这样的速度,把一根木棍据成3段需要多少分钟?2.一个猴子吃3个桃子多出一个,一个猴子吃4个桃子就少2个。

二年级奥数:有趣的图形计数

二年级奥数:有趣的图形计数

二年级奥数:有趣的图形计数知识点总结一、平面图形计数1.规则图形——跑火车基本图形数依次加到12.不规则图形——分层数分类(大小分类,方向分类)3.方法:观察规律,变加为乘二、立体图形计数——分层数每层个数=上层个数+本层露出头顶的个数二、染色问题1重合2不染知识点精讲一、平面图形1、规则图形公式法(跑火车)(适用于数线段、数角、数三角形等)例数线段分析:有3条基本线段(火车头是3),所以一共有3+2+1=6(条)线段例数角分析:有3个基本角,共有3+2+1=6(个)角例数三角形分析:有4个基本三角形,共有4+3+2+1=10(个)三角形(2)不规则图形①分层数例数多层长方形(分层数)分析:每层有3+2+1=6(个),有3层,所以共有6╳3=18(个)也可以,长边上线段总数3+2+1=6(个)宽边上线段总数2+1=3(个)总共有:3×6=18(个)例图中有多少个三角形?解析:观察本图不是规则图形,不能直接用公式.但可以将它分成2层(中间横线以上是一层,去掉横线是一层),且每层都是一个规则的数三角的图形.每层个数:3+2+1=6(个)层数:2层总个数6×2=12(个)②分类数:大小、方向例数三角形方法:标号法(适用于任何基本的平面图形,建议重点掌握)分析:用标号法如图小三角形有6个,两个小三角形拼成的有(2,3)(4,5)(6,1)3个三个小三角形拼成的有(1,2,3)(2,3,4)(3,4,5)(4,5,6)(5,6,1)(6,1,2)6个六小三角形拼成的有1个共6+3+6+1=16(个)二、其它平面图形计数1、数棋盘:细观察,找规律,变加为乘2、数方块: 补、拆三、立体图形计数1、数立方体推荐方法:从上往下一层一层的数每层个数=上层个数+本层露出头顶的个数例数一数下图有多少块立方体?分析:如图,从上往下,一层一层的数即1+3+6+10=20(块)2、补成大正方体/长方体推荐方法:要补的块数=总数-现有的块数例至少添加多少个小正方体可以组成一个较大的正方体?分析:先观察发现这幅图有4层,那么要想拼出一个大正方体,那么每层应该有4行4列,所以拼成的大正方体至少得4╳4╳4=64块,现在有3+4+5+7=19块,所以至少得补64-19=45块3、染色问题简单情况可使用观察法没被染色的面即为粘在一起的面(重合面),粘一处少两个面,(两个方块各少一个面)例下面是用小正方体堆成的图形,现在把这个图形的表面涂上红色,数一数有多少个小正方形没有被涂色?分析:“横着”粘的:第一层+第二层的块数1+2=3处。

小学奥数三年级图形计数

小学奥数三年级图形计数
路漫漫其修远兮, 吾将上下而求索
【例2】数一数,下图中有多少个角?
D C B
O A
解:(1)以OA为一边的角有:3个; (2)以OB为一边的角有:2个; (3)以OC为一边的角有:1个; 因此,共有角:3+2+1=6(个).
路漫漫其修远兮, 吾将上下而求索
【随堂练习1】 数一数,图中共有几个角?
块。
路漫漫其修远兮, 吾将上下而求索
【例8】在一块画有2×3方格网的木板上钉了12颗钉子, 以钉子为顶点,用橡皮筋能围成( )个正方形。
解:(1)单个正方形:6个; (2)四个小正方形组成的正方形:2个; 想象一下,把那些线都去掉,只留下钉子,除了按照
前面两种用横线、竖线围正方形的方法,还能不能想出 其他方法呢?
小学奥数三年级图形计 数
路漫漫其修远兮, 吾将上下而求索
2020年4月13日星期一
图形计数 【关键词】分类
路漫漫其修远兮, 吾将上下而求索
【例1】数一数,图中共有多少条线段?
A B C D E FG
• 题目不难,但怎么才能避免多数或是少数呢? • 【分类】我们把要数的图形按照一定的规律分
分类,然后分别去数每一类有多少个,最后把 每一类的数字加到一块,这样就能不重复、不 遗漏。
路漫漫其修远兮, 吾将上下而求索
【随堂练习2】 数一数,图中共有多少个长方形?
解法二: 长被分成5段,宽被分成2段,所以一共有 (5+4+3+2+1)×(2+1)=45(个)长方形。
路漫漫其修远兮, 吾将上下而求索
【例6】含有☆的正方形有( )个。

路漫漫其修远兮, 吾将上下而求索
解:(1)含有☆的单个小正方形:1个; (2)含有☆,四个小正方形组成的正方形:4个; (3)含有☆,九个小正方形组成的正方形:1个; 因此,含有☆的正方形总共有1+4+1=6(个).

二年级奥数题详细讲解

二年级奥数题详细讲解

二年级奥数基础班第一讲图形计数习题1.数一数,图4-1中共有多少条线段?2.数一数,图中有多少个三角形?3.图中有多少个正方形?4.数一数,图形中有几个长方形?5.数一数,下图中有多少个三角形?多少个正方形?*6.数一数,下图中共有多少条线段?有多少个三角形?*7.数一数,下图中共有多少个小于180°角? *8.数一数,下图中共有多少个三角形?习题答案1. 10条线段2. 5个6个6个5个12个3. 5个17个4. 7个(4+3+2+1)×(3+2+1)=60(个)5. 6个三角形7个正方形6. 30条线段10个三角形7. 30个小于180°角8.10+3+6=19(个)9.提高班第一讲图形计数习题1.数一数,图4-1中共有多少条线段?*2.数一数,图4—2中共有多少条线段?3.数一数,图中有多少个三角形?*4.***5.图中有多少个正方形?6.数一数,图形中有几个长方形?7.数一数,图中共有几个三角形?几个正方形?8.数一数,下图中共有多少条线段?**有多少个三角形?9.数一数,下图各图中各有多少个三角形?*10.数一数,下图中有多少个小于180°角?习题答案1.10条线段2.14条线段3.5个6个6个5个4.12个12个5.5个17个6.7个(4+3+2+1)×(3+2+1)=60(个)7. 6个三角形7个正方形8. 30条线段10个三角形9. 19个三角形10. 30个小于180°角基础班第二讲速算与巧算习题1.计算:18+28+72 28+44+62+562.计算:100-68= 100-87= 1000-369= 500-47=3、计算:67+98 261-1974.计算:72-39+28 382-60+595.计算:99+98+97+96+95 * 9+99+9996.计算:436-(36+57) 579-83-177.计算:1+2+3+4+3+2+1= 1+2+3+4+5+1+2+3+4+5+6=8.计算:5+6+7+8+9 1+4+7+10+13+16提高班第二讲速算与巧算习题1.计算:18+28+72 28+44+62+56-202.计算:100-68= 1000-587= 1000-69= 500-47=3、计算:67+98 261-1974.计算:72-39+28 382-60+595.计算:99+98+97+96+95 9+99+9996.计算:436-(136+157) 579-83-177.计算:1+2+3+4+3+2+1= 1+2+3+4+5+1+2+3+4+5+6=8.计算:5+6+7+8+9 1+4+7+10+13+162005秋季班第三讲基础班1.把一根粗细均匀的木头锯成6段,每锯一次需要3分钟,一共需要多少分钟?2.把一根粗细均匀的木头锯成5段需要20分钟,每锯一次要用多少分钟?3.一根木料长10米,要把它锯成一些2米长的小段,每锯一次要用4分钟,共要用多少分钟?4.公园的一条林荫大道长300米,在它的一侧每隔30米放一个垃圾桶,需多少个垃圾桶?5.学校有一条长60米的走道,计划在道路两旁栽树。

小学奥数第五讲:图形的计数

小学奥数第五讲:图形的计数

小学奥林匹克数学第一集:第五讲:图形的计数一、数一数小朋友,你知道中有多少个三角形吗?我们可以这样想,图中的小三角形一共有4个,大三角形有1个,所以一共有5个三角形。

在数数时,要做到有次序,有条理,不遗漏也不重复,这样才能正确地数数。

例1:数一数下图各有几条线段?分析:我们可以照下面的方法数:解:共有线段4+3+2+1=10(条)例2:图中有多少个小正方体?分析:这个图形是由小正方体组成的。

可以采用数数的方法,按顺序数。

也可以根据图形的组成规律进行计算,如果每2个一摞,一共有4摞。

解:方法一:一个一个地数出8个正方体。

方法二:2×4=8(个)答:共有8个小正方体。

例3:将9个小正方体组成如图所示的“十”字形,再将表面涂成红色,然后将小正方体分开。

问(1)2面涂成红色的有几个?(2)4面涂成红色的有几个?(3)5面涂成红色的有几个?分析:整个图形表面涂成红色。

只有“粘在一起的”面没有涂色。

中间的一个小正方体2面涂色,四端的4个小正方体都是5面涂色,剩下的四个小正方体都是4面涂色。

解:(1)2面涂成红色的小正方体只有1个。

(2)4面涂成红色的小正方体有4个。

(3)5面涂成红色的小正方体有4个。

例4:亮亮从1写到100,他一共写了多少数字“1”?分析:在1到100这100个数中,“1”可能出现在个位、十位或百位上。

应分三种情况计数:“1”在个位上的数有:1、11、21、31、41、51、61、71、81、91共10个;“1”在十位上的数有:10、11、12、13、14、15、16、17、18、19共10个;“1”在百位上的数有:100 只有1个。

解:10+10+1=21(个)答:共写21个。

例5:27个小方块堆成一个正方体。

如果将表面涂成黄色,求:(1)3面涂成黄色的小方块有几块?(2)1面涂成黄色的小方块有几块?(3)2面涂成黄色的小方块有几块?分析:涂色的有26个小方块。

3面涂色的只有顶点上的8个小方块;1面涂色的只有六个面上中间的小方块;其余的必然是2面涂色的小方块。

小学四年级奥数第17讲 数数图形(含答案分析)

小学四年级奥数第17讲 数数图形(含答案分析)

第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。

4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段。

练习1:数出下列图中有多少条线段。

(2)【例题2】数一数下图中有多少个锐角。

练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。

练习3::数一数下面图中各有多少个三角形。

【例题4】数一数下图中共有多少个三角形。

练习4::数一数下面各图中各有多少个三角形。

【例题5】数一数下图中有多少个长方形。

练习5::数一数下面各图中分别有多少个长方形。

【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形。

【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和。

一年级奥数之图形的计数

一年级奥数之图形的计数

图形的计数课kè前qián 活huó动dòng虎hǔ大dà王wáng 捉zhuō鼠shǔ大dà森sēn 林lín 里lǐ的de 老lǎo 鼠shǔ们men 正zhèng 在zài 搬bān 家jiā呢ne !不bú幸xìng 的de 是shì被bèi 森sēn 林lín 里lǐ的de 老虎lǎohǔ撞见zhuàngjiàn 了le ,老虎lǎohǔ这zhè回huí是shì大展dàzhǎn 拳脚quánjiǎo 呀ya !一会yīhuì就jiù抓zhuā了le 好hǎo 多duō只zhī老lǎo 鼠shǔ,高gāo 高gāo 兴xìng 兴xìng 的de 回huí到dào 了le 虎hǔ穴xué里lǐ,可kě是shì抓zhuā的de 老lǎo 鼠shǔ太tài 多duō了le ,虎hǔ大dà王wáng 数shù不bù清qīng 楚chǔ到dào 底dǐ有yǒu 几jǐ只zhī?就jiù找zhǎo 来lái 聪cōng 明míng 伶líng 俐lì的de 小xiǎo 青qīng 蛇shé给gěi 它tā数shù数shù,他tā则zé舒shū舒shū服fú服fú地dì躺tǎng 在zài 床chuáng 上shàng 吃chī方fāng 糕gāo 。

小xiǎo 青qīng 蛇shé认rèn 认rèn 真zhēn 真zhēn 地dì数shù了le 半bàn 天tiān ,然rán 后hòu 恭gōng 恭gōng 敬jìng 敬jìng 地dì说shuō:“尊zūn 敬jìng 的de 大dà王wáng ,您nín 只zhǐ需xū数shù一yí下xià你nǐ眼yǎn 前qián 的de 方fāng 糕gāo 就jiù知zhī道dào 您nín 一yí共gòng 抓zhuā了le 多duō少shǎo 只zhī老lǎo 鼠shǔ了le !”虎hǔ大dà王wáng 忙máng 说shuō:“这zhè些xiē方fāng 糕gāo 有yǒu 多duō少shǎo 块kuài ?我wǒ懒lǎn 得de 数shù了le 。

小学奥数讲义4年级-15-图形计数-难版

小学奥数讲义4年级-15-图形计数-难版

几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等。

在几何图形的计数问题中,各种图形的基本概念及其相关性质是计数过程中寻找规律的基础。

掌握图形的规律和方法多种多样,常用的有按顺序数和分类数两种。

分类方法如:按点分类,按边分类,按块分类等等还要注意分类的合理性,只有当所分的类型包含所有情况并且相互不重叠,这样才有可能做到不重复、不遗漏。

【例1】★数一数图1中有多少条线段?【解析】第一种可以按端点进行分类,如图1中,线段最左边的端点是A ,即以A 为左端点的线段有AB 、AC 、AD 、AE 、AF 共五条;以B 为左端点的线段有BC 、BD 、BE 、BF 共四条;以C 为左端点的线段有CD 、CE 、CF ,共三条;以D 为左端点的线段有DE 、DF 共二条;以E 为左端点的线段有EF ,一条。

这些线段的和就是图形中线段的条数。

第二种可以按含基本线段多少的顺序去数。

在此题中最长的线段AF 上有四个分点,将AF 分成了5条小线段,这每条小线段就是基本线段。

首先有5条基本线段,其次是包含有两条基本线段的有4条,然后是包含有三条基本线段的有3条,包含有四条基本线段的有2条,包含有五条基本线段的有1条。

则线段AF 上的线段条数可求。

5+4+3+2+1=15(条)典型例题知识梳理【例2】★数一数,右图中共有多少个角?【解析】我们规定:把相邻两条射线构成的角叫做基本角,我们可以这样分类数:由1个基本角构成的角有:∠AOB、∠BOC、∠COD、∠DOE、∠EOF共5个.由2个基本角构成的角有:∠AOC、∠BOD、∠COE、∠DOF共4个.由3个基本角构成的角有:∠AOD、∠BOE、∠COF共3个.由4个基本角构成的角有:∠AOE、∠BOF共2个.由5个基本角构成的角有:∠AOF共1个.角总数5+4+3+2+1=15(个).【小试牛刀】数出图2中总共有多少个角?【解析】10个【例3】★数一数,右图中共有多少个三角形?你有什么好方法?【解析】1个三角形组成的:△AOB、△BOC、△COD、△DOE、△EOF共5个;2个三角形组成的:△AOC、△BOD、△COE、△DOF共4个;3个三角形组成的:△AOD、△BOE、△COF共3个;4个三角形组成的:△AOE、△BOF共2个;5个三角形组成的:△AOF共1个;共有5+4+3+2+1=15(个).【例4】★★数一数:下面三个图中长方形分别有多少个?【解析】先数一数AB边上有多少条线段,每一条线段可以分别作为长方形的长,再数一数AD上有多少条线段,每一条线段可以分别作为长方形的宽,每一条长与一条宽搭配,就确定了一个长方形,这样就容易得出一共有多少个长方形了.先来看图(1),AB边上包含着的10条线段中的每一条(想一想为什么),都可与线段AD 对应,惟一确定一个长方形,所以图(1)中共有10×1=lO个长方形.再来看图(2),与图(1)不同的是在AD上增加了一个分点,这样就有3条线段时,这3条线段分别与AB边上不同的线段构成长方形,所以图(2)中共有10×3=30个长方形.最后看图(3),与上面的思路相同,由于AD边上有3+2+1=6条线段,所以图(3)中共有10×6=60个长方形.即:(1)(4+3+2+1)×1=10(个);(2)(4+3+2+1)×(2+1)=30(个);(3)(4+3+2+1)×(3+2+1)=60(个).【小试牛刀】数一数图4中长方形的个数。

小学奥数家教 计数问题一几何中的计数

小学奥数家教 计数问题一几何中的计数

计数问题一、数线段第一种:按照线段的端点顺序去数第二种:按照基本线段多少的顺序去数.线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1.二、数角数角的方法可以采用数线段的方法来数,就是角的总数等于从1开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1三、数三角形1.共顶点只有一个公共底边的三角形数法:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的条数.2.有多条底边的三角形数法:分开看各底边用之前方法进行计数小结:由本题可以推出一般情况:若周角中含有n个基本角,那么它上面角的总数是 n(n-1)+1.练习1.数一数下图中,各有多少条线段?2.数一数下图中各有多少角?3.数一数下图中,各有多少条线段?4.数一数下图中,各有多少条线段,各有多少个三角形?四、数长方形一般情况下,如果有类似图Ⅲ的任一个长方形一边上有n-1个分点(不包括这条边的两个端点),另一边上有m-1个分点(不包括这条边上的两个端点),通过这些点分别作对边的平行线且与另一边相交,这两组平行线将长方形分为许多长方形,这时长方形的总数为:(1+2+3+…+m)×(1+2+3+…+n).五、数正方形一般地,如果类似图Ⅳ中,一个大正方形的边长是n个长度单位,那么其中边长为1个长度单位的正方形个数有:n×n=n2(个),边长为2个长度单位的正方形个数有:(n-1)×(n-1)=(n-1)2(个)…;边长为(n-1)个长度单位的正方形个数有:2×2=22(个),边长为n个长度单位的正方形个数有:1×1=1(个).所以,这个大正方形内所有正方形总数为:12+22+32+…+n2(个)一般情况下,若一长方形的长被分成m等份,宽被分成n等份,(长和宽上的每一份是相等的)那么正方形的总数为(n<m):mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1六、数复杂图形中三角形尖朝上的三角形共有四种.每一种尖朝上的三角形个数都是由1开始的连续自然数的和,其中连续自然数最多的和中最大的加数就是三角形每边被分成的基本线段的条数,依次各个连续自然数的和都比上一次少一个最大的加数,直到1为止.尖朝下的三角形的个数也是从1开始的连续自然数的和,它的第一个和恰是尖朝上的第二个和,依次各个和都比上一个和少最大的两个加数,以此类推直到零为止.我们已对较基本、简单的图形的数法作了较系统的研究,寻找到了一般规律.而对于较复杂的图形即综合图形的数法,我们仍需遵循不重复、不遗漏的原则,采用能按规律数的,按规律数,能按分类数的就按分类数,或者两者结合起来就一定能把图形数清楚了. 35练习1.下图中有多少个正方形?2.下图中有多少个长方形?3.下图中有多少个长方形?4.下图(1)、(2)中各有多少个三角形?5.下图中有多少个三角形?6.下图中有多少个三角形?7.下图中有多少个正方形?解答:1.①在AB线段上有4个分点,所以它上面线段的总条数为:5+4+3+2+1=15(条).②在线段AB上有3个分点,所以它上面线段的总条数为4+3+2+1=10(条).在线段CD上有4个分点:所以它上面线段的总条数为:5+4+3+2+1=15(条).∴整个图(2)共有线段10+15=25(条).③在线段AB上有3个分点,它上面线段的条数为:4+3+2+1=10(条).在线段CD上有2个分点,它上面线段的条数为:3+2+1=6(条).在线段EF上有2个分点,它上面线段的条数为6条.所以图(3)上总共有线段10+6+6=22(条).2.①在∠AOB内有4条角分线,所以共有角:5+4+3+2+1=15(个);②在∠AOB 内有9条角分线,所以共有角:10+9+8+7+6+5+4+3+2+1=55(个);③周角内含有6个基本角,所以共有角:6×(6-1)+1=31(个).3.①(3+2+1)×7=42;②(6+5+4+3+2+1)×4+(4+3+2+1)×7=21×4+10×7=84+70=154.4.①有线段:(4+3+2+1)×3+(3+2+1)×5=30+30=60(条)有三角形:(4+3+2+1)×3=30(个);②有线段:(5+4+3+2+1)+5×2+(2+1)=15+10+3=28(条)有三角形:(5+4+3+2+1)×2+5=15×2+5=35(个).1.共有正方形54个.2.共有长方形136个.3.共有长方形133个.4.(1)共有三角形78个.(2)共有三角形58个.5.共有三角形45个.6.共有三角形36个.7.共有正方形24个.。

小学奥数模块教程几何计数(ABC级)

小学奥数模块教程几何计数(ABC级)

几何计数知识框架一、公式计算法几何计数内容很广,包括数线段的条数,角的个数,长方形、正方形、三角形、平行四边形、梯形等图形的个数,也包括数立体图形的个数。

图形的计数一般有两种思考方法:公式计算法和分类计数法。

三年级学习的线段、长方形和正方形的计数就属于公式计算法。

(1)一条线段有两个端点,若这条线段上有n个点,那么线段总数是(n-1)+(n+2)+…+3+2+1(2)如果一个长方形的长边上有n个小格,宽边上有m个小格,那么长方形的总数是(1+2+3+…+n)×(1+2+…+m)(3)如果把正方形各边都n等分,那么正方形的总数是n2+(n-1)2+(n-2)2+…+32+22+12上面计算线数的方法也可用于计算角的个数,而且,根据这些计数方法在以后还可以类推出立体图形的计算方法。

二、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.重难点(1)分类数图形。

(2)对应法数图形。

一、 分类数图形【例 1】 下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小棍?【巩固】 如图所示,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?【例 2】 图中有______个正方形.例题精讲【巩固】 数一数:图中共有________ 个正方形。

【例 3】 右图中三角形共有 个.【巩固】 数一数图中有_______个三角形.【例 4】 图中共有多少个三角形?【巩固】 下图是由边长为1的小三角形拼成,其中边长为4的三角形有_____个。

CBA【例 5】如图,每个小正方形的面积都是l平方厘米。

则在此图中最多可以画出__________个面积是4平方厘米的格点正方形(顶点都在图中交叉点上的正方形)。

奥数-05图形计数+答案

奥数-05图形计数+答案
单层长方形的数量=长边上的线段数 4+3+2+1=10(个) 单列长方形的数量=宽边上的线段数 2+1=3(个) 总个数=长边上的线段数×宽边上的线段数 10×3=30(个) 练习六 下图中各有几个长方形?
( )个
( )个
4
( )个
【例 7】
下图中各有多少个三角形?
分层法: 上 层: 下 层: 上下层: 总 数:
下图中,有多少个正方形?
解析:利用开小火车法: 火车头为最小正
5
练习一 下图中,有多少个正方形?
1、
2、
3、
( )个
( )个
( )个
【例 2】
下图形中,长方形有多少个? 解析,先将<格 1>与<格 2>隐去,剩下的
练习一
2
【例 2】 数出右图中共有多少条线段。 解析:(加法原理)从基本图形(只包含
最短线段)的个数出发,按序递增,依次数 出它们的个数,并求出它们的和是多少。最 小线段(基础线段)的数量为火车头,有 3
条,由两条基础线段拼成的线段有 2 条,由三条基础线段拼成的线段有 1 条,共有 3+2+1=6(条)。
练习七 下列图形中各有多少个三角形?
按分类加法原理
4+3+2+1=10(个) 4(个) 4+3+2+1=10(个) 10+4+10=24(个)
【例 8】 下图中有多少个三角形? 解析:假设每一个最小三角形的边长为 1。按边
的长度来分类计算三角形的个数。 边长为 1 的三角形,从上到下一层一层地数,有
一、图形计数方法——分类计数法
它是指先把所要计数的对象按性质、特点进行分类,统计出每一类的个数,再求 各类之和。分类计数的理论基础是“加法原理”。
运用加法原理的关键问题:确定分类的方法。 举例:下图中共有多少个图形? 可以分成圆、正方形、三角形和长方形 4 类,统计出各类的个数,再相加。也可 以按位置分上、中、下分别统计,再求和。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档